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1. Introduction

In this paper, we are concerned with the elliptic problem

1/ .
~[IM(Jlully )] PApu=f(x,u) inQ,
u=0 on 0Q,

(1.1)

where Q ¢ RV is a bounded smooth domain, f : QxR* - Rand M :R* — R, R* = [0,00)
are given functions, A, is the p-Laplacian:

Apu = div(|VulP2Vu), p>1, (1.2)

and ||-[|1 is the usual norm
Julf, = [ [vu (13)

in the Sobolev space WS’P (Q).
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Such a problem, which will be named p-Kirchhoff problem, is a generalization of the
classical stationary Kirchhoff equation

~[IM(lul)]Au = f(x,u) inQ,

14
u=0 on 0Q, (14)

where |u||* = [4|Vul* is the usual norm in Hj(Q).
As it is well known, problem (1.4) is the stationary counterpart of the hyperbolic

Kirchhoff equation
0*u (Po E J'L
P=s ~\ 7 Vo1
ot? h 2L),

that appeared at the first time in the work of Kirchhoff [1], in 1883. The equation in (1.5)
is called Kirchhoff equation and it extends the classical D’Alembert wave equation, by
considering the effects of the changes in the length of the strings during the vibrations.

The interest of the mathematicians on the so-called nonlocal problems like (1.1)
(nonlocal because of the presence of the term M ( ||u||’1’/p), which implies that equations in (1.1)
and (1.4) are no longer pointwise equalities) has increased because they represent a variety
of relevant physical and engineering situations and requires a nontrivial apparatus to solve
them.

ou

2 2
o dx> ou_y (1.5)
ox

ox2

Particularly, problem (1.1) presents some combinations that, at least to our knowledge,
seem to be new. Indeed, in problem (1.1) appears the nonlocal term M (||u||’17,p) motivated,
among other things, by the above physical situations. Furthermore, we have the presence
of the p-Laplacian operator that appears in several areas of the science such as astronomy,
glaciology, climatology, nonnewtonian fluids, petroleum extraction. Problems that involve
these two terms, M (||u||’f/p) and A,u, present several difficulties such as uniqueness,
regularity, degeneracy, as we will see throughout this paper.

Beside these considerations, we also consider a case with the presence of a singular
term which poses an additional difficulty in our study. Singular elliptic problems arise in
chemical heterogeneous catalysts, nonnewtonian fluids, nonlinear heat conduction, among
other phenomena.

In case p = 2, problem (1.1) has been studied by several authors. See [2-7], and the
references therein. Particularly, this work was motivated by [2—4, 6].

We will establish existence results for problem (1.1) by considering several classes of
functions M and f.

An outline of this work is as follows:

In Section 2, we recall some properties of the p-Laplacian. In Section 3, we study the
case in which f depends only on x € Q. This is the M, -Linear case. In Section 4, we attack
problem (1.1) when f is sublinear, that is, f(u) = u®, for some 0 < a < 1.

In both Sections 3 and 4, we suitably adapt ideas developed in [2, 3, 6].

In Section 5, we analyze the case in which f possesses a singular term. More precisely,
f is of the following form:

fx,u) = hx) +u* P, (1.6)

uy—p+2
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for x € Q and u > 0, with y,a € (p — 2, p — 1). In this section, we have to use some arguments
different from those in [4].

To end this introduction we recall that u € WS’P (Q) is a weak solution of problem (1.1)
if

M) [ 92 uvg = [ fewg, Ve ewy @) (17)

2. Preliminaries on the p-Laplacian

We will briefly expose some properties of the p-Laplacian operator defined by

Apu=div(VulP2Vu), 1<p<co. (2.1)
First, we consider the problem

-Apu = f(x), inQ, (22)
u=0, on0Q,
where f € W#(Q), p' = p/(p-1), p > 1, and the boundary condition will be understood
asu € Wg’p(Q).
The following results holds as a simple consequence of a minimization of a suitable
functional.

Theorem 2.1. If f € W-LP(Q), then problem (2.2) has only a solution u € Wé”” (Q) in the weak
sense, namely,

[M(||u||§’,p)]p_1J‘Q|Vul’”Vqub = fg f$, VWP (Q). (2.3)

So, we have defined an operator (—AP)_1 cWP(Q) — Wé’p (L2), the inverse of —A,,
which satisfies the following.

(a) =4, : Wé’p Q) - WP (Q)is uniformly continuous on bounded sets, where such
operator is defined as

—A, WP (Q) — W (Q), 04
ur— —Apu,

where

(—~Dpu, §) = IQ|Vu|p_2VuV¢, Vo € WP (Q). (2.5)

Here, we denote by (, ) the duality pairing between WP (Q) and Wé’p (Q).
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(b) If f € C°(Q), then the weak solution of (2.2) belongs to C**(Q), for some 0 < & < 1,
and the mapping (-4,)"" : C%(Q) — C!(Q) is compact.

Theorem 2.2 (weak comparison principle). Let u, u; € W(}’P(Q) satisfy

—Apuy < =Apuy, in Q, (in the weak sense)

(2.6)
u1 <up, on o0Q.
Then, u; < up a.e. in Q.
Theorem 2.3 (a Hopf-type maximum principle). If u € C! Q)n Wg’p(Q) and verifies
-Apu >0 inQ,
u>0 inQ, (2.7)
u=0 on oL,

then 0u/0n < 0 on 0Q, where 1 is the outward normal to 0.

Theorem 2.4 (a strong maximum principle). Assume that k € R is a nonnegative number 1 <
p <2and Q is a bounded domain RN. Suppose that u € C'(Q) satisfies

-Apu+ku>0 in Q (in the weak sense), (2.8)

u>0and u#0in Q. Then, u > 0 in Q. The conclusion is still true for all p > 1 when k = 0.

We now consider the eigenvalue problem

-Apu = MulP?u in Q,

(2.9)
u=0 on o0Q,

where A € R is a parameter. We say that A € R is an eigenvalue of (2.9) if there exists a

function u € Wé’p (Q), u#0, satisfying (2.9) in the weak sense. Such a function is called an
eigenfunction of (2.9) associated to the eigenvalue \.

There exists the first positive eigenvalue A; of problem (2.9) which is characterized as
the minimum of the Rayleigh quotient

VulP
A=  min IQ'—' > 0. (2.10)

02uew” (@) [olulP

Moreover, Ay is simple (i.e., all the associated first eigenfunctions u are merely constant
multiples of each other) and isolated (i.e., there are no eigenvalues less than \; and
no eigenvalues in some right reduced neighborhood of 1;). There is a positive (in )
eigenfunction ¢, corresponding to ;.

For more informations on the p-Laplacian the reader may consult [8-11].
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3. The M-linear case

This section is devoted to the study of the so-called M,,-Linear problem

-1 .
—[M(lulf )" Apu=f inQ,
u=0 ono0Q,

(3.1)

where p > 1, f € W™#(Q), p' is the conjugate exponent of p, that is, p' = p/(p — 1) and
W7 (Q) is the topological dual of Wg'p(Q).

The next result is an adaptation of some ideas contained in [12, 13] (which were used
for another nonlocal problem) for problem (3.1).

Theorem 3.1. For each 0# f € W=7 (Q), problem (3.1) possesses as many solutions as the folloing
equation:

MHE? = |wlhp, t>0, (3.2)

where w € WS’P(Q) is the only solution of problem (2.2).

Proof. First, let us suppose that u € Wg’p(Q) is a solution of (3.1), where 0% f € W=7 (Q) is
fixed. Hence

div(|V(M([ull])w) P2V (M ([ull} ) = f (3.3)

and so w = M(||u||fp)u is the solution of

-A,w = in Q,
=1 (3.4)
w=0 on o,

and observe that [|w||1, = M(||u||’1’,p) [|lul1,, from which we conclude that t = ||u||’17,p is a solution
of (3.2).
Conversely, let w be the solution of (3.4) and suppose that t > 0 is a solution of (3.2).

Define
u=tr_< (3.5)
lleoll,p
and so [[ul|1, = t/P. A straightforward calculation shows that
-1
. M(t/r1? .
—[M(||u|lf plAu=——] in Q, 3.6
[ (” ||],p)] P ||(U||1,p 14 ( )
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and, because t > 0 is a solution of M (t)t'/? = llwll1,p, one has (M(#)t/?/||wllp) = 1. Hence,

_1 .
Ml )Y A= inQ,

(3.7)
u=0 on 0Q,
which concludes the proof of the theorem. O
Remark 3.2. Let us suppose that M : R* — R* is a continuous function. So,
lim M@)H/P =0. (3.8)

Assume, in addition, that there are t, g > 0 such that M (t) > mg > 0 for t > t. In this
case,

lim M ()P = +co. (3.9)

t—+oo
Because of the intermediate value theorem, for ||w||1 ,, there is t > 0 such that
MOEP = |wlh - (3.10)

In particular, if M(t)t'/P is an increasing function for t+ > 0, problem (3.1) possesses only
a solution for each 0# f € W% (Q). As an example, we take M(t) = e~ for t > 0. Thus,
problem (3.1) possesses as many solutions as the following equation:

e tP = ||lwlly . (3.11)

A simple exercise shows that the function g(t) = e”'t!/? attains its maximum in 1/p
and g(1/p) = 1/€"/? y/p. Consequently, if ||w]|1, > 1/e'/? ¢/p, problem (3.1) does not possess
any solution; if w1, = 1/ el/p /P, problem (3.1) possesses exactly one solution; and if 0 <
llewllr,p <1/ el/r /P, problem (3.1) possesses exactly two solutions.

As we see, the presence of the term [M(||u||’1’,p)]p_1 produces great difference between
problems (2.2) and (3.1).

Remark 3.3. Let us consider the case f =0, that is,

_1 .
—[M(Ilull’f,p)]p Apu=0 inQ,
u=0 on 0Q.

(3.12)

If M(t) > O for all + > 0, problem (3.12) possesses only the null solution. If
M(ty) = 0O, for some ty > 0, problem (3.12) possesses infinitely many solutions. Indeed, if
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ue Wé’p(Q), u#0, we have that

1/p U
v=t 3.13
0 Tl (3.13)

is a solution of (3.12).

4. On a sublinear problem

In this section, we are going to study the sublinear problem

-1 .
SIM(ulf, )T Apu = ut in ©,
u>0 inQ, (4.1)
u=0 on 0Q,

where a satisfies 0 < a < p -1 withp > 1.
Such a kind of problem belongs to a class of problems known as sublinear whose
prototype is

Au=u* in Q,
u>0 in Q, (4.2)
u=0 on 0Q,

with 0 < & <1 (note that, in this case, p = 2), which has been vastly studied. See [14-17]. For
the nonlocal problem, with p = 2, we cite [2, 3, 6, 7], and the references therein.
In particular, Diaz and Sad [16] study the problem

Apu=u" in Q,
u>0 in Q, (4.3)
u=0 ono0Q,

1 <p <o 0< a<p-1,and show that it possesses only a positive solution u €

Wg'p(Q) N L*(£2). Indeed, such a solution also belongs to leo’f(Q). Our next result describes
what happens with the nonlocal sublinear problem (4.1).

Theorem 4.1. Suppose that M : R* — R is a continuous function satisfying M(t) > 0 forall t > 0.
Then problem (4.1) has at least as many solutions as the equation

[M()]PL -t 10/ = o717, ¢ 50, (4.4)
1p

where v is the solution of (4.1).
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Proof. We adapt for problem (4.1) the ideas developed in [3, 6]. Let us suppose that t > 0
is a solution of the (4.4) and set y = t!/7/||v||;, which implies |[yv|, = t'/?. So, a simple
calculation shows that

[M(llyoll] )17 =y D, (45)

Define u = yv and let us show that such a function u is a solution of problem (4.1).
Indeed, this follows from the calculation below:

-1 -1
—[M(lulf )17 Apu = ~[M(lyoll] )1

p)] AP(YU)
— Myl )T div(V (o) 2V (o))
)l

-1 5. — _
= —[M(llyol} 1" div(y?y| Vol Vo)

(4.6)
-1

= [M(llyoll; )1y (=4,0)

=y "y (-A,0)

— chva — (Yv)tx — uu m Q

Hence, u is a solution of problem (4.1). O

Remark 4.2. Remark 3.2, mutatis mutandis, remains valid for problem (4.1).

5. A singular problem via the Galerkin method

In this section, we will study problem

-1 h(x) _ )
(Ml )1 Apu = =25 +ut#2 in Q,

u>0 inQ, (5.1)
u=0 on 0Q,

which is a singular perturbation of problem (4.1), where Q C RV is a bounded smooth
domain, 2 < p < N and h is a suitable function defined in Q.

We will attack problem (5.1) by using the Galerkin method which rests heavily on the
following result, which is a variant of the well-known Brouwer fixed point theorem, whose
proof may be found in Lions [18].

Proposition 5.1. Suppose F : R™ — R™ is a continuous function such that (F(¢),¢) > 0 with
|é| = 7, for some v > 0, where (-,-) denotes the usual norm in R™. Then, there is & € B,(0) such that
F(&) = 0.

We will suppose that M : R* — R* satisfies

(M) there are my >0 and 6; >0 such that M(t) > mq ift > 6y;
(M3) 0, =sup{t > 0; M(t) =0} > 0.

If M(t) > mgy > 0 for all t > 0, condition (M) is vacuous.
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Theorem 5.2. Let h : Q — R be a continuous function with h >0on Q,y,a € (p-2,p—-1), 2 <
p < Nand M : R* — R* is a continuous function satisfying (M1)-(My). Then problem (5.1)
possesses a positive solution.

We will split the proof of this theorem in several lemmas. First, for each fixed € > 0, we
will consider the following problem:

- h
Ml )T A = % U inQ,
’ e+u)”
u>0, inQ,

u=0, on 0Q.

(5.2)

In what follows, throughout Section 5, we are always supposing that M, h, a, and y
enjoy assumptions of Theorem 5.2

Lemma 5.3. For each fixed € > 0, problem (5.2) possesses a solution ue.

Proof. Let us consider the problem

Ml )T A = — ) yper2, g
” (€ + [u)P* (5.3)
u=0, on0Q,

where M* : R* — Ris given by

i <t<
M = | fo<t<o, 5
M(t), ift>0,.

We now consider B = {ey, es, e3,...} a Schauder’s basis for Wé’p(Q) (we recall that a
Schauder’s basis for a Banach space X is a sequence (e,;) such that to each x € X there exists
a unique sequence of scalars (a,) for which the partial sums of >’ a,e, converge to x in the
norm of X). For more informations on Schauder’s basis see [19] and the references therein.

For each m € N, let B,, = span{ej,ey,...} be the finite dimensional vector space
spanned by the functions e, ...,e,. So, each u € B, is written as u = z;’;lgje]-. We will
use on B,, the norm

lleellm = > 1&1- (5.5)
i=1

We note that (B,,, ||-[) and (R™, ||s) are isomorphic through the following map:
T: @B, [llm) — R, [s),

w=Sgie;— T) =& = @1,é0 . &), (56)
j=1

with [[ullm = [§]s = |T ()|, where [¢]s = 372,141
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Since, for each m € N, B,, is a finite dimensional vector space the norms ||-||,, and

[I|l1,, induced from WS P(Q) on B,,, are equivalent to each other and so, there exist positive

constants ¢(m) and k(m) such that

c(m)|[ullm < llull1p < k(m)|[ullm.

We now consider, for each m € N, the following application

F:R"™ — R™,
& F(§) = (F1(§), F2(¢), - .., Fm($)),

where

h
F@) = Ml )1 [ vup2vuve, - [ 2y [ e,

o (e +lul) 72

j=1,...,m
A simple calculation leads us to

(F@),8) = M (el ) [ 9up2ugu— [ L [ ey,

o e+ u) 7
=[M*<||u||’;,,,>]*’1||u||§’,p—fg - Ala)u f P2

+lu))’ P

We now note that

j ELCOL A ||wf iy,

e+ fu) 72 er v
and becausep-2<a<p-1,wehavel <a-p+3<2 andso
[ s | e <oy
Q Q
Hence,
-1 3

(F@), &) = [M(lullf )1 lluall], = Cellulln = Clluely 7™,

and from (M), for ||u||’f/p > 61, we have M+(||u||’ip) = M(||u||’f/p) >mg > 0. Thus,

(F@),&) > mp lull?, = Cellullp = Cllully
> ml ™ [e(m)]P ullh, — Cek (m) |uallm — [k (m)]*P*3Cllulf5 7™
mh ' C(m) el - Ne(m)léls — Qm))éls ™.

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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We now fix p,, > 0 and for ¢ € R™, |¢|s = py and noting that 1 <a—p+3 <2 < p, we
obtain

(F(@),8) > m} ' Cm)phy ~ Ne(m)pm — Qm)pi ™. (5.15)
So, if pyy is large enough, we have
(F(@),8) >0 if &l = pm, (5.16)
which implies
(F(2),8) >0 if g = p},, (5.17)

where p}, > 0, because |-| and |-|s are equivalent in R™.

From Proposition 5.1 there is ¢ € R™, with |¢| < p7,, such that F(¢™) = 0 and note that
|&"|s < pm for some p,, is large enough.

Through the isometric identification of (R™,[|;) with (B, |||lm), we find (u,,) C
B, tmllm < pm, thatis, ||unll1p, < p,,, such that

-1 _ h(x)e; .
M Gl )1 [ 190025V - [ D [ e =0, (618)
mlli1,p o m mY =] Q(€+ |um|)Y—P+2 o m ]

foreach j =1,...,m, which gives us

h(x)w

-1
(M ()T f Vit P2Vt Vo — j __hw
Lp Q a(e+ |um|)Y"p+2

- f || " PH2w =0, (5.19)
Q

for all w € B,,. Since u,,, € B,,,

[M*(Humni’,,,)]”‘l||um||§’,p—f@ = [ et =0 520

|u | yp+2

Because

J‘ hum |4l

< [m| < Celltumlls,
Q (€ + |tty]) P+ 6””2.[9 " e

(5.21)

.[ 4P 210 < Clat7 7,

we obtain

a-p+3
[M(llumll} )17 IIumlll,, < Cellumllnp + Cllumlly )™ (5.22)
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Let us show that the sequence (||u|1,) is bounded. Indeed, suppose, on the contrary,
that (||us|l1,) is not bounded. So, up to a subsequence, we may suppose that [[u,|l1, — +oo.
From condition (M;) and inequality (5.22) we obtain

—p+3
0< mo ”um”lp <Ce ”umlllp + C”umlll i ’ (5.23)
which give us
- C C
0<my’ < fp el (5.24)

Since [[um|l1p — +oo we arrive in
0<ml ' <0, (5.25)

which is impossible. Thus, (||[t]|1,) is bounded. Consequently, up to a subsequence,

lawll}, — to,
. 1,
Uy —u in W,"(Q), (5.26)
u, — u in L1(Q), 1< g <p*,
Up(x) — u(x) a.e. Q.
And in view of continuity of M
-1 _
[M* (I} )17 — [M* ()] (5.27)
We now fix I < m and so B; C B,,. For ¢ € B; we have
1 _ h(x) "
M il )V [ il 20T = [ | ey, (s2)
Q a(e+ [uml)
for all ¢ € B.
We now remark that
h(x) C
| S Gpalvl € L@,
e
(5.29)

G 1CY
(e +lum ()P (e + () 7
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By the Lebesgue dominated convergence theorem

f. LTI 5.30)

e+ul) P Jae+ ul)
Furthermore, because u,, — u € L?(Q), we have

|| P — [P in 17/ @r2)(Q), (5.31)

and because Q is a bounded domain and p < p/(a—p +2) we have LP/@P+2(Q) c LP(Q) and
SO

[t| P2 — |u|*P*? in LP(Q). (5.32)
Consequently,
[t ()7 P — Ju(x)[* P ae. in Q, (5.33)

and there is g € LP (L) such that

a—p+2

|14, ()] <g(x) ae inQ VmeNlN (5.34)

Thus,

1|2 < glgl € LN(Q), (5.35)
and using again the Lebesgue dominated convergence theorem

j|um|“*”*2<p—> f W2 Ve B. (5.36)
Q Q

We will now consider the following claim, whose proof will be postponed to Section 6.

Claim 1. The following convergence holds

M Qenl )V [ 91002900 — MY @) [ 19029070, (537)
’ Q Q

for all p € W,?(Q).
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In the inequality (5.28) we make m — oo and we use (5.27), (5.30), and (5.36) to obtain

h

for all ¢ € B.

Since I € N is arbitrary, the above inequality holds true for all ¢ € WS ?(Q). Because of
this M*(tg) > 0 and so M*(tp) = M(ty), which implies

h(x
O L B W (5:39)

for all p € W,7(Q).
Taking u as a test function in the inequality (5.39), we get

. h .
MGl = | [ e (5.40)

o (e + [ul)

We now take ¢ = u,, in (5.28) to obtain

-1 h(x)u,, a
[M([[unll] )] ||um||’;,,,=fg ot |(u)|)y s f T (541)
Since
h(x)u,, C
(e i 72| = a7 S

and because u,, — u € L1(Q), 1 < g < p*, it follows that |u,(x)| — |u(x)| a.e. in Q and there
is g € L'(Q) such that |u,,| < g a.e. in Q for all m € N. Consequently,

C
- ey—p+2

h(x)u,
(€ + [um]) 7"

|| <

g€ LY(Q). (5.43)

€y—p+2

Reasoning as before, we obtain

J‘ h(x)um_erz _ J‘ h(x)u_erz ,

a (e +[um))” a(e+[ul)’

(5.44)
J‘ |um|u—p+2um f |u|u—p+2u‘
Q Q
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Taking limits on both sides of the equality (5.41) and using ||u, ”]ip — 1y, (5.27), (5.44),
we obtain

_ h(x)u _
M*(t)]P 't =I f apr2y (5.45)
M@ o= [ = [
Comparing this last equality with the one in (5.40) we obtain t; = ||u||;17,p because

M*(tp) > 0. Then, from (5.39)

- - __hx)e
M(|Julff )Plf VulP2vuv :f f ap2y (5.46)
MUl )1 | 9P 29uvy = | R |
for all p € W,?(Q).
This shows that u € Wé’p(Q) is a weak solution of the auxiliary problem (5.2) which is
positive by virtue of the maximum principle. This proves the lemma. O

In what follows, for each n € N, we set ¢ = 1/n and uy,, = u, where u;/,, is the solution
obtained in the last lemma.

Lemma 5.4. There exists 6 > 0 such that [M(||u,,||§',p)]p_1 >6>0,forallneN.

Proof. We will reason by contradiction. Suppose that

lim inf [1\/1(||u,1||§7,p)]”‘1 =0. (5.47)

If it is the case, the sequence (||un||’;J p) is bounded because, on the contrary, we would have

||un||’f/p > 01, perhaps for a subsequence, and so

[M(lluall; )77 > iy > 0, (5.48)
and this would imply
liminf [M(Ju,|} )] > m} " >0, (5.49)

which is impossible in view of (5.47). Therefore, up to subsequences,

[
u, — in WP(Q), (5.50)

u,(x) — u(x) a.e. in Q.
Since M is continuous, we have

0 = liminf [M(|luall} )17 = lim [M([lunll} )17 = [M(80)1". (551)
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We now note that

h(.X) a-p+2 5 h(JC) + ta—p+2
(1/n+t) P+ T 1+
> % a-p+2
1+t)"P (5.52)
2 é W + ta_p+2
+1)
>Co>0,

forall x € Qand t > 0, because the functiont +— 1/(1+¢t)"? 2 P2 > (), attains a positive
minimum.
Since

Ml )P = s 050, i
Lp (1/n+u,) P2 (5.53)
u, =0, on 0Q.

Taking ¢ € C} (Q), ¢ >0in Q, as a test function in the last equality, we obtain
[M(IlunII’f,,,)]”_lfg|Vun|'”‘ZVunV<p > Cofgw >0, (5.54)
and so M (||un||§]/P)]”_1 > 0. Taking limit on the above expression we get
0= [M(Go)]p_1IQ|Vu|p‘2VuV¢ > Cofggo >0, (5.55)

which is impossible. This completes the proof of the lemma. O
Lemma 5.5. The sequence (||un||’17,p) is bounded, where u,, is as above.
Proof. First of all we note that

h(x)un + f ua—p+3

p 1Pl po_ _
[M(ual])] ||un||1,p—jg(1 e

h(x)u, e
[ A <l (5.56)
o(1/n+u,)?

-p+3 -p+3
J‘ uirr SC2||un||‘1",pp+ ,
Q
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where C; and C; are positive constants independent of n. Consequently,

-1 —y-1 —p+3
Slluall?, < IMlual, )T Nl < Calliall?) ™ + ColluallS . (5.57)
Sincep-y-1<1, a—p+3<2<p,weconclude that (||un||'1g,p) is bounded. O

As a consequence of the preceding lemma we have
0<6 < [M(lunll; )] < My, ¥neN. (5.58)

Lemma 5.6. The sequence (uy,), obtained in the last lemma, converges to a solution of problem (5.1).

Proof. As (u,) is a bounded sequence in W& ?(Q) we have, up to subsequence, that

luall], — 10> 0,

u, —u in W,P(Q),

(5.59)
u, — in L1(Q), 1<g<p5,
u,(x) — u(x) a.e. Q.
From the continuity of M,
M(luall;,)) — Mto). (5.60)

Let g5y > 0 be an eigenfunction of (-4, Wé P(Q)) associated to first eigenvalue A, and
satisfying

Co> MLy, VxeQ, (5.61)

where Cy is the constant obtained in (5.54). Consequently,

Ml T Ay = — D) e g
P (1/1 + u,) P+

1 p 5.62
ZC0>J\1M501([J§J ! in Q, ( )

U, =@ =0 on 0Q.

Since

~M(luall, )T Ayt > Co > LME ' in Q, (5.63)
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it follows that

~Ap ([M(lunll} ) T1n) > =Ap(Meogpr) in Q, (5.64)

and as [M (||un||f/p)]un = M1 = 0 on 0Q. By the comparison principle,

[M(llunll} )tn > Moy in Q, (5.65)
and from (5.58)
() > M1 (5.66)
n 1/(p-1) ' :

From which we conclude that u,,(x) - 0 for each x € Q.
Next, we will use the following.

Hardy-Sobolev Inequality. If u € W&’p ()and 1 <p < N, then u/¢g] € L"(L2), where
1/r=1/p-(1-7)/N, 0<7<1,and

u

1

< |IVullw, (5.67)
L?

where C > 0 is a constant and is an eigenfunction of (-4, Wg’p(Q)) associated to
the first eigenvalue A;.

Whose proof may be found in [20].

As
h
LG PPN (5.68)
(1/n+ u,)' P+ || P*2
and using (5.66) it follows
lol [7lles lopl
h(x) PR <TE Ty (5.69)
n qj‘l
From the Hardy-Sobolev inequality
Il VoL 1) (5.70)

—p+2
C oyl
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Furthermore,

GV 1C)Y

Q, 5.71
(1/7 + up(x)) P2 u(x)’ P2 G71)

and so, by the Lebesgue dominated convergence theorem

h(x)gp h(x)g .
— | ——5 v Q). ,
IQ (1/1 + 1, (x))V P+ JQ u(x) P2’ pEW"(Q) (5.72)

Since Q is bounded and p < p/(a — p +2), we have LP/(#P+2) — [P(Q) and so
WPy P2 in [P(Q). (5.73)

Since Q is bounded and p < p/(a — p +2), we have LP/(@P+2) — [P(Q) and so

U ()P — u(x)* P2 ae. in Q, (5.74)
and there exists g € LP (L) such that
uz_pﬂ <g aeinQ, VneN. (5.75)
Hence,
"l < glol € L'(Q), (5.76)

and using again the Lebesgue dominated convergence theorem, we obtain
J' uZ_P+2(P N J‘ uu—p+2(p, (577)
Q Q

for all p € W,?(Q).
As (u,) is solution of the auxiliary problem

_ . h(x)e api2
M(||un|P DT 1f Vi,|P2Vu,V =J - +f uy, ", 5.78
(Ml )7 | 1920 0= Ty e 57)

for all ¢ € WS’F(Q), taking limits on both sides of the above expression, using the same
reasoning as in the proof of the claim and the convergences in (5.60), (5.72), and (5.77) we
obtain

- - h(x) -
[M(t)] 1f IVulP2Vuve :f ur_pg | w2, (5.79)
Q Q Q
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forall ¢ € WS ?(Q). Using u as a test function in the last expression

[M(t0)1 " ull}, = fgh(x)u'ﬂ‘”1 + fgu“‘*“s- (5.80)

Taking ¢ = u, in the expression (5.78), it follows that

Ml )1l = [ P [ e, (5.81)

o(1/n+u,) P

Noticing that u, — uin LI(Q), 1< g<p*,and 1< 1/(p -y - 1) we have LV #?1")(Q) —
LY(Q) and so

u, — u in LV r-D)(Q),

(5.82)
Uy(x) — u(x) ae. in Q,
and there exists w € LY ®7~1(Q) such that
0<uy(x) <w(x) ae inQ, VneN. (5.83)
Thus,
_ DU g e 1),
(1/n+u,) P
(5.84)
%”2 s R u)P T ae. in Q.
(1/n+u,) "
By the Lebesgue dominated convergence theorem
h(x)uy
f Lz j h(x)u(x)P ", (5.85)
o(1/n+u,)P*
and because 1 < a — p + 3 < 2, it follows that
j a-ps3 _>f apss (5.86)

We now take limits on both sides of (5.81), by using (5.60), (5.85), and (5.86), to obtain

[M(to)]P 'ty =f h(x)u fgu“"’*s, (5.87)

ur- p+2
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that is,

[M(to)]P 't = Lzh(x)up-v-l + fgu”""+3, (5.88)

Comparing (5.80), (5.88) and using [M(t)]P™ > 0, we get ||u||’f,p = tg. Therefore, from
(5.79)

R LC I G
) W A = B (5.89)
forall ¢ € W& P(Q), which shows that u is a weak solution of (5.1). O

6. Proof of the claim

We recall that we have to prove that

(M Q)1 [ 92V, — (M) [ VP 2vuvp (o)

for all p € W,7(Q).
First of all, we claim that (-A,u,,) C (WS’F(Q))' is a bounded sequence. Indeed,

|<_A um,v)l = |vum|pfzvumvv
g Q

< f Vit |V, 6.2)
Q

and because u,, € B,, C Wé’p(Q), we have |Vu,| € LP(Q) and |Vu,|P~! € LF/P-D(Q).
Applying the Holder inequality, by using the exponents p and p/(p — 1), it follows that

(p-1)/p 1/p )
[(=Apt, v)] < <f |Vum|P> (I |V’U|p> = lfumll? 0111, (6.3)
Q Q
which implies
- Apumll(wéfﬁ(g))’ < ”u”}lap <C, (6.4)

where C, > 0 is a constant, because the boundedness of (|| ||1,) was proved in Lemma 5.5.
Since WS’P(Q) is a separable Banach space and (-Au,,) is a bounded sequence in
(W& P(Q))' then, up to a subsequence,

~Apuy =y in (W,P(Q)), (6.5)
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that is,
(~Bptim, ) — (. 9) VY g e W,"(Q), (6.6)
which is equivalent to
[ a2V — () VW@ (67)
Since
[M* (] )1 — [M* (t0) P, (6.8)
it follows from (6.7) that
[M*(Mumn'f,,,)]’”1f@|Vum|f’2\7umw — [M*(t)]" " (x, ¢), (6.9)

forall ¢ € WS’P (Q). Taking limits on both sides of (5.28) and using the convergences (5.30)
and (5.36), we obtain

h(x)g

M (|[uf p_lf Vit P 2Vu,,V —>f —r
[ (” m”1p)] Ql ml mV Q(€+|u|)y_p+2

o w0
Q

forall ¢ € Wé'p (Q). So, from (6.9), (6.10) and the uniqueness of the limit

h(x)g

+ p-1 — a-p+2
M1 () = [ i [ iy (611)

for all ¢ € W," (Q).
Using the monotonicity of the operator (—Ap), that is,

(~Apw - (~A,0),w-v) >0 Yw,veW,"(Q), (6.12)
we have
[M+(||w||§"p)]P_1J‘Q(|Vw|”‘2Vw — |Vo|P2Vv, Vw — Vo)dx > 0. (6.13)
Taking w = u,, and v = ¢ in the last expression, we obtain

N -1 _ _
(M Q)1 [ (A9 2T = (9429, Tt = Tg)dx 20, (619
Q
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and so

-1 -1
[M* ([l )1 Mt} , = [M* (e} )] fQWumWVumv(p

-1 -1
M Q)1 [ 9250+ DM Q)7 [ 920

In (5.28) we take ¢ = u,, to obtain

N -1 h(x)up -
(M 1 il = [ L N

(e + ) 7

Consequently,

h(x)tm a-p+2 Nt -2
[ Ot [t 2 = M Gl )V (90250, 7

a (e +[um|)

-1 -1
M )1 [ 199020 4 1Ml )7 [ (920,

using the definition of -4,

h(x)um f 42 p \qp-1
—————+ | Ul Py = (M (|t —Apuy,
IQ (€+|um|)y—p+2 QI | [ (” Hlp)] < P ([)'>

M (] )1 (=B, ) + [MF (Ll )1 (=B, 45) > 0,

taking limits as m — oo and using (5.44) we have

J Q% [ e v ) )

—[M* (k) 1P (= A pgs, ) + [M* (k) 1P (= Apgp, ) > 0.

We note that

[ hG)y i
M) () fg f "

+ )72
forall g € B; C W;’p(Q), and so

[M+<to>1”‘1<x,u>=f L f "2,

NP2
a(e+u)"™""

23

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
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Therefore,
[M* () 1P~ (x, 1) = [M* (80) 1P (, ¢0) 62
—[M* (1) P (= Apg, u) + [M* ()17 (=Apgp, ¢5) >0,
that is,
(X = (Apyp),u—g¢)20. (6.23)
Setting
g=u-Ap, L>0, peB, (6.24)
we obtain
(X -[-Ap(u—-2p)], ) 20, VA>0, p €By, (6.25)

taking limits on both sides of the above expression as A — 0 and using the continuity of the
operator —A,

(X, —(=Apu), ) >0, VoeB. (6.26)
So,
(x = (=Apu),—¢p) 20, (6.27)
and we obtain
(x = (=Apu), ) <0, VyeB,. (6.28)
Hence,
(X = (Apu),9) =0 VpeB, (6.29)

which implies y = —A,u, because [ is arbitrary. This means that the above equality is valid for
allp € Wg”ﬂ (). From (6.10) and (6.11) we conclude that

[M*(Ilumlli’,p)]’”1fg|wm|'”‘2wmv(p — [M*(t) " (-Au, ), (6.30)
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forall ¢ € Wg’p (Q). Hence,

(M Q)1 [ 910020 — @) [ [T 20u5y (631)
’ Q Q

forall ¢ € Wg’p (). This concludes the proof of the claim.
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