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Correspondence should be addressed to Francisco Julio S. A. Corrêa, fjsacorrea@gmail.com
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1. Introduction

In this paper, we are concerned with the elliptic problem

−[M(‖u‖p1,p)]
1,p
Δpu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain, f : Ω × R
+ → R andM : R

+ → R, R
+ = [0,∞)

are given functions, Δp is the p-Laplacian:

Δpu = div(|∇u|p−2∇u), p > 1, (1.2)

and ‖·‖1,p is the usual norm

‖u‖p1,p =
∫
Ω
|∇u|p (1.3)

in the Sobolev spaceW1,p
0 (Ω).
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Such a problem, which will be named p-Kirchhoff problem, is a generalization of the
classical stationary Kirchhoff equation

−[M(‖u‖2)]Δu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.4)

where ‖u‖2 = ∫
Ω|∇u|2 is the usual norm inH1

0(Ω).
As it is well known, problem (1.4) is the stationary counterpart of the hyperbolic

Kirchhoff equation

ρ
∂2u

∂t2
−
(
P0
h

+
E

2L

∫L

0

∣∣∣∣∂u∂x
∣∣∣∣
2

dx

)
∂2u

∂x2
= 0 (1.5)

that appeared at the first time in the work of Kirchhoff [1], in 1883. The equation in (1.5)
is called Kirchhoff equation and it extends the classical D’Alembert wave equation, by
considering the effects of the changes in the length of the strings during the vibrations.

The interest of the mathematicians on the so-called nonlocal problems like (1.1)
(nonlocal because of the presence of the termM(‖u‖p1,p), which implies that equations in (1.1)
and (1.4) are no longer pointwise equalities) has increased because they represent a variety
of relevant physical and engineering situations and requires a nontrivial apparatus to solve
them.

Particularly, problem (1.1) presents some combinations that, at least to our knowledge,
seem to be new. Indeed, in problem (1.1) appears the nonlocal term M(‖u‖p1,p) motivated,
among other things, by the above physical situations. Furthermore, we have the presence
of the p-Laplacian operator that appears in several areas of the science such as astronomy,
glaciology, climatology, nonnewtonian fluids, petroleum extraction. Problems that involve
these two terms, M(‖u‖p1,p) and Δpu, present several difficulties such as uniqueness,
regularity, degeneracy, as we will see throughout this paper.

Beside these considerations, we also consider a case with the presence of a singular
term which poses an additional difficulty in our study. Singular elliptic problems arise in
chemical heterogeneous catalysts, nonnewtonian fluids, nonlinear heat conduction, among
other phenomena.

In case p = 2, problem (1.1) has been studied by several authors. See [2–7], and the
references therein. Particularly, this work was motivated by [2–4, 6].

We will establish existence results for problem (1.1) by considering several classes of
functionsM and f .

An outline of this work is as follows:
In Section 2, we recall some properties of the p-Laplacian. In Section 3, we study the

case in which f depends only on x ∈ Ω. This is the Mp -Linear case. In Section 4, we attack
problem (1.1)when f is sublinear, that is, f(u) = uα, for some 0 < α < 1.

In both Sections 3 and 4, we suitably adapt ideas developed in [2, 3, 6].
In Section 5, we analyze the case in which f possesses a singular term. More precisely,

f is of the following form:

f(x, u) =
h(x)
uγ−p+2

+ uα−p+2, (1.6)
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for x ∈ Ω and u > 0, with γ, α ∈ (p − 2, p − 1). In this section, we have to use some arguments
different from those in [4].

To end this introduction we recall that u ∈W1,p
0 (Ω) is a weak solution of problem (1.1)

if

[M(‖u‖p1,p)]
p−1

∫
Ω
|∇u|p−2∇u∇φ =

∫
Ω
f(x, u)φ, ∀φ ∈W1,p

0 (Ω). (1.7)

2. Preliminaries on the p-Laplacian

We will briefly expose some properties of the p-Laplacian operator defined by

Δpu ≡ div(∇u|p−2∇u), 1 < p <∞. (2.1)

First, we consider the problem

−Δpu = f(x), in Ω,

u = 0, on ∂Ω,
(2.2)

where f ∈ W−1,p′(Ω), p′ = p/(p − 1), p > 1, and the boundary condition will be understood
as u ∈W1,p

0 (Ω).
The following results holds as a simple consequence of a minimization of a suitable

functional.

Theorem 2.1. If f ∈ W−1,p′(Ω), then problem (2.2) has only a solution u ∈ W
1,p
0 (Ω) in the weak

sense, namely,

[M(‖u‖p1,p)]
p−1

∫
Ω
|∇u|p−2∇u∇φ =

∫
Ω
f(x)φ, ∀φ ∈W1,p

0 (Ω). (2.3)

So, we have defined an operator (−Δp)
−1 : W−1,p′(Ω) → W

1,p
0 (Ω), the inverse of −Δp,

which satisfies the following.
(a) −Δp :W

1,p
0 (Ω) → W−1,p′(Ω) is uniformly continuous on bounded sets, where such

operator is defined as

−Δp :W
1,p
0 (Ω) −→W−1,p′(Ω),

u �−→ −Δpu,
(2.4)

where

〈−Δpu, φ〉 =
∫
Ω
|∇u|p−2∇u∇φ, ∀φ ∈W1,p

0 (Ω). (2.5)

Here, we denote by 〈 , 〉 the duality pairing betweenW−1,p′(Ω) andW1,p
0 (Ω).
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(b) If f ∈ C0(Ω), then the weak solution of (2.2) belongs to C1,α(Ω), for some 0 < α < 1,
and the mapping (−Δp)

−1 : C0(Ω) → C1(Ω) is compact.

Theorem 2.2 (weak comparison principle). Let u1, u2 ∈W1,p
0 (Ω) satisfy

−Δpu1 ≤ −Δpu2, in Ω, (in the weak sense)

u1 ≤ u2, on ∂Ω.
(2.6)

Then, u1 ≤ u2 a.e. in Ω.

Theorem 2.3 (a Hopf-type maximum principle). If u ∈ C1(Ω) ∩W1,p
0 (Ω) and verifies

−Δpu ≥ 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.7)

then ∂u/∂η < 0 on ∂Ω, where η is the outward normal to ∂Ω.

Theorem 2.4 (a strong maximum principle). Assume that k ∈ R is a nonnegative number 1 <

p ≤ 2 and Ω is a bounded domain R
N . Suppose that u ∈ C1(Ω) satisfies

−Δpu + ku ≥ 0 in Ω (in the weak sense), (2.8)

u ≥ 0 and u/≡ 0 in Ω. Then, u > 0 in Ω. The conclusion is still true for all p > 1 when k = 0.

We now consider the eigenvalue problem

−Δpu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,
(2.9)

where λ ∈ R is a parameter. We say that λ ∈ R is an eigenvalue of (2.9) if there exists a
function u ∈ W

1,p
0 (Ω), u /≡ 0, satisfying (2.9) in the weak sense. Such a function is called an

eigenfunction of (2.9) associated to the eigenvalue λ.
There exists the first positive eigenvalue λ1 of problem (2.9) which is characterized as

the minimum of the Rayleigh quotient

λ1 = min
0/=u∈W1,p

0 (Ω)

∫
Ω|∇u|p∫
Ω|u|p

> 0. (2.10)

Moreover, λ1 is simple (i.e., all the associated first eigenfunctions u are merely constant
multiples of each other) and isolated (i.e., there are no eigenvalues less than λ1 and
no eigenvalues in some right reduced neighborhood of λ1). There is a positive (in Ω)
eigenfunction ϕ1 corresponding to λ1.

For more informations on the p-Laplacian the reader may consult [8–11].
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3. The Mp-linear case

This section is devoted to the study of the so-calledMp-Linear problem

−[M(‖u‖p1,p)]
p−1

Δpu = f in Ω,

u = 0 on ∂Ω,
(3.1)

where p > 1, f ∈ W−1,p′(Ω), p′ is the conjugate exponent of p, that is, p′ = p/(p − 1) and
W−1,p′(Ω) is the topological dual ofW1,p

0 (Ω).
The next result is an adaptation of some ideas contained in [12, 13] (which were used

for another nonlocal problem) for problem (3.1).

Theorem 3.1. For each 0/= f ∈ W−1,p′(Ω), problem (3.1) possesses as many solutions as the folloing
equation:

M(t)t1/p = ‖ω‖1,p, t > 0, (3.2)

where ω ∈W1,p
0 (Ω) is the only solution of problem (2.2).

Proof. First, let us suppose that u ∈ W
1,p
0 (Ω) is a solution of (3.1), where 0/= f ∈ W−1,p′(Ω) is

fixed. Hence

div(|∇(M(‖u‖p1,p)u)|p−2∇(M(‖u‖p1,p)u)) = f (3.3)

and so ω =M(‖u‖p1,p)u is the solution of

−Δpω = f in Ω,

ω = 0 on ∂Ω,
(3.4)

and observe that ‖ω‖1,p =M(‖u‖p1,p)‖u‖1,p fromwhichwe conclude that t = ‖u‖p1,p is a solution
of (3.2).

Conversely, let ω be the solution of (3.4) and suppose that t > 0 is a solution of (3.2).
Define

u = t1/p
ω

‖ω‖1,p , (3.5)

and so ‖u‖1,p = t1/p. A straightforward calculation shows that

−[M(‖u‖p1,p)]
p−1

Δpu = −
[
M(t)t1/p

‖ω‖1,p

]p−1
Δpω in Ω, (3.6)
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and, because t > 0 is a solution ofM(t)t1/p = ‖ω‖1,p, one has (M(t)t1/p/‖ω‖1,p) = 1. Hence,

−[M(‖u‖p1,p)]
p−1

Δpu = f in Ω,

u = 0 on ∂Ω,
(3.7)

which concludes the proof of the theorem.

Remark 3.2. Let us suppose thatM : R
+ → R

+ is a continuous function. So,

lim
t→ 0+

M(t)t1/p = 0. (3.8)

Assume, in addition, that there are t0, m0 > 0 such thatM(t) ≥ m0 > 0 for t ≥ t0. In this
case,

lim
t→+∞

M(t)t1/p = +∞. (3.9)

Because of the intermediate value theorem, for ‖ω‖1,p, there is t > 0 such that

M(t)t1/p = ‖ω‖1,p. (3.10)

In particular, if M(t)t1/p is an increasing function for t > 0, problem (3.1) possesses only
a solution for each 0/= f ∈ W−1,p′(Ω). As an example, we take M(t) = e−t for t ≥ 0. Thus,
problem (3.1) possesses as many solutions as the following equation:

e−tt1/p = ‖ω‖1,p. (3.11)

A simple exercise shows that the function g(t) = e−tt1/p attains its maximum in 1/p
and g(1/p) = 1/e1/p p

√
p. Consequently, if ‖ω‖1,p > 1/e1/p p

√
p, problem (3.1) does not possess

any solution; if ‖ω‖1,p = 1/e1/p p
√
p, problem (3.1) possesses exactly one solution; and if 0 <

‖ω‖1,p < 1/e1/p p
√
p, problem (3.1) possesses exactly two solutions.

As we see, the presence of the term [M(‖u‖p1,p)]
p−1

produces great difference between
problems (2.2) and (3.1).

Remark 3.3. Let us consider the case f = 0, that is,

−[M(‖u‖p1,p)]
p−1

Δpu = 0 in Ω,

u = 0 on ∂Ω.
(3.12)

If M(t) > 0 for all t ≥ 0, problem (3.12) possesses only the null solution. If
M(t0) = 0, for some t0 > 0, problem (3.12) possesses infinitely many solutions. Indeed, if
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u ∈W1,p
0 (Ω), u /= 0, we have that

v = t1/p0
u

‖u‖1,p (3.13)

is a solution of (3.12).

4. On a sublinear problem

In this section, we are going to study the sublinear problem

−[M(‖u‖p1,p)]
p−1

Δpu = uα in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(4.1)

where α satisfies 0 < α < p − 1 with p > 1.
Such a kind of problem belongs to a class of problems known as sublinear whose

prototype is

Δu = uα in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(4.2)

with 0 < α < 1 (note that, in this case, p = 2), which has been vastly studied. See [14–17]. For
the nonlocal problem, with p = 2, we cite [2, 3, 6, 7], and the references therein.

In particular, Dı́az and Saá [16] study the problem

Δpu = uα in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(4.3)

1 < p < ∞, 0 < α < p − 1, and show that it possesses only a positive solution u ∈
W

1,p
0 (Ω) ∩ L∞(Ω). Indeed, such a solution also belongs toW2,2

loc(Ω). Our next result describes
what happens with the nonlocal sublinear problem (4.1).

Theorem 4.1. Suppose thatM : R
+ → R is a continuous function satisfyingM(t) > 0 for all t ≥ 0.

Then problem (4.1) has at least as many solutions as the equation

[M(t)]p−1 · t(p−1−α)/p = ‖v‖p−1−α1,p , t > 0, (4.4)

where v is the solution of (4.1).
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Proof. We adapt for problem (4.1) the ideas developed in [3, 6]. Let us suppose that t > 0
is a solution of the (4.4) and set γ = t1/p/‖v‖1,p which implies ‖γv‖1,p = t1/p. So, a simple
calculation shows that

[M(‖γv‖p1,p)]
p−1

= γα−(p−1). (4.5)

Define u = γv and let us show that such a function u is a solution of problem (4.1).
Indeed, this follows from the calculation below:

−[M(‖u‖p1,p)]
p−1

Δpu = −[M(‖γv‖p1,p)]
p−1

Δp(γv)

= −[M(‖γv‖p1,p)]
p−1

div(|∇(γv)|p−2∇(γv))

= −[M(‖γv‖p1,p)]
p−1

div(γp−2γ |∇v|p−2∇v)
= [M(‖γv‖p1,p)]

p−1
γp−1(−Δpv)

= γα
−(p−1)

γp−1(−Δpv)

= γαvα = (γv)α = uα in Ω.

(4.6)

Hence, u is a solution of problem (4.1).

Remark 4.2. Remark 3.2, mutatis mutandis, remains valid for problem (4.1).

5. A singular problem via the Galerkin method

In this section, we will study problem

−[M(‖u‖p1,p)]
p−1

Δpu =
h(x)
uγ−p+2

+ uα−p+2 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(5.1)

which is a singular perturbation of problem (4.1), where Ω ⊂ R
N is a bounded smooth

domain, 2 ≤ p < N and h is a suitable function defined in Ω.
We will attack problem (5.1) by using the Galerkin method which rests heavily on the

following result, which is a variant of the well-known Brouwer fixed point theorem, whose
proof may be found in Lions [18].

Proposition 5.1. Suppose F : R
m → R

m is a continuous function such that 〈F(ξ), ξ〉 ≥ 0 with
|ξ| = r, for some r > 0, where 〈·, ·〉 denotes the usual norm in R

m. Then, there is ξ0 ∈ Br(0) such that
F(ξ0) = 0.

We will suppose thatM : R
+ → R

+ satisfies

(M1) there are m0 > 0 and θ1 > 0 such that M(t) ≥ m0 if t ≥ θ1;
(M2) θ2 = sup{t > 0;M(t) = 0} > 0.

IfM(t) ≥ m0 > 0 for all t ≥ 0, condition (M2) is vacuous.
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Theorem 5.2. Let h : Ω → R be a continuous function with h > 0 on Ω, γ, α ∈ (p − 2, p − 1), 2 ≤
p < N and M : R

+ → R
+ is a continuous function satisfying (M1)-(M2). Then problem (5.1)

possesses a positive solution.

Wewill split the proof of this theorem in several lemmas. First, for each fixed ε > 0, we
will consider the following problem:

−[M(‖u‖p1,p)]
p−1

Δpu =
h(x)

(ε + u)γ−p+2
+ uα−p+2, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(5.2)

In what follows, throughout Section 5, we are always supposing that M, h, α, and γ
enjoy assumptions of Theorem 5.2

Lemma 5.3. For each fixed ε > 0, problem (5.2) possesses a solution uε.

Proof. Let us consider the problem

−[M(‖u‖p1,p)]
p−1

Δpu =
h(x)

(ε + |u|)γ−p+2
+ |u|α−p+2, in Ω,

u = 0, on ∂Ω,
(5.3)

whereM+ : R
+ → R is given by

M+(t) =

{
0, if 0 ≤ t ≤ θ2,
M(t), if t > θ2.

(5.4)

We now consider B = {e1, e2, e3, . . .} a Schauder’s basis for W1,p
0 (Ω) (we recall that a

Schauder’s basis for a Banach space X is a sequence (en) such that to each x ∈ X there exists
a unique sequence of scalars (αn) for which the partial sums of

∑
αnen converge to x in the

norm of X). For more informations on Schauder’s basis see [19] and the references therein.
For each m ∈ N, let Bm = span{e1, e2, . . .} be the finite dimensional vector space

spanned by the functions e1, . . . , em. So, each u ∈ Bm is written as u =
∑m

j=1ξjej . We will
use on Bm the norm

‖u‖m =
m∑
j=1

|ξj |. (5.5)

We note that (Bm, ‖·‖m) and (Rm, |·|s) are isomorphic through the following map:

T : (B, ‖·‖m) −→ (R, |·|s),

u =
m∑
j=1

ξjej �−→ T(u) = ξ = (ξ1, ξ2, . . . , ξm),
(5.6)

with ‖u‖m = |ξ|s = |T(u)|s where |ξ|s =
∑m

j=1|ξj |.
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Since, for each m ∈ N, Bm is a finite dimensional vector space the norms ‖·‖m and
‖·‖1,p, induced from W

1,p
0 (Ω) on Bm, are equivalent to each other and so, there exist positive

constants c(m) and k(m) such that

c(m)‖u‖m ≤ ‖u‖1,p ≤ k(m)‖u‖m. (5.7)

We now consider, for eachm ∈ N, the following application

F : R
m −→ R

m,

ξ �−→ F(ξ) = (F1(ξ), F2(ξ), . . . , Fm(ξ)),
(5.8)

where

Fj(ξ) = [M+(‖u‖p1,p)]p−1
∫
Ω
|∇u|p−2∇u∇ej −

∫
Ω

h(x)ej

(ε + |u|)γ−p+2
−
∫
Ω
|u|α−p+2ej , (5.9)

j = 1, . . . , m.
A simple calculation leads us to

〈F(ξ), ξ〉 = [M+(‖u‖p1,p)]p−1
∫
Ω
|∇u|p−2∇u∇u −

∫
Ω

h(x)u

(ε + |u|)γ−p+2
−
∫
Ω
|u|α−p+2u,

= [M+(‖u‖p1,p)]p−1‖u‖
p

1,p −
∫
Ω

h(x)u

(ε + |u|)γ−p+2
−
∫
Ω
|u|α−p+2u.

(5.10)

We now note that
∫
Ω

h(x)u

(ε + |u|)γ−p+2
≤ ‖h‖∞

∫
Ω

|u|
εγ−p+2

≤ Cε‖u‖1,p, (5.11)

and because p − 2 < α < p − 1, we have 1 < α − p + 3 < 2, and so

∫
Ω
|u|α−p+2u ≤

∫
Ω
|u|α−p+3 ≤ C‖u‖α−p+31,p . (5.12)

Hence,

〈F(ξ), ξ〉 ≥ [M(‖u‖p1,p)]
p−1‖u‖p1,p − Cε‖u‖1,p − C‖u‖α−p+31,p , (5.13)

and from (M1), for ‖u‖p1,p ≥ θ1, we haveM+(‖u‖p1,p) =M(‖u‖p1,p) ≥ m0 > 0. Thus,

〈F(ξ), ξ〉 ≥ mp−1
0 ‖u‖p1,p − Cε‖u‖1,p − C‖u‖α−p+31,p

≥ mp−1
0 [c(m)]p‖u‖pm − Cεk(m)‖u‖m − [k(m)]α−p+3C‖u‖α−p+3m

≥ mp−1
0 C(m)|ξ|ps −Nε(m)|ξ|s −Q(m)|ξ|α−p+3s .

(5.14)
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We now fix ρm > 0 and for ξ ∈ R
m, |ξ|s = ρm and noting that 1 < α − p + 3 < 2 ≤ p, we

obtain

〈F(ξ), ξ〉 ≥ mp−1
0 C(m)ρpm −Nε(m)ρm −Q(m)ρα−p+3m . (5.15)

So, if ρm is large enough, we have

〈F(ξ), ξ〉 > 0 if |ξ|s = ρm, (5.16)

which implies

〈F(ξ), ξ〉 > 0 if |ξ| = ρ∗m, (5.17)

where ρ∗m > 0, because |·| and |·|s are equivalent in R
m.

From Proposition 5.1 there is ξm ∈ R
m, with |ξ| ≤ ρ∗m, such that F(ξm) = 0 and note that

|ξm|s ≤ ρm for some ρm is large enough.
Through the isometric identification of (Rm, |·|s) with (Bm, ‖·‖m), we find (um) ⊂

Bm, ‖um‖m ≤ ρm, that is, ‖um‖1,p ≤ ρm, such that

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ej −

∫
Ω

h(x)ej

(ε + |um|)γ−p+2
−
∫
Ω
|um|α−p+2ej = 0, (5.18)

for each j = 1, . . . , m, which gives us

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ω −

∫
Ω

h(x)ω

(ε + |um|)γ−p+2
−
∫
Ω
|um|α−p+2ω = 0, (5.19)

for all ω ∈ Bm. Since um ∈ Bm,

[M+(‖um‖p1,p)]
p−1‖um‖p1,p −

∫
Ω

h(x)um
(ε + |um|)γ−p+2

−
∫
Ω
|um|α−p+2um = 0. (5.20)

Because

∫
Ω

h(x)um
(ε + |um|)γ−p+2

≤ ‖u‖∞
εγ−p+2

∫
Ω
|um| ≤ Cε‖um‖1,p,

∫
Ω
|um|α−p+2um ≤ C‖um‖α−p+31,p ,

(5.21)

we obtain

[M(‖um‖p1,p)]
p−1‖um‖p1,p ≤ Cε‖um‖1,p + C‖um‖α−p+31,p . (5.22)
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Let us show that the sequence (‖um‖1,p) is bounded. Indeed, suppose, on the contrary,
that (‖um‖1,p) is not bounded. So, up to a subsequence, we may suppose that ‖um‖1,p → +∞.
From condition (M1) and inequality (5.22)we obtain

0 < mp−1
0 ‖um‖p1,p ≤ Cε‖um‖1,p + C‖um‖α−p+31,p , (5.23)

which give us

0 < mp−1
0 ≤ Cε

‖um‖p−11,p

+
C

‖um‖2p−α−31,p

. (5.24)

Since ‖um‖1,p → +∞we arrive in

0 < mp−1
0 ≤ 0, (5.25)

which is impossible. Thus, (‖um‖1,p) is bounded. Consequently, up to a subsequence,

‖um‖p1,p −→ t0,

um ⇀ u in W
1,p
0 (Ω),

um −→ u in Lq(Ω), 1 ≤ q < p∗,
um(x) −→ u(x) a.e. Ω.

(5.26)

And in view of continuity ofM

[M+(‖um‖p1,p)]
p−1 −→ [M+(t0)]

p−1. (5.27)

We now fix l ≤ m and so Bl ⊂ Bm. For ϕ ∈ Bl we have

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ϕ =

∫
Ω

h(x)ϕ

(ε + |um|)γ−p+2
+
∫
Ω
|um|α−p+2ϕ, (5.28)

for all ϕ ∈ Bl.
We now remark that

∣∣∣∣ h(x)ϕ

(ε + |um|)γ−p+2
∣∣∣∣ ≤ C

εγ−p+2
|ϕ| ∈ L1(Ω),

h(x)ϕ

(ε + |um(x)|)γ−p+2
−→ h(x)ϕ

(ε + |u(x)|)γ−p+2
a.e. Ω.

(5.29)
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By the Lebesgue dominated convergence theorem

∫
Ω

h(x)ϕ

(ε + |u|)γ−p+2
−→

∫
Ω

h(x)ϕ

(ε + |u|)γ−p+2
. (5.30)

Furthermore, because um → u ∈ Lp(Ω), we have

|um|α−p+2 −→ |u|α−p+2 in Lp/(α−p+2)(Ω), (5.31)

and becauseΩ is a bounded domain and p < p/(α−p+2)we have Lp/(α−p+2)(Ω) ⊂ Lp(Ω) and
so

|um|α−p+2 −→ |u|α−p+2 in Lp(Ω). (5.32)

Consequently,

|um(x)|α−p+2 −→ |u(x)|α−p+2 a.e. in Ω, (5.33)

and there is g ∈ Lp(Ω) such that

|um(x)|α−p+2 ≤ g(x) a.e. in Ω ∀m ∈ N. (5.34)

Thus,

||um|α−p+2ϕ| ≤ g|ϕ| ∈ L1(Ω), (5.35)

and using again the Lebesgue dominated convergence theorem

∫
Ω
|um|α−p+2ϕ −→

∫
Ω
|u|α−p+2ϕ ∀ϕ ∈ Bl. (5.36)

Wewill now consider the following claim, whose proof will be postponed to Section 6.

Claim 1. The following convergence holds

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ϕ −→ [M+(t0)]

p−1
∫
Ω
|∇u|p−2∇u∇ϕ, (5.37)

for all ϕ ∈W1,p
0 (Ω).
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In the inequality (5.28)wemakem → ∞ andwe use (5.27), (5.30), and (5.36) to obtain

[M+(t0)]
p−1

∫
Ω
|∇u|p−2∇u∇ϕ =

∫
Ω

h(x)ϕ

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2, (5.38)

for all ϕ ∈ Bl.
Since l ∈ N is arbitrary, the above inequality holds true for all ϕ ∈ W1,p

0 (Ω). Because of
thisM+(t0) > 0 and soM+(t0) =M(t0), which implies

[M(t0)]
p−1

∫
Ω
|∇u|p−2∇u∇ϕ =

∫
Ω

h(x)ϕ

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2, (5.39)

for all ϕ ∈W1,p
0 (Ω).

Taking u as a test function in the inequality (5.39), we get

[M(t0)]
p−1‖u‖p1,p =

∫
Ω

h(x)u

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2u. (5.40)

We now take ϕ = um in (5.28) to obtain

[M(‖um‖p1,p)]
p−1‖um‖p1,p =

∫
Ω

h(x)um
(ε + |um|)γ−p+2

+
∫
Ω
|um|α−p+2um. (5.41)

Since

∣∣∣∣ h(x)um
(ε + |um|)γ−p+2

∣∣∣∣ ≤ C

εγ−p+2
|um| (5.42)

and because um → u ∈ Lq(Ω), 1 ≤ q < p∗, it follows that |um(x)| → |u(x)| a.e. in Ω and there
is g ∈ L1(Ω) such that |um| ≤ g a.e. in Ω for allm ∈ N. Consequently,

∣∣∣∣ h(x)um
(ε + |um|)γ−p+2

∣∣∣∣ ≤ C

εγ−p+2
|um| ≤ C

εγ−p+2
g ∈ L1(Ω). (5.43)

Reasoning as before, we obtain

∫
Ω

h(x)um
(ε + |um|)γ−p+2

−→
∫
Ω

h(x)u

(ε + |u|)γ−p+2
,

∫
Ω
|um|α−p+2um −→

∫
Ω
|u|α−p+2u.

(5.44)
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Taking limits on both sides of the equality (5.41) and using ‖um‖p1,p → t0, (5.27), (5.44),
we obtain

[M+(t0)]
p−1t0 =

∫
Ω

h(x)u

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2u. (5.45)

Comparing this last equality with the one in (5.40) we obtain t0 = ‖u‖p1,p because
M+(t0) > 0. Then, from (5.39)

[M(‖u‖p1,p)]
p−1

∫
Ω
|∇u|p−2∇u∇ϕ =

∫
Ω

h(x)ϕ

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2ϕ (5.46)

for all ϕ ∈W1,p
0 (Ω).

This shows that u ∈W1,p
0 (Ω) is a weak solution of the auxiliary problem (5.2)which is

positive by virtue of the maximum principle. This proves the lemma.

In what follows, for each n ∈ N, we set ε = 1/n and u1/n = un where u1/n is the solution
obtained in the last lemma.

Lemma 5.4. There exists δ > 0 such that [M(‖un‖p1,p)]
p−1 ≥ δ > 0, for all n ∈ N.

Proof. We will reason by contradiction. Suppose that

lim inf [M(‖un‖p1,p)]
p−1

= 0. (5.47)

If it is the case, the sequence (‖un‖p1,p) is bounded because, on the contrary, we would have

‖un‖p1,p > θ1, perhaps for a subsequence, and so

[M(‖un‖p1,p)]
p−1 ≥ mp−1

0 > 0, (5.48)

and this would imply

lim inf [M(‖un‖p1,p)]
p−1 ≥ mp−1

0 > 0, (5.49)

which is impossible in view of (5.47). Therefore, up to subsequences,

‖un‖p1,p−→ θ0,

un ⇀ in W
1,p
0 (Ω),

un(x) −→ u(x) a.e. in Ω.

(5.50)

SinceM is continuous, we have

0 = lim inf [M(‖un‖p1,p)]
p−1

= lim [M(‖un‖p1,p)]
p−1

= [M(θ0)]
p−1. (5.51)
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We now note that

h(x)

(1/n + t)γ−p+2
+ tα−p+2 ≥ h(x)

(1 + t)γ−p+2
+ tα−p+2

≥ C

(1 + t)γ−p+2
+ tα−p+2

≥ C̃
[

1

(1 + t)γ−p+2
+ tα−p+2

]

≥ C0 > 0,

(5.52)

for all x ∈ Ω and t ≥ 0, because the function t �→ 1/(1 + t)γ−p+2 + tα−p+2, t ≥ 0, attains a positive
minimum.

Since

−[M(‖un‖p1,p)]
p−1

=
h(x)

(1/n + un)
γ−p+2 + uα−p+2n ≥ C0 > 0, in Ω,

un = 0, on ∂Ω.
(5.53)

Taking ϕ ∈ C1
0(Ω), ϕ > 0 in Ω, as a test function in the last equality, we obtain

[M(‖un‖p1,p)]
p−1

∫
Ω
|∇un|p−2∇un∇ϕ ≥ C0

∫
Ω
ϕ > 0, (5.54)

and soM(‖un‖p1,p)]p−1 > 0. Taking limit on the above expression we get

0 = [M(θ0)]
p−1

∫
Ω
|∇u|p−2∇u∇ϕ ≥ C0

∫
Ω
ϕ > 0, (5.55)

which is impossible. This completes the proof of the lemma.

Lemma 5.5. The sequence (‖un‖p1,p) is bounded, where un is as above.

Proof. First of all we note that

[M(‖un‖p1,p)]
p−1‖un‖p1,p =

∫
Ω

h(x)un
(1/n + un)

γ−p+2 +
∫
Ω
u
α−p+3
n ,

∫
Ω

h(x)un
(1/n + un)

γ−p+2 ≤ C1‖un‖p−γ−11,p ,

∫
Ω
u
α−p+3
n ≤ C2‖un‖α−p+31,p ,

(5.56)
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where C1 and C2 are positive constants independent of n. Consequently,

δ‖un‖p1,p ≤ [M(‖un‖p1,p)]
p−1‖un‖p1,p ≤ C1‖un‖p−γ−11,p + C2‖un‖α−p+31,p . (5.57)

Since p − γ − 1 < 1, α − p + 3 < 2 ≤ p, we conclude that (‖un‖p1,p) is bounded.

As a consequence of the preceding lemma we have

0 < δ ≤ [M(‖un‖p1,p)]
p−1 ≤M∞, ∀n ∈ N. (5.58)

Lemma 5.6. The sequence (un), obtained in the last lemma, converges to a solution of problem (5.1).

Proof. As (un) is a bounded sequence inW1,p
0 (Ω)we have, up to subsequence, that

‖un‖p1,p −→ t0 > 0,

un ⇀ u in W
1,p
0 (Ω),

un −→ in Lq(Ω), 1 ≤ q < p∗,
un(x) −→ u(x) a.e. Ω.

(5.59)

From the continuity ofM,

M(‖un‖p1,p) −→M(t0). (5.60)

Let ψ1 > 0 be an eigenfunction of (−Δp,W
1,p
0 (Ω)) associated to first eigenvalue λ1 and

satisfying

C0 > λ1M
p−1
∞ ψ

p−1
1 , ∀x ∈ Ω, (5.61)

where C0 is the constant obtained in (5.54). Consequently,

−[M(‖un‖p1,p)]
p−1

Δpun =
h(x)

(1/n + un)
γ−p+2 + uα−p+2n in Ω,

≥ C0 > λ1M
p−1
∞ ψ

p−1
1 in Ω,

un = ψ1 = 0 on ∂Ω.

(5.62)

Since

−[M(‖un‖p1,p)]
p−1

Δpun ≥ C0 > λ1M
p−1
∞ ψ

p−1
1 in Ω, (5.63)
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it follows that

−Δp([M(‖un‖p1,p)]un) > −Δp(M∞ψ1) in Ω, (5.64)

and as [M(‖un‖p1,p)]un =M∞ψ1 = 0 on ∂Ω. By the comparison principle,

[M(‖un‖p1,p)]un > M∞ψ1 in Ω, (5.65)

and from (5.58)

un(x) >
M∞ψ1(x)

M
1/(p−1)
∞

in Ω. (5.66)

From which we conclude that un(x) � 0 for each x ∈ Ω.
Next, we will use the following.

Hardy-Sobolev Inequality. If u ∈ W1,p
0 (Ω) and 1 < p ≤ N, then u/ψr1 ∈ Lr(Ω), where

1/r = 1/p − (1 − τ)/N, 0 ≤ τ ≤ 1, and

∥∥∥∥ u

ψr1

∥∥∥∥
Lr

≤ ‖∇u‖Lp , (5.67)

where C > 0 is a constant and is an eigenfunction of (−Δp,W
1,p
0 (Ω)) associated to

the first eigenvalue λ1.

Whose proof may be found in [20].
As

∣∣∣∣ h(x)ϕ

(1/n + un)
γ−p+2

∣∣∣∣ ≤ h(x) |ϕ|
|un|γ−p+2

, (5.68)

and using (5.66) it follows

h(x)
|ϕ|

|un|γ−p+2
<

‖h‖∞
C

|ϕ|
ψ
γ−p+2
1

. (5.69)

From the Hardy-Sobolev inequality

‖h‖∞
C

|ϕ|
ψ
γ−p+2
1

∈ L1(Ω). (5.70)
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Furthermore,

h(x)ϕ

(1/n + un(x))
γ−p+2 −→ h(x)ϕ

u(x)γ−p+2
in Ω, (5.71)

and so, by the Lebesgue dominated convergence theorem

∫
Ω

h(x)ϕ

(1/n + un(x))
γ−p+2 −→

∫
Ω

h(x)ϕ

u(x)γ−p+2
, ∀ϕ ∈W1,p

0 (Ω). (5.72)

Since Ω is bounded and p < p/(α − p + 2), we have Lp/(α−p+2) ↪→ Lp(Ω) and so

u
α−p+2
n −→ uα−p+2 in Lp(Ω). (5.73)

Since Ω is bounded and p < p/(α − p + 2), we have Lp/(α−p+2) ↪→ Lp(Ω) and so

un(x)
α−p+2 −→ u(x)α−p+2 a.e. in Ω, (5.74)

and there exists g ∈ Lp(Ω) such that

u
α−p+2
n ≤ g a.e. in Ω, ∀n ∈ N. (5.75)

Hence,

|uα−p+2n ϕ| ≤ g|ϕ| ∈ L1(Ω), (5.76)

and using again the Lebesgue dominated convergence theorem, we obtain

∫
Ω
u
α−p+2
n ϕ −→

∫
Ω
uα−p+2ϕ, (5.77)

for all ϕ ∈W1,p
0 (Ω).

As (un) is solution of the auxiliary problem

[M(‖un‖p1,p)]
p−1

∫
Ω
|∇un|p−2∇un∇ϕ =

∫
Ω

h(x)ϕ

(1/n + un)
γ−p+2 +

∫
Ω
u
α−p+2
n ϕ, (5.78)

for all ϕ ∈ W
1,p
0 (Ω), taking limits on both sides of the above expression, using the same

reasoning as in the proof of the claim and the convergences in (5.60), (5.72), and (5.77) we
obtain

[M(t0)]
p−1

∫
Ω
|∇u|p−2∇u∇ϕ =

∫
Ω

h(x)ϕ
uγ−p+2

+
∫
Ω
uα−p+2, (5.79)
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for all ϕ ∈W1,p
0 (Ω). Using u as a test function in the last expression

[M(t0)]
p−1‖u‖p1,p =

∫
Ω
h(x)up−γ−1 +

∫
Ω
uα−p+3. (5.80)

Taking ϕ = un in the expression (5.78), it follows that

[M(‖un‖p1,p)]
p−1‖un‖p1,p =

∫
Ω

h(x)un
(1/n + un)

γ−p+2 +
∫
Ω
u
α−p+3
n . (5.81)

Noticing that un → u in Lq(Ω), 1 ≤ q < p∗, and 1 < 1/(p − γ − 1) we have L1/(p−γ−1)(Ω) ↪→
L1(Ω) and so

un −→ u in L1/(p−γ−1)(Ω),

un(x) −→ u(x) a.e. in Ω,
(5.82)

and there exists ω ∈ L1/(p−γ−1)(Ω) such that

0 ≤ un(x) ≤ ω(x) a.e. in Ω, ∀n ∈ N. (5.83)

Thus,

∣∣∣∣ h(x)un
(1/n + un)

γ−p+2

∣∣∣∣ ≤ ‖h‖∞up−γ−1n ∈ L1(Ω),

h(x)un
(1/n + un)

γ−p+2 −→ h(x)u(x)p−γ−1 a.e. in Ω.

(5.84)

By the Lebesgue dominated convergence theorem

∫
Ω

h(x)un
(1/n + un)

γ−p+2 −→
∫
Ω
h(x)u(x)p−γ−1, (5.85)

and because 1 < α − p + 3 < 2, it follows that

∫
Ω
u
α−p+3
n −→

∫
Ω
uα−p+3. (5.86)

We now take limits on both sides of (5.81), by using (5.60), (5.85), and (5.86), to obtain

[M(t0)]
p−1t0 =

∫
Ω

h(x)u
uγ−p+2

+
∫
Ω
uα−p+3, (5.87)
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that is,

[M(t0)]
p−1t0 =

∫
Ω
h(x)up−γ−1 +

∫
Ω
uα−p+3. (5.88)

Comparing (5.80), (5.88) and using [M(t0)]
p−1 > 0, we get ‖u‖p1,p = t0. Therefore, from

(5.79)

[M(‖u‖p1,p)]
p−1

∫
Ω
|∇u|p−2∇u∇ϕ =

∫
Ω

h(x)ϕ
uγ−p+2

+
∫
Ω
uα−p+2ϕ, (5.89)

for all ϕ ∈W1,p
0 (Ω), which shows that u is a weak solution of (5.1).

6. Proof of the claim

We recall that we have to prove that

[M+(‖u‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ϕ −→ [M+(t0)]

p−1
∫
Ω
|∇u|p−2∇u∇ϕ (6.1)

for all ϕ ∈W1,p
0 (Ω).

First of all, we claim that (−Δpum) ⊂ (W1,p
0 (Ω))′ is a bounded sequence. Indeed,

|〈−Δpum, v〉| =
∣∣∣∣
∫
Ω
|∇um|p−2∇um∇v

∣∣∣∣ ≤
∫
Ω
|∇um|p−1|∇v|, (6.2)

and because um ∈ Bm ⊂ W
1,p
0 (Ω), we have |∇um| ∈ Lp(Ω) and |∇um|p−1 ∈ Lp/(p−1)(Ω).

Applying the Hölder inequality, by using the exponents p and p/(p − 1), it follows that

|〈−Δpum, v〉| ≤
(∫

Ω
|∇um|p

)(p−1)/p(∫
Ω
|∇v|p

)1/p

= ‖um‖p1,p‖v‖1,p, (6.3)

which implies

‖ −Δpum‖(W1,p
0 (Ω))′ ≤ ‖u‖p1,p ≤ Cε, (6.4)

where Cε > 0 is a constant, because the boundedness of (‖um‖1,p)was proved in Lemma 5.5.
Since W1,p

0 (Ω) is a separable Banach space and (−Δum) is a bounded sequence in
(W1,p

0 (Ω))′ then, up to a subsequence,

−Δpum
∗
⇀ χ in (W1,p

0 (Ω))′, (6.5)
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that is,

〈−Δpum, ψ〉 −→ 〈χ, ψ〉 ∀ ψ ∈W1,p
0 (Ω), (6.6)

which is equivalent to

∫
Ω
|∇um|p−2∇um∇ψ −→ 〈χ, ψ〉 ∀ ψ ∈W1,p

0 (Ω). (6.7)

Since

[M+(‖um‖p1,p)]
p−1 −→ [M+(t0)]

p−1, (6.8)

it follows from (6.7) that

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ψ −→ [M+(t0)]

p−1〈χ, ψ〉, (6.9)

for all ψ ∈ W
1,p
0 (Ω). Taking limits on both sides of (5.28) and using the convergences (5.30)

and (5.36), we obtain

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ψ −→

∫
Ω

h(x)ψ

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2ψ, (6.10)

for all ψ ∈W1,p
0 (Ω). So, from (6.9), (6.10) and the uniqueness of the limit

[M+(t0)]
p−1〈χ, ψ〉 =

∫
Ω

h(x)ψ

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2ψ, (6.11)

for all ψ ∈W1,p
0 (Ω).

Using the monotonicity of the operator (−Δp), that is,

〈−Δpω − (−Δpv), ω − v〉 ≥ 0 ∀ω, v ∈W1,p
0 (Ω), (6.12)

we have

[M+(‖ω‖p1,p)]
p−1

∫
Ω
(|∇ω|p−2∇ω − |∇v|p−2∇v,∇ω − ∇v)dx ≥ 0. (6.13)

Taking ω = um and v = ψ in the last expression, we obtain

[M+(‖um‖p1,p)]
p−1

∫
Ω
(|∇um|p−2∇um − |∇ψ|p−2∇ψ,∇um − ∇ψ)dx ≥ 0, (6.14)
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and so

[M+(‖um‖p1,p)]
p−1‖um‖p1,p − [M+(‖um‖p1,p)]

p−1
∫
Ω
|∇um|p−2∇um∇ψ

−[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇ψ|p−2∇ψ∇um + [M+(‖um‖p1,p)]

p−1
∫
Ω
|∇ψ|p ≥ 0.

(6.15)

In (5.28)we take ϕ = um to obtain

[M+(‖um‖p1,p)]
p−1‖um‖p1,p =

∫
Ω

h(x)um
(ε + |um|)γ−p+2

+
∫
Ω
|um|α−p+2um. (6.16)

Consequently,

∫
Ω

h(x)um
(ε + |um|)γ−p+2

+
∫
Ω
|um|α−p+2um − [M+(‖um‖p1,p)]

p−1
∫
Ω
|∇um|p−2∇um∇ψ

−[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇ψ|p−2∇ψ∇um + [M+(‖um‖p1,p)]

p−1
∫
Ω
|∇ψ|p ≥ 0,

(6.17)

using the definition of −Δp

∫
Ω

h(x)um
(ε + |um|)γ−p+2

+
∫
Ω
|um|α−p+2um − [M+(‖um‖p1,p)]

p−1〈−Δpum, ψ〉

−[M+(‖um‖p1,p)]
p−1〈−Δpψ, um〉 + [M+(‖um‖p1,p)]

p−1〈−Δpψ, ψ〉 ≥ 0,

(6.18)

taking limits asm → ∞ and using (5.44) we have

∫
Ω

h(x)u

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2u − [M+(‖u‖p1,p)]

p−1〈χ, ψ〉

−[M+(t0)]
p−1〈−Δpψ, u〉 + [M+(t0)]

p−1〈−Δpψ, ψ〉 ≥ 0.

(6.19)

We note that

[M+(t0)]
p−1〈χ, ψ〉 =

∫
Ω

h(x)ψ

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2, (6.20)

for all ψ ∈ Bl ⊂W1,p
0 (Ω), and so

[M+(t0)]
p−1〈χ, u〉 =

∫
Ω

h(x)u

(ε + |u|)γ−p+2
+
∫
Ω
|u|α−p+2u. (6.21)
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Therefore,

[M+(t0)]
p−1〈χ, u〉 − [M+(t0)]

p−1〈χ, ψ〉

−[M+(t0)]
p−1〈−Δpψ, u〉 + [M+(t0)]

p−1〈−Δpψ, ψ〉 ≥ 0,
(6.22)

that is,

〈χ − (−Δpψ), u − ψ〉 ≥ 0. (6.23)

Setting

ψ = u − λϕ, λ > 0, ϕ ∈ Bl, (6.24)

we obtain

〈χ,−[−Δp(u − λϕ)], ϕ〉 ≥ 0, ∀λ > 0, ϕ ∈ Bl, (6.25)

taking limits on both sides of the above expression as λ → 0 and using the continuity of the
operator −Δp

〈χ,−(−Δpu), ϕ〉 ≥ 0, ∀ϕ ∈ Bl. (6.26)

So,

〈χ − (−Δpu),−ϕ〉 ≥ 0, (6.27)

and we obtain

〈χ − (−Δpu), ϕ〉 ≤ 0, ∀ϕ ∈ Bl. (6.28)

Hence,

〈χ − (−Δpu), ϕ〉 = 0 ∀ϕ ∈ Bl, (6.29)

which implies χ = −Δpu, because l is arbitrary. This means that the above equality is valid for
all ϕ ∈W1,p

0 (Ω). From (6.10) and (6.11) we conclude that

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ψ −→ [M+(t0)]

p−1〈−Δu, ψ〉, (6.30)
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for all ψ ∈W1,p
0 (Ω). Hence,

[M+(‖um‖p1,p)]
p−1

∫
Ω
|∇um|p−2∇um∇ψ −→ [M+(t0)]

p−1
∫
Ω
|∇u|p−2∇u∇ψ (6.31)

for all ψ ∈W1,p
0 (Ω). This concludes the proof of the claim.
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Villars, Paris, France, 1969.
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