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1. Introduction

Since the appearance of generalized convex (simply, G-convex) spaces in 1993 [1], the concept
has been challenged by several authors who aimed to obtain more general concepts. In fact, a
number of modifications or imitations of the concept have followed, for example, L-spaces due
to Ben-El-Mechaiekh et al. [2], spaces having property (H) due to Huang [3], FC-spaces due
to Ding [4, 5], and others. It is known that all of such examples belong to the class of φA-spaces
and are particular forms of G-convex spaces; see [6]. Some authors also tried to generalize
the Knaster-Kuratowski-Mazurkiewicz theorem (simply, the KKM principle) [7] for their own
setting. They introduced various types of generalized KKM maps and obtained modifications
of known results. Recently, we proposed new concepts of abstract convex spaces and KKM
spaces [8–11]which are proper generalizations of G-convex spaces.

In 1991, Liu [12] obtained a form of the KKM principle and applied it to SupInfSup in-
equalities of von Neumann type and of Ky Fan type. Motivated by this work, Balaj [13] intro-
duced the concept of weakly G-KKM mappings for G-convex spaces and obtained related re-
sults on intersections and the Fan type or the Sion type minimax inequalities. Moreover, based
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on the misconception that FC-spaces generalize G-convex spaces, Tang et al. [14] introduced
the so-called W-G-F-KKM mapping and claimed to obtain similar results for the so-called FC-
spaces.

In the present paper, our aim is to show that such basic results for weakly KKMmaps on
G-convex spaces can be extended on the more general KKM spaces [6, 10, 11], a particular type
of abstract convex spaces satisfying the general KKM principle. These results properly general-
ize the corresponding ones in G-convex spaces and φA-spaces (X,D; {φA}A∈〈D〉). We note that
some applications of them in [12–14] can also be generalized to KKM spaces. Consequently,
most results in [12–14] can be properly generalized and unified.

2. Abstract convex spaces

In this section, we follow mainly [6, 8, 9, 15].
Let 〈D〉 denote the set of all nonempty finite subsets of a set D.

Definition 2.1. An abstract convex space (E,D;Γ) consists of a set E, a nonempty set D, and a
multimap Γ : 〈D〉 � E with nonempty values. One may denote ΓA := Γ(A) for A ∈ 〈D〉.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD′ :=
⋃{

ΓA | A ∈ 〈
D′〉} (2.1)

(co is reserved for the convex hull in vector spaces).
A subset X of E is called a Γ-convex subset of (E,D;Γ) relative to D′ if for anyN ∈ 〈D′〉,

one has ΓN ⊂ X, that is, coΓD′ ⊂ X. This means that (X,D′; Γ|〈D′〉) itself is an abstract convex
space called a subspace of (E,D;Γ).

When D ⊂ E, the space is denoted by (E ⊃ D;Γ). In such case, a subset X of E is said to
be Γ-convex if, for any A ∈ 〈X ∩D〉, one has ΓA ⊂ X. In case E = D, let (E;Γ) := (E, E;Γ).

Example 2.2. In [6, 16], we gave plenty of examples of abstract convex spaces. Here we give
only two of them as follows.

(1) Usually, a convexity space (E,C) in the classical sense consists of a nonempty set E and
a family C of subsets of E such that E itself is an element of C and C is closed under arbitrary
intersection. For details, see [17], where the bibliography lists 283 papers. For any subsetX ⊂ E,
its C-convex hull is defined and denoted by CoCX :=

⋂{Y ∈ C | X ⊂ Y}. We say that X is C-
convex if X = CoCX. Now we can consider the map Γ : 〈E〉 � E given by ΓA := CoCA. Then
(E,C) becomes our abstract convex space (E;Γ).

(2) A generalized convex space or a G-convex space (E,D;Γ) consists of a topological space
E, a nonempty set D, and a multimap Γ : 〈D〉 � E such that for each A ∈ 〈D〉 with the
cardinality |A| = n + 1, there exists a continuous function φA : Δn → Γ(A) such that J ∈ 〈A〉
implies φA(ΔJ) ⊂ Γ(J).

Here, Δn is a standard n-simplex with vertices {ei}ni=0, and ΔJ the face of Δn corre-
sponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik} ⊂ A, then
ΔJ = co{ei0 , ei1 , . . . , eik}.

We have established a large amount of literature on G-convex spaces; see [1, 16, 18–21]
and references therein.

Recently, we are concerned with another variant of G-convex spaces as follows [6].
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Definition 2.3. A φA-space

(
X,D;

{
φA

}
A∈〈D〉

)
(2.2)

consists of a topological space X, a nonempty set D, and a family of continuous functions
φA : Δn → X (i.e., singular n-simplexes) for A ∈ 〈D〉 with the cardinality |A| = n + 1.

Example 2.4. The following are typical examples of G-convex spaces and φA-spaces:

(1) any nonempty convex subset of a topological vector space (t.v.s.);

(2) [22] a convex space due to Komiya;

(3) [23] a convex space due to Lassonde;

(4) [24, 25] a C-space (or anH-space) due to Horvath;

(5) [2] an L-space due to Ben-El-Mechaiekh et al.;

(6) [3] a topological space Y is said to have property (H) if, for eachN = {y0, . . . , yn} ∈ 〈Y〉,
there exists a continuous mapping ϕN : Δn → Y ;

(7) [4, 5, 26, 27] (Y, {ϕN}) is said to be an FC-space if Y is a topological space and for each
N = {y0, . . . , yn} ∈ 〈Y〉, where some elements in N may be the same, there exists a
continuous mapping ϕN : Δn → Y ;

(8) any G-convex space is clearly a φA-space. The converse also holds.

Proposition 2.5 (see [6]). A φA-space (X,D; {φA}A∈〈D〉) can be made into a G-convex space
(X,D;Γ).

Proof. This can be done in two ways.

(1) For each A ∈ 〈D〉, by putting ΓA := X, we obtain a trivial G-convex space (X,D;Γ).

(2) Let {Γα}α be the family of maps Γα : 〈D〉 � X giving a G-convex space (X,D;Γα) such
that φA(Δn) ⊂ ΓαA for each A ∈ 〈D〉 with |A| = n + 1. Note that, by (1), this family is not
empty. Then, for each α and each A ∈ 〈D〉 with |A| = n + 1, we have

φA
(
Δn

) ⊂ ΓαA, φA
(
ΔJ

) ⊂ ΓαJ for J ⊂ A. (2.3)

Let Γ :=
⋂
αΓ

α, that is, ΓA =
⋂
αΓ

α
A. Then

φA
(
Δn

) ⊂ ΓA, φA
(
ΔJ

) ⊂ ΓJ for J ⊂ A. (2.4)

Therefore, (X,D;Γ) is a G-convex space.

Therefore, G-convex spaces and φA-spaces are essentially the same.
For aG-convex space (X,D;Γ), a multimapG : D � X is called a KKMmap if ΓA ⊂ G(A)

for each A ∈ 〈D〉.

Proposition 2.6 (see [6]). For a φA-space (X,D; {φA}A∈〈D〉), any map T : D � X satisfying

φA
(
ΔJ

) ⊂ T(J) for each A ∈ 〈D〉, J ∈ 〈A〉, (2.5)

is a KKM map on a G-convex space (X,D;Γ).
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Proof. Define Γ : 〈D〉 � X by ΓA := T(A) for eachA ∈ 〈D〉. Then (X,D;Γ) becomes aG-convex
space. In fact, for each A with |A| = n + 1, we have a continuous function φA : Δn → T(A) =:
Γ(A) such that J ∈ 〈A〉 implies φA(ΔJ) ⊂ T(J) =: Γ(J). Moreover, note that ΓA ⊂ T(A) for each
A ∈ 〈D〉 and hence T : D � X is a KKMmap on a G-convex space (X,D;Γ).

Remark 2.7. In [14], its authors repeated Ding’s false claim in a large number of his own papers
as follows. “Recently, Ding [4] introduced FC-space which extended G-convex space further
and proved the corresponding KKM theorem. From this, many new KKM-type theorems and
applications were founded in FC-spaces.” For Ding’s claim, see [5, 26, 27] and references of [6].
One wonders how a pair (X, {ϕA}) could extend the triple (X,D;Γ).

The concept of KKMmaps for G-convex spaces is refined as follows.

Definition 2.8. Let (E,D;Γ) be an abstract convex space and Z a set. For a multimap F : E � Z
with nonempty values, if a multimap G : D � Z satisfies

F
(
ΓA

) ⊂ G(A) :=
⋃

y∈A
G(y) ∀A ∈ 〈D〉, (2.6)

then G is called a KKM map with respect to F. A KKM map G : D � E is a KKM map with
respect to the identity map 1E.

A multimap F : E � Z is said to have the KKM property and called a K-map if, for
any KKM map G : D � Z with respect to F, the family {G(y)}y∈D has the finite intersection
property. We denote

K(E,Z) := {F : E � Z | F is a K-map}. (2.7)

Similarly, when Z is a topological space, a RC-map is defined for closed-valued maps G,
and a RO-map for open-valued maps G. Note that if Z is discrete, then three classes K, RC, and
RO are identical. Some authors use the notation KKM(E,Z) instead of RC(E,Z).

Example 2.9. The above terminology unifies various concepts in other author’s usage as fol-
lows.

(1) Every abstract convex space in our sense has a map F ∈ K(E,Z) for any nonempty
set Z. In fact, for each x ∈ E, choose F(x) := Z or F(x) := {z0} for some z0 ∈ Z.

If 1E ∈ K(E, E), then f ∈ K(E,Z) for any function f : E → Z. If E and Z have any
topology, this holds for RC or RO for any continuous f .

(2) For a G-convex space (X,D;Γ) and a topological space Z, we defined the classes
K, RC, RO of multimaps F : X � Z [16]. It is known that for a G-convex space (X,D;Γ), we
have the identity map 1X ∈ RC(X,X) ∩ RO(X,X); see [19–21]. Moreover, for any topological
space Y , if F : X → Y is a continuous single-valued map or if F : X � Y has a continuous
selection, then F ∈ RC(X,Y ) ∩ RO(X,Y ).

(3) Let (X,D;Γ) be a G-convex space, Y a nonempty set, and T : X → 2Y , S : D → 2Y

two mappings. We say that S is a generalized G-KKM mapping [13] with respect to T if for each
A ∈ 〈D〉, T(Γ(A)) ⊂ S(A). If Y is a topological space, T : X → 2Y is said to have the G-
KKM property if for any map S : D → 2Y generalized G-KKM with respect to T , the family
{S(z) | z ∈ D} has the finite intersection property.
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This simply tells that S is a KKM map with respect to T and T ∈ RC(X,Y ).
(4) Let (X,ϕA) be an FC-space, Y a nonempty set, and T, S : X → 2Y two mappings. We

say that S is a generalized KKMmapping [14]with respect to T if for eachA ∈ 〈X〉, each B ∈ 〈A〉,
T(ϕA(ΔB)) ⊂ S(B). If Y is a topological space, T : X → 2Y is said to have the F-KKM property if
for any map S : X → 2Y generalized KKM with respect to T , the family {S(z) | z ∈ X} has the
finite intersection property.

Note that (X,ϕA) becomes a G-convex space (X,A;Γ) for each A ∈ 〈X〉 with Γ(B) :=
ϕA(ΔB) for each B ∈ 〈A〉. Then S|A : A → 2Y is a KKM map with respect to T : X → 2Y and
T ∈ RC(X,Y ).

(5) Let (X,ϕA) be an FC-space, Y a nonempty subset, and S : Y → 2X. Then S is a
generalized F-KKM mapping [14] if for each finite subset Ã = {y0, . . . , yn} of Y , there exists a
finite subset A = {x0, . . . , xn} of X such that for any subset B = {xi0 , . . . , xik} of A,

ϕA
(
co
{
ei0 , . . . , eik

}) ⊂
k⋃

j=0

S
(
yij

)
. (2.8)

A generalized F-KKM map in the above sense can be made into a KKM map on a G-
convex space (X ⊃ Y ;Γ) where Γ(Ã) := S(Ã) and φÃ := ϕA as above.

3. The KKM spaces

We introduced the following in [6].

Definition 3.1. For an abstract convex topological space (E,D;Γ), the KKM principle is the state-
ment 1E ∈ RC(E, E) ∩ RO(E, E).

A KKM space is an abstract convex topological space satisfying the KKM principle.

In our recent work [9], we studied elements or foundations of the KKM theory on ab-
stract convex spaces and noticed that many important results therein are related to KKM
spaces. Moreover, in [10, 11], a fundamental theory and its applications on KKM spaces are
extensively investigated.

Example 3.2. We give examples of KKM spaces.

(1) Every G-convex space is a KKM space; see [19–21].

(2) A connected ordered space (X,≤) can be made into an abstract convex topological space
(X ⊃ D;Γ) for any nonempty D ⊂ X by defining ΓA := [minA,maxA] = {x ∈ X |
minA ≤ x ≤ maxA} for eachA ∈ 〈D〉. Further, it is a KKM space; see [15, Theorem 5(i)].

(3) The extended long line L∗ can be made into a KKM space (L∗ ⊃ D;Γ); see [15]. In fact,
L∗ is constructed from the ordinal spaceD := [0,Ω] consisting of all ordinal numbers less
than or equal to the first uncountable ordinal Ω, together with the order topology. Recall
that L∗ is a generalized arc obtained from [0,Ω] by placing a copy of the interval (0, 1)
between each ordinal α and its successor α+1 and we give L∗ the order topology. Now let
Γ : 〈D〉 � L∗ be the one as in (2).

But L∗ is not a G-convex space. In fact, since Γ{0,Ω} = L∗ is not path connected, for
A := {0,Ω} ∈ 〈L∗〉 and Δ1 := [0, 1], there does not exist a continuous function φA : [0, 1] → ΓA
such that φA{0} ⊂ Γ{0} = {0} and φA{1} ⊂ Γ{Ω} = {Ω}. Therefore, (L∗ ⊃ D;Γ) is not G-convex.
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Therefore, the concepts of KKM spaces properly generalize those ofG-convex spaces and
φA-spaces.

From the definition of the KKM map, we have the following form of Fan’s matching
theorem.

Theorem 3.3. Let (E,D;Γ) be a KKM space and S : D � E a map satisfying what follows:

(1) S(z) is open (resp., closed) for each z ∈ D;

(2) X =
⋃
z∈MS(z) for someM ∈ 〈D〉.

Then there exists anN ∈ 〈D〉 such that

ΓN ∩
⋂

z∈N
S(z)/=∅. (3.1)

Proof. Let G : D � E be a map given by G(z) := E \ S(z) for z ∈ D. Then G has closed
(resp., open) values. Suppose, on the contrary to the conclusion, that for any N ∈ 〈D〉, we
have ΓN ∩ ⋂

z∈NS(z) = ∅, that is, ΓN ⊂ E \ ⋂z∈NS(z) =
⋃
z∈N(E \ S(z)) = G(N). Therefore, G

is a KKM map. Since (E,D;Γ) is a KKM space, there exists a ŷ ∈ ⋂
z∈MG(z) =

⋂
z∈M(X \ S(z)).

Hence, ŷ /∈S(z) for all z ∈M. This violates condition (2).

Corollary 3.4. Let (E,D;Γ) be a KKM space, A ∈ 〈D〉, {Mz | z ∈ A} an open or closed cover of E.
Then there exists a nonempty subset B of A such that Γ(B) ∩⋂{Mz | z ∈ B}/=∅.

Corollary 3.5 (see [13, Lemma 1]). Let (X,D;Γ) be a G-convex space, A ∈ 〈D〉, {Mz | z ∈ A} an
open or closed cover of X. Then there exists a nonempty subset B of A such that Γ(B) ∩ ⋂{Mz | z ∈
B}/=∅.

Balaj [13] deduced Corollary 3.5 from a previous result of the present author.

Corollary 3.6 (see [14, Theorem 3.2]). Let (X,ϕA) be an FC-space, A ∈ 〈X〉, {Mx | x ∈ A} an
open or closed cover of X. Then there exists a nonempty subset B of A such that ϕA(ΔB) ∩

⋂{Mx |
x ∈ B}/=∅.

This is a very particular form of Corollary 3.5 with Γ(B) := ϕA(ΔB). In fact, (X,ϕA) be-
comes a G-convex space (X,A;Γ) with Γ(B) := ϕA(ΔB) for each A ∈ 〈X〉 and each B ∈ 〈A〉.

Note also that our proof of Theorem 3.3 is much more simple than that of [14, Theorem
3.2].

4. Weakly KKM maps

Definition 4.1. Let (E,D;Γ) be an abstract convex space and Z a set. For a multimap F : E � Z
with nonempty values, if a multimap G : D � Z satisfies

F(x) ∩G(A)/=∅ ∀A ∈ 〈D〉 and all x ∈ Γ(A), (4.1)

then G is called a weakly KKM mapwith respect to F.

Clearly, each KKM map with respect to F is weakly KKM, and a weakly KKM map
G : D � E with respect to the identity map 1E is simply a KKMmap.
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Example 4.2. (1) When X := E is a nonempty subset of a vector space, F is said to be trappable
by Gc iff G is not weakly KKM with respect to F, where Gc(a) := Z \G(a) for each a ∈ D [12].

(2) Let (X,D;Γ) be a G-convex space, Y a nonempty set, and T : X → 2Y , S : D → 2Y two
mappings [13]. We say that S is weakly G-KKM mapping with respect to T if for each A ∈ 〈D〉
and any x ∈ Γ(A), T(x) ∩ S(A)/=∅.

(3) Let (X,ϕA) be an FC-space, Y a nonempty set, and T, S : X → 2Y two mappings [14].
We say that S is weakly generalized F-KKM mapping with respect to T (for short, W-G-F-KKM
mappingwith respect to T) if for eachA ∈ 〈X〉, each B ⊂ A and any x ∈ ϕA(ΔB), T(x)∩S(B)/=∅.

In 1991, Liu [12] obtained a form of the KKM principle. Motivated by the form, we de-
duce the following generalization.

Theorem 4.3. Let (X,D;Γ) be a compact KKM space, Y a nonempty set, and F : X � Y and G :
D � Y maps such that

(1) G is weakly KKM map with respect to F

(2) for each z ∈ D, the set {x ∈ X | F(x) ∩G(z)/=∅} is closed.

Then there exists an x0 ∈ X such that F(x0) ∩G(z)/=∅ for each z ∈ D.

Proof. Suppose that the conclusion does not hold. Then for each x ∈ X, there exists a z ∈ D
such that F(x) ∩G(z) = ∅. Define an open set

Mz :=
{
x ∈ X | F(x) ∩G(z) = ∅

}
for z ∈ D. (4.2)

Since X is compact, there is an A ∈ 〈D〉 such that {Mz | z ∈ A} is an open cover of X. Then,
by Corollary 3.4, there exist a subset B of A and a point

x0 ∈ Γ(B) ∩
⋂{

Mz | z ∈ B}/=∅. (4.3)

Since G is weakly KKM with respect to F and x0 ∈ Γ(B), we have F(x0) ∩G(B)/=∅.
On the other hand, x0 ∈

⋂{Mz | z ∈ B} implies F(x0)∩G(z) = ∅ for all z ∈ B and hence,
F(x0) ∩G(B) = ∅. This is a contradiction.

Corollary 4.4 (see [13, Theorem 2]). Let (X,D;Γ) be a compact G-convex space, Y a nonempty set,
and T : X � Y and S : D � Y two maps such that

(i) S is weakly G-KKM map with respect to T ;

(ii) for each z ∈ D, the set {x ∈ X | T(x) ∩ S(z)/=∅} is closed.

Then there exists an x0 ∈ X such that T(x0) ∩ S(z)/=∅ for each z ∈ D.

The following is an immediate consequence of Corollary 4.4.

Corollary 4.5 (see [14, Theorem 3.3]). Let (X,ϕA) be a compact FC-space, Y a nonempty set, and
T, S : X � Y two maps such that
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(i) S isW-G-F-KKM map with respect to T ;

(ii) for each z ∈ D, the set {x ∈ X | T(x) ∩ S(z)/=∅} is closed.

Then there exists an x0 ∈ X such that T(x0) ∩ S(z)/=∅ for each z ∈ D.

Example 4.6. In [13, Remark 1], it is noted that condition (2) in Theorem 4.3 is satisfied if Y
is a topological space, F is upper semicontinuous, and G has closed values. In this case, [12,
Theorem 2.1] is for a compact convex subset X = D of a topological vector space, and [14,
Theorem 3.4] for a compact FC-space (X,ϕA).

We have the following variant of Theorem 4.3.

Theorem 4.7. Let (X,D;Γ) be a KKM space, Y a nonempty set, and F : X � Y and G : D � Y
maps such that

(1) G is weakly KKM with respect to F;

(2) the set {x ∈ X | F(x) ∩G(z)/=∅} is either all closed or all open for all z ∈ D.

Then for each A ∈ 〈D〉 there exists an x0 ∈ Γ(A) such that F(x0) ∩G(z)/=∅ for all z ∈ A.

Proof. LetA ∈ 〈D〉. Then it is easily checked that the subspace (X,A;Γ|〈A〉) is also a KKM space.
Now the conclusion follows from the same argument in the proof of Theorem 4.3.

Corollary 4.8 (see [13, Theorem 3]). Let (X,D;Γ) be a G-convex space, Y a nonempty set, and
T : X � Y and S : D � Y maps such that

(i) S is weakly G-KKM map with respect to T ;

(ii) the set {x ∈ X | T(x) ∩ S(z)/=∅} is either all closed or all open for all z ∈ D.

Then for each A ∈ 〈D〉 there exists an x0 ∈ Γ(A) such that T(x0) ∩ S(z)/=∅ for all z ∈ A.

From Corollary 4.8, we have the following.

Corollary 4.9 (see [14, Theorem 3.5]). Let (X,ϕA) be an FC-space, ϕA(Δn) an FC-subspace for each
A ∈ 〈X〉, Y a nonempty set, and T, S : X � Y two maps such that

(i) S isW-G-F-KKM map with respect to T ;

(ii) the set {x ∈ X | T(x) ∩ S(z)/=∅} is either all closed or all open for all z ∈ D.

Then for each A ∈ 〈X〉 there exists an x0 ∈ ϕA(Δn) such that T(x0) ∩ S(z)/=∅ for each z ∈ ϕA(Δn).

Remark 4.10. In [13, Remark 2], it is noted that condition (3.2) in Theorem 4.7 is satisfied if Y is
a topological space and either F is upper semicontinuous andG has closed values or F is lower
semicontinuous and G has open values. This is exploited in [14, Theorem 3.6].

As an example of applications of Theorem 4.3, we give the following.

Theorem 4.11. Let (X,D;Γ) be a compact KKM space, Y a topological space. Let T : X � Y
be an upper semicontinuous map, ψ : D × Y → R, ϕ : X × Y → R two functions and β =
infx∈X supy∈T(x) ϕ(x, y). Suppose that
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(1) for each z ∈ D, ψ(z, ·) is upper semicontinuous on Y ;

(2) for any λ < β and y ∈ T(x), coΓ{z ∈ D | ψ(z, y) < λ} ⊂ {x ∈ X | ϕ(x, y) < λ}.

(a) Then the following holds:

inf
x∈X

sup
y∈T(x)

ϕ(x, y) ≤ sup
x∈X

inf
z∈D

sup
y∈T(x)

ψ(z, y). (4.4)

(b) Further, if T is compact valued, then there exists an x0 ∈ X such that

inf
x∈X

sup
y∈T(x)

ϕ(x, y) ≤ inf
z∈D

sup
y∈T(x0)

ψ(z, y). (4.5)

Proof. Just follow that of [13, Theorem 4].

Corollary 4.12. In Theorem 4.11, (X,D;Γ) can be replaced by a compact G-convex space without af-
fecting its conclusion.

Note that Corollary 4.12 contains some known forms of the Fan type minimax inequali-
ties; see [13].

Corollary 4.13 (see [14, Theorem 4.1]). Let (X,ϕA) be a compact FC-space and Y a topological space.
Let T : X � Y be a u.s.c. map, f, g : X × Y → R two functions, and β = infx∈X supy∈T(x) f(x, y).
Suppose that

(i) for each z ∈ X, g(z, ·) is u.s.c. on Y ;
(ii) for any λ < β and y ∈ T(x), if for each A ∈ 〈X〉 and B ∈ 〈A ∩ {x ∈ X | g(x, y) < λ}〉 one has

ϕA(ΔB) ⊂ {x ∈ X | f(x, y) < λ}.

(a) Then the following holds:

inf
x∈X

sup
y∈T(x)

f(x, y) ≤ sup
x∈X

inf
z∈X

sup
y∈T(x)

g(z, y). (4.6)

(b) Moreover, if T is compact-valued, then there exists an x0 ∈ X such that

inf
x∈X

sup
y∈T(x)

f(x, y) ≤ inf
z∈X

sup
y∈T(x0)

g(z, y). (4.7)

5. Further remarks

Until now, in this paper, we showed that basic results in [12] for topological vector spaces, in
[13] forG-convex spaces, and in [14] for FC-spaces, are all extended to KKM spaces. Therefore,
most of their applications in each paper can be also generalized to KKM spaces. The readers
can show this in case they are urgently needed. Finally, note that results in [14] are all particular
to corresponding ones for G-convex spaces.
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