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We provide a process to extend any bipartite diametrical graph of diameter 4 to an S-graph of the
same diameter and partite sets. For a bipartite diametrical graph of diameter 4 and partite sets U
and W , where 2m = |U| ≤ |W |, we prove that 2m is a sharp upper bound of |W | and construct an
S-graph G(2m, 2m) in which this upper bound is attained, this graph can be viewed as a general-
ization of the Rhombic Dodecahedron. Then we show that for any m ≥ 2, the graph G(2m, 2m) is
the unique (up to isomorphism) bipartite diametrical graph of diameter 4 and partite sets of cardi-
nalities 2m and 2m, and hence in particular, for m = 3, the graph G(6, 8) which is just the Rhombic
Dodecahedron is the unique (up to isomorphism) bipartite diametrical graph of such a diameter
and cardinalities of partite sets. Thus we complete a characterization of S-graphs of diameter 4 and
cardinality of the smaller partite set not exceeding 6. We prove that the neighborhoods of vertices of
the larger partite set ofG(2m, 2m) form a matroid whose basis graph is the hypercubeQm. We prove
that any S-graph of diameter 4 is bipartite self complementary, thus in particularG(2m, 2m). Finally,
we study some additional properties ofG(2m, 2m) concerning the order of its automorphism group,
girth, domination number, and when being Eulerian.
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1. Introduction

There are frequent occasions in which graphs with a lot of symmetries are required. One such
family of graphs is that of S-graphs. S-graphs form a special type of symmetric diametrical
graphs which are one of the most interesting classes of diametrical graphs, see [1, 2], as well as
of k-pairable graphs introduced in [3]. Diametrical graphswere studied under different names,
see [2, 4–6].

All graphs we consider are assumed to be finite, connected, and to have no loops or
multiple edges. For undefined notions and terminology, we use [7].

Two vertices, u and v, of a nontrivial connected graph G are said to be diametrical if
d(u, v) = diam(G). A nontrivial connected graph G is called diametrical if each vertex v of
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G has a unique diametrical vertex v, the vertex v is called the buddy of v, see [4] and [5]. A
diametrical graph G is called minimal if removing any edge of G produces a graph which is
not diametrical of the same diameter. A diametrical graph G in which uv ∈ E(G), whenever
uv ∈ E(G), is called harmonic. A diametrical graph G is called maximal if there is no diametrical
graph H with the same vertex set and diameter as G such that E(H) contains E(G) properly.
A diametrical graph G is called symmetric if d(u, v) + d(v, u) = diam(G) for all u, v ∈ V (G), see
[2], that is, a diametrical graph G is symmetric if and only if V (G) = I(u, u) for any u ∈ V (G),
where I(u, u) denotes the interval ofG consisting of all vertices on shortest (u, u)-paths, see [5].
A symmetric diametrical graph is called an antipodal graph, and a bipartite antipodal graph is
called an S-graph, see [1].

It is shown in [8] that the concepts of symmetric and maximal are equivalent in the
class of bipartite diametrical graphs of diameter 4. We provide a process to extend any given
bipartite diametrical graph of diameter 4 to a maximal diametrical graph and hence an S-graph
of the same diameter and partite sets.

For a bipartite diametrical graph of diameter 4 and partite setsU andW with |U| ≤ |W |,
it is given in [8] that |W | ≤ ( |U|

(1/2)|U| ). In this paper, we improve this upper bound by proving
that |W | ≤ 2m, where m = (1/2 )|U|. To show that 2m is a sharp upper bound, we construct a
bipartite diametrical graph, which we denote by G(2m, 2m), of diameter 4 in which this max-
imum value of |W | is attained. In particular, when m = 3, the graph G(2m, 2m) is indeed just
the Rhombic Dodecahedron which is sometimes also called the Rhomboidal Dodecahedron,
see [9]. The Rhombic Dodecahedron appears in some applications in natural sciences, see, for
example, [10, 11]. It is the convex polyhedron depicted in Figure 1 and can be built up by plac-
ing six cubes on the faces of a seventh, taking the centers of outer cubes and the vertices of
the inner as its vertices, and joining the center of each outer cube to the closer four vertices of
the inner. The number |U| is a sharp lower bound of |W |which is previously known through a
graph constructed in [8], which we denote in this paper by G(2m, 2m). For m = 3, it is proven
in [12] that, up to isomorphism, the graph G(2m, 2m) = K2 × C6 is the unique symmetric di-
ametrical graph of order 12 and diameter 4. For larger m, G(2m, 2m) needs not be the unique
symmetric diametrical bipartite graph of diameter 4. We give an example of an S-graph with
the same cardinalities of partite sets as those of G(8, 8) but not isomorphic to G(8, 8). On the
other hand, we prove that, for any m ≥ 2, the graph G(2m, 2m) is not only the unique (up to
isomorphism) S-graph of diameter 4 and partite sets of cardinalities 2m and 2m, but also is
the unique bipartite diametrical graph of such a diameter and partite sets. Consequently, the
Rhombic Dodecahedron is the unique diametrical graph of diameter 4 and maximum order
where the smaller partite set has cardinality 6. Joining this to the main result of [12], our result
about the upper bound of the cardinality of the larger partite set completes a characterization
of S-graphs of diameter 4 and cardinality of the smaller partite set not exceeding 6.

Matroids constitute an important unifying structure which has many equivalent defini-
tions. According to one of these definitions, amatroid on a finite set I is a collection β of subsets
of I, called bases, which satisfies the exchange property: for all A,B ∈ β and a ∈ A − B, there
exists b ∈ B − A such that (A − {a}) ∪ {b} ∈ β. It is well known that all the bases of a matroid
have the same cardinality. The basis graph G(β) of a matroid β is the graph whose vertices are
the bases of the matroid, where two vertices A, B are adjacent if they differ by a single ex-
change, that is, if the symmetric difference (A − B) ∪ (B − A) has exactly two elements. The
basis graphs faithfully represent their matroids, see [13] and references therein; thus studying
the basis graph amounts to studying the matroid itself. We prove that the neighborhoods of
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Figure 1: The Rhombic Dodecahedron.

the vertices of the larger partite set of G(2m, 2m) form a matroid whose basis graph is the hy-
percube Qm. The hypercubes together with the Rhombic Dodecahedra appear as the cells in
the tight span of a totally split-decomposable metric which is used in the field of phylogenetic
analysis, see [14].

A bipartite graph G with partite sets U and W is called bipartite self complementary if G
is a subgraph of K|U|,|W | which is isomorphic to its complement K|U|,|W | − E(G) with respect
to the complete bipartite graph with the same partite sets, see [15]. We show that the graphs
G(2m, 2m) and G(2m, 2m) are bipartite self complementary and study some of their properties
concerning girth, domination number, order of automorphism group, and when being Eule-
rian.

2. A sharp upper bound of the cardinality of the larger partite set

One basic property of any bipartite diametrical graph of even diameter is that each of the
partite sets has an even number of elements, as stated in Lemma 2.1, see [8].

Lemma 2.1. If G is a bipartite diametrical graph of even diameter d and partite setsU andW, then for
each v ∈ V, both v and v belong to the same partite set, and hence |U| and |W | are even.

In particular, when diam(G) = 4, each partite set of G consists of a vertex v, its buddy v,
and those vertices equidistant to v and v.

It is shown in [2] that symmetric diametrical graphs form a proper special class of max-
imal diametrical graphs. But the two concepts coincide in the class of bipartite diametrical
graphs of diameter 4 according to the following fact which was proven in [8].

Lemma 2.2. Let G be a bipartite diametrical graph of diameter 4. Then the following are equivalent:

(i) G is maximal in the class of bipartite diametrical graphs with the same partite sets as G;

(ii) G is maximal;

(iii) G is symmetric.

The following theorem includes a process to extend any given bipartite diametrical
graph of diameter 4 to a bipartite diametrical graph of the same diameter and partite sets,
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which is maximal in the class of bipartite diametrical graphs with the same partite sets, and
hence, by the previous lemma, is an S-graph.

Theorem 2.3. Let G be a bipartite diametrical graph of diameter 4 and partite setsU andW. Then, the
following hold:
(i) if u ∈ U and w ∈ W such that the set {u, u,w,w} of vertices is independent, then the graph

G + uw is bipartite diametrical of the same diameter and partite sets as G;
(ii) if uw ∈ E(G) but uw /∈ E(G), then the graphG+uw is bipartite diametrical of the same diameter

and partite sets as G;
(iii) if H is a graph obtained from G by repeated applications of (i) and (ii) until none of them is

applicable, thenH is an S-graph of the same diameter and partite sets as G.
Proof. (i) Assume to the contrary that G + uw is either not diametrical or has diameter less
than 4. Then there exists a vertex v ∈ V (G) such that dG+uw(v, v) < 4. But, since G + uw is
also bipartite with the same partite sets as G and both v , v belong to the same part of V (G),
then dG+uw(v, v) is even. Hence dG+uw(v, v) = 2. Thus there exists a (v, v)-path P in G + uw
containing the new edge uw and having length 2. Then either {v, v} = {u, u} and P is uwu or
{v, v} = {w,w} and P iswuw, which gives a contradiction in both cases sincewu,wu /∈ E(G+
uw). Therefore, G + uw is a diametrical graph of diameter 4.

(ii) Let uw ∈ E(G) such that uw /∈ E(G) with u ∈ U and w ∈ W, where U and W
are the partite sets of G. Then uw /∈ E(G) because otherwise dG(u, u) = 2, which is not the
case. Similarly, uw /∈ E(G). Now, we will show by contradiction that G + uw is diametrical
of diameter 4. Assume not, then there exists a vertex v ∈ V (G) such that dG+uw(v, v) < 4.
Clearly, G + uw is bipartite with the same partite sets as G since u ∈ U and w ∈ W . But both
v and v belong to the same part of V (G), hence dG+uw(v, v) is even, and so dG+uw(v, v) = 2.
Thus, there exists a (v, v)-path P in G + uw containing the new edge uw and having length 2.
Consequently, either {v, v} = {u, u} and P is uwu or {v, v} = {w,w} and P is wuw, which
gives a contradiction in both cases since uw, uw /∈ E(G + u w). Therefore, G + uw is bipartite
diametrical of diameter 4.

(iii) Let H be a graph obtained from G by addition of edges according to (i) or (ii) until
none of them can be applied. By Lemma 2.2, it would be enough to show thatH is maximal in
the class of bipartite diametrical graphs of diameter 4 and partite setsU andW. Assume to the
contrary that there exist two nonadjacent vertices u ∈ U andw ∈ W ofH such thatH +uw still
diametrical of diameter 4. Then, since (ii) is no more applicable on H, we have uw /∈ E(H).
But also (i) is not applicable on H, so the set {u, u,w,w} is not independent, therefore either
uw ∈ E(H) or uw ∈ E(H). Consequently, either dH(w,w) = 2 or dH(u, u) = 2, a contradiction.

The only bipartite diametrical graph of diameter 4 in which the smaller partite set has
cardinality less than 6 is the 8-cycle as Lemma 2.4 (proven in [8]) says.

Lemma 2.4. If G is a bipartite diametrical graph of diameter 4 and partite sets U and W with |U| ≤
|W |, then |U| ≥ 6 unless G = C8.

For a bipartite diametrical graph of diameter 4 and partite setsU andW with |U| ≤ |W |,
we have |U| /= 2, and whenever |U| = 4, we must have |W | = 4. It was shown in [8] that if
|U| ≥ 6, then |W | ≤ ( 2m

m ), where m = (1/2)|U|. Thus for |U| = 6, we have |W | ≤ 20. This is
not a sharp upper bound, as shown at the end of this section. In order to obtain a sharp upper
bound, we start by the following lemma.
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Lemma 2.5. Let u and v be distinct vertices of a diametrical graph G of diameter d ≥ 3. Then
N(u) /⊆N(v).

Proof. If u = v, then N(u) ∩ N(v) = φ since d(u, v) ≥ 3. Suppose that u /= v and assume to
the contrary that N(u) ⊆ N(v). Any shortest path joining v and u must include a vertex from
N(u); let x be such a vertex in such a path. Then d(v, u) = d(v, x) + d(x, u) = d(v, x) + 1. But
x ∈ N(u) ⊆ N(v) and v is the only vertex of G at distance d from v, hence d(v, x) = d − 1.
Therefore, d(v, u) = (d− 1) + 1 = d, contradicting the uniqueness of the buddy vertex of v.

In particular, two distinct vertices in a diametrical graph of diameter at least 3 cannot
have the same neighborhood.

Before tending to give an upper bound of |W |, let us recall the following fact proven in
[8].

Lemma 2.6. Every vertex v of an S-graph G of diameter 4 is adjacent to exactly half of the vertices in
the partite set of G not containing v.

We are now in a position to prove our improvement of the upper bound of |W |.

Theorem 2.7. Let G be a bipartite diametrical graph of diameter 4 and partite sets U and W , where
2m = |U| ≤ |W |. Then, |W | ≤ 2m.

Proof. By Theorem 2.3, there exists an S-graph H with the same diameter and partite sets as G
which has G as a subgraph. Then, by Lemma 2.6, each vertex w ∈ W has exactly m neighbors
in U. Clearly, NH(w) cannot contain a vertex and its buddy. But Lemma 2.5 implies that the
|W | sets NH(w), w ∈ W are mutually distinct. Hence, |W | must be less than or equal to the
number of ways of choosing single representatives from each of m two-element sets; clearly
that number is 2m.

Now, if G is a bipartite diametrical graph of diameter 4 and partite sets U and
W, where |U| ≤ |W |, then by Lemma 2.1, |U| = 2m for some positive integer m. Since
diam(G) = 4, we must have m ≥ 2. In the next section, we will construct for each integer
m ≥ 2 a bipartite diametrical graph of diameter 4 and partite sets U and W with |U| = 2m and
|W | = 2m, which is the maximum possible cardinality ofW according to the previous theorem.
Consequently, the upper bound of |W | given in Theorem 2.7 is indeed sharp.

3. Constructing the graph G(2m, 2m) with maximum cardinality of
the larger partite set

For a bipartite diametrical graph of diameter 4 and partite setsU andW with 2m = |U| ≤ |W |,
an obvious lower bound of |W | is 2m. An S-graph of diameter 4 and partite sets with equal
cardinalities was constructed in [8] as follows.

Lemma 3.1. For any integer m ≥ 2, the graph G whose vertex set is the disjoint union U ∪W , where
U = {u1, u1, u2, u2, . . . , um, um} andW = {w1, w1, w2, w2, . . . , wm,wm}, and edge set is

E(G) =
{
uiwt : 1 ≤ i ≤ m, 1 ≤ t ≤ m + 1 − i

}

∪ {
uiwt : 1 ≤ i ≤ m, m + 1 − i < t ≤ m

}

∪ {
uiwt : 1 ≤ i ≤ m, 1 ≤ t ≤ m + 1 − i

}

∪ {
uiwt : 1 ≤ i ≤ m, m + 1 − i < t ≤ m

}
,

(3.1)

is an S-graph of diameter 4.
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Figure 2: Two nonisomorphic S-graphs with minimum |W |. Any two vertices ofH at distance 2 from each
other have exactly 2 common neighbors.

We will denote the graph G in Lemma 3.1 by G(2m, 2m). The graph G(8, 8) is depicted
in Figure 2(a).

The next theorem provides an example of a bipartite diametrical graph of diameter 4
and partite sets U and W with |U| ≤ |W | in which the maximum possible value of |W | given
in Theorem 2.7 is attained.

Theorem 3.2. Suppose that m > 1 is an integer. There is a unique S-graph of diameter 4 with partite
setsU, W satisfying |U| = 2m and |W | = 2m.

Proof. Let U = {u1, u
∗
1, . . . , um, u

∗
m} and W = {w1, . . . , w2m}. By Lemma 2.6 and the proof of

Theorem 2.7 there is only one way to make an S-graph of diameter 4 with partite sets U, W
and with ui and u∗

i being buddies, i = 1, . . . , m: put thewj into one-to-one correspondence with
the 2m different sets S = {u′

1, . . . , u
′
m} in which u′

i is one of ui, u∗
i for each i = 1, . . . , m, and define

adjacency by setting N(wj) = S if wj corresponds to S in the one-to-one correspondence. It is
straightforward to see that the graph so defined is an S-graph of diameter 4; for each w in W,
the buddy of w is the vertex in W whose set of neighbors is U −N(w).

We will denote the graph constructed in the proof of Theorem 3.2 by G(2m, 2m).
The following fact follows immediately from the constructions of the graphs

G(2m, 2m) and G(2m, 2m).

Corollary 3.3. For any integer m ≥ 2, if G is a bipartite diametrical graph of diameter 4 and partite
setsU andW, where 2m = |U| ≤ |W |, then 2m ≤ |W | ≤ 2m, where both inequalities are sharp.

Example 3.4. For m = 3, the graph G(2m, 2m) = G(6 , 8) which we have already constructed is
indeed the Rhombic Dodecahedron depicted in Figure 1.
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4. Some properties of the graphs G(2m, 2m) and G(2m, 2m)

We have seen in the previous section that for any integer m ≥ 2 and partite sets U and W
with 2m = |U| ≤ |W |, the graph G(2m, 2m) is a bipartite diametrical graph of diameter 4 and
such partite sets with minimum possible order, whileG(2m, 2m) is one with maximum possible
order.

Now we will show that the graph G(2m, 2m) is always included within the graph
G(2m, 2m), recall that a subgraph H of G is isometric if dG(u, v) = dH(u, v) for all u, v ∈ V (H),
see [16].

Theorem 4.1. For any integer m ≥ 2, the graph G(2m, 2m) has an isometric subgraph isomorphic to
G(2m, 2m).

Proof. Let U = {u1, u1, u2, u2, . . . , um, um} and W = {w1, w2, . . . , w2m} be the partite sets of the
graph G(2m, 2m). Then, by the construction of G(2m, 2m), for each i = 1, 2, . . . , m, there exists
a unique vertex yi ∈ W such that N(yi) = {ui : 1 ≤ i ≤ m + 1 − i} ∪ {ui : m + 1 − i < i ≤
m}, and hence N(yi) = {ui : 1 ≤ i ≤ m + 1 − i} ∪ {ui : m + 1 − i < i ≤ m}. Then,the set
of vertices U ∪ {y1, y1, y2, y2, . . . , ym, ym} induces a subgraph H of G(2m, 2m) isomorphic to
G(2m, 2m). Obviously, the buddy of a vertex of H in H is precisely its buddy in G(2m, 2m). To
show that H is isometric, let x and z be any two distinct vertices of H. If x = z or xz ∈ E(H),
then dH(x , z) = dG(2m,2m)(x , z). So suppose that x /= z and xz /∈ E(H). Then it is clear that
dH(x , z) = dG(2m,2m)(x , z) = 2 when both x and z belong to the same partite set of H. Thus let
x and z be in different partite sets of H, say x ∈ U and z ∈ WH = {y1, y1, y2, y2, . . . , ym, ym}.
Then xz /∈ E(G(2m, 2m)) for otherwise we would have NG(2m,2m)(z) ⊇ NH(z) ∪ {x} which
contradicts the fact that degG(2m,2m)z = m. Then, dH(x , z) = dG(2m,2m)(x , z) = 3. Therefore H is
an isometric subgraph of G(2m, 2m).

The Rhombic Dodecahedron and the even cycles C2n (n ≥ 2) are minimal diametrical
graphs, while the graph K2 × C6 is not, for if we remove an edge e corresponding to K2, then
the obtained graph (K2 ×C6)− e is again diametrical of the same diameter. Notice also that the
graphK2 ×C6 is just G(6, 6), which means that G(2m, 2m) needs not be minimal. But the graph
G(2m, 2m) is minimal diametrical as the next result says.

Theorem 4.2. For any integer m ≥ 2, if H is an S-graph of diameter 4 and partite sets of cardinalities
2m and 2m, then H is a minimal diametrical graph.

Proof. By Theorem 3.2, the graph H is isomorphic to G(2m, 2m). Let uw be an edge of
G = G(2m, 2m), where u ∈ U and w ∈ W . Then NG−uw(w) = NG(w) − {u}, NG(w) =
U − NG(w), and u ∈ NG(w). Let x ∈ W be the vertex whose neighborhood in G is
NG(x) = (NG(w) − {u}) ∪ {u}. Then NG−uw(x) ∩NG−uw(w) = φ. Hence, dG−uw(w,x) /= 2. But
dG−uw(w,x) is even, so dG−uw(w,x) ≥ 4. Clearly x /= w since u /∈ NG(w). Therefore, x and w
are two distinct vertices with dG−uw(w,x) ≥ 4 and dG−uw(w,w) ≥ 4, which implies that G − uw
is not diametrical of diameter 4. Since uw was an arbitrary edge of G(2m, 2m), the graph H
which is isomorphic to G(2m, 2m) is minimal.

Now we can improve Theorem 3.2 and show that the graph G(2m, 2m) is not only the
unique (up to isomorphism) S-graph of diameter 4 and partite sets of cardinalities 2m and 2m,
but also the unique (up to isomorphism) bipartite diametrical graph of such a diameter and
partite sets.
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Theorem 4.3. For any integerm ≥ 2, if G is a bipartite diametrical graph of diameter 4 and partite sets
of cardinalities 2m and 2m, then G is isomorphic to G(2m, 2m).

Proof. Let G be a bipartite diametrical graph of diameter 4 and partite sets UG and WG

with |UG| = 2m and |WG| = 2m. In view of Theorem 3.2, it would be enough to show
that G is symmetric. So, assume to the contrary that G is not symmetric. Then, by Theorem
2.3, the graph G is a proper subgraph of an S-graph H of the same diameter and partite sets
as G. Let uw ∈ E(H) − E(G). Then G ⊆ H − uw ⊆ H, and hence for any x, y ∈ V (G), we
have dG(x, y) ≥ dH−uw(x, y) ≥ dH(x, y). Therefore,H −uw is diametrical of the same diameter
and partite sets as G and H, which contradicts the minimality of H implied by the previous
theorem.

The following characterization of the Rhombic Dodecahedron G(6, 8) is a direct conse-
quence of Theorem 4.3 and Theorem 2.7.

Corollary 4.4. The Rhombic Dodecahedron is the unique (up to isomorphism) bipartite diametrical
graph of diameter 4 and partite setsU andW, where 6 = |U| < |W |.

According to [12], if G is an S-graph of order n and diameter 4 with partite sets U and
W such that G /= C8, then n ≥ 12. Moreover, if n = 12, then |U| = |W | = 6. It is also shown in
[12] that K2 × C6 is the unique (up to isomorphism) symmetric diametrical graph of order 12
and diameter 4 and hence in particular the unique S-graph of such an order and diameter. The
previous corollary shows that the Rhombic Dodecahedron is not only the unique (up to isomor-
phism) S-graph of order 14 and diameter 4, but also the unique (up to isomorphism) bipartite
diametrical graph of such an order and diameter. Combining these results with Lemma 2.4, we
can completely characterize the S-graphs of diameter 4 and cardinality of the smaller partite
set not exceeding 6.

Corollary 4.5. LetG be an S-graph of diameter 4 and cardinality of the smaller partite set not exceeding
6. Then G is isomorphic to one of the graphs: C8, K2 × C6 and the Rhombic Dodecahedron.

In the set of bipartite diametrical graphs of diameter 4 and partite sets U and W with
2m = |U| ≤ |W |, although the graph G(2m, 2m) is the unique (up to isomorphism) with maxi-
mum order, the graph G(2m, 2m) needs not be the only one with minimum order, for example,
the graphsK2×C6 = G(6, 6) and (K2×C6)−e, where e is an edge correspoding toK2, both have
minimum order. Even under the condition of being symmetric, althoughG(6, 6)was proven in
[12] to be the only one, G(2m, 2m) in general needs not be unique, for example, G(8, 8) and the
graphH of diameter 4 in Figure 2 are nonisomorphic S-graphs with minimum order.

Nowwe will prove that the set of all neighborhoods of vertices of the larger partite set in
the graph G(2m, 2m) forms a matroid on the smaller partite set, and determine its basis graph.

Theorem 4.6. LetU andW be the partite sets ofG(2m, 2m)with cardinalities 2m and 2m, respectively.
Then β = {N(w) : w ∈ W} forms a matroid onU whose basis graph is the hypercube Qm.

Proof. Let N(wi), N(wj) be two elements of β with a ∈ N(wi) − N(wj). Then a ∈ N(wj).
Thus the set S = (N(wi) − {a}) ∪ {a} has exactly m elements and contains no pair of
diametrical vertices. So by the construction of G(2m, 2m), there exists a vertex wk ∈ W
such that N(wk) = S. Therefore, (N(wi) − {a}) ∪ {a} ∈ β and hence β is a matroid.
Now to determine the basis graph of β, let N(wj) be a base of the matroid β obtained from
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a baseN(wi) by a single exchange. ThenN(wj) = (N(wi)−{a})∪{b} for some a ∈ N(wi) and
some b /∈ N(wi). But the set N(wj) contains exactly one of a, a. Then b must be a. Therefore,
a single exchange is precisely replacing a vertex by its buddy, which means that two vertices
in G(β) are adjacent if and only if one of them can be obtained from the other by replacing a
vertex from U by its buddy. Now since U = {u1, u1, u2, u2, . . . , um, um}, we can represent each
vertex N(w) of G(β) by a binary string r1r2 · · · rm, where for i = 1, 2, . . . , m, we put

ri =

{
0, ui ∈ N(w),

1, ui ∈ N(w),
(4.1)

thus two vertices ofG(β) are adjacent if and only if their binary representations differ at exactly
one place. This is just the binary representation of the hypercube Qm.

It is shown in [8] that G(2m, 2m) has exactly 8m automorphisms. This indicates that
G(2m, 2m) has a lot of symmetry. The next result reflects the higher symmetry G(2m, 2m) pos-
sesses.

Theorem 4.7. For any integerm ≥ 3, the automorphism group Aut(G(2m, 2m)) has order 2mm!.

Proof. Let f be an automorphism of G(2m, 2m). Then, since f preserves degrees of vertices
and |U| /= |W |, it follows by Lemma 2.6 that the vertex f(w1) = w must belong to W . Then
f(N(w1)) = N(w), and hence since f preserves distances between vertices, we must have
f(u) = f(u) for every vertex u ∈ U −N(w1) = N(w1). Now for any vertex x ∈ W − {w1}, by
the construction of G(2m, 2m), there exists a unique vertex y ∈ W such that N(y) = f(N(x))
and hence f(x) = y. This gives an automorphism f of G(2m, 2m). Thus an automorphism of
G(2m, 2m) is completely defined by specifying the image of every vertex in the closed neigh-
borhoodN[w1]. From the proof above, the image ofw1 can be any vertex fromW , and the set
of images of the vertices from N(w1) must only be the set of neighbors of f(w1). This implies
that we have exactly 2m ways to choose f(w1) and thenm! ways to choose the set of images of
the vertices from N(w1). Therefore, G(2m, 2m) has exactly 2mm! automorphisms.

One can easily verify that the S-graphs of diameter 4 and order at most 14, already char-
acterized in Corollary 4.5, are bipartite self complementary. The following result assures that
this is the case for any S-graph of diameter 4.

Theorem 4.8. If G is an S-graph of diameter 4, then G is bipartite self complementary.

Proof. Let U = {u1, u2, . . . , uk, u1, u2, . . . , uk} and W = {w1, w2, . . . , wt,w1, w2, . . . , wt} be the
partite sets of G which is a subgraph of K2k,2t. Then, by Lemma 2.6, each vertex x from U is
adjacent to exactly half of the vertices of W , and x is adjacent to the other half. Thus, the one-
to-one correspondence φ from V (G) to V (K2k,2t − E(G)), which fixes every vertex in W and
sends every vertex in U to its buddy, preserves adjacency.

Consequently, both G(2m, 2m) and G(2m, 2m) are bipartite self complementary.
Finally, we close this section by the following result including some properties of

G(2m, 2m) and G(2m, 2m) concerning girth, domination number, and being Eulerian.

Theorem 4.9. (i) The girth of each of the graphs G(2m, 2m) and G(2m, 2m), wherem ≥ 3, is 4; while
the graph G(4, 4) has girth 8.
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(ii) The domination number of any S-graph of diameter 4 is 4. Hence, each of G(2m, 2m) and
G(2m, 2m) has domination number 4.

(iii) Any S-graph of diameter 4 is Eulerian if and only if the cardinality of each of its partite sets
is divisible by 4. Hence, the graphs G(2m, 2m) and G(2m, 2m) are Eulerian if and only ifm is even.

Proof. (i) The graph G(4, 4) is the 8-cycle. Now consider m ≥ 3. In the graph G(2m, 2m),
we have N(u1) = {w1, w2, . . . , wm} andN(u2) = {w1, w2, . . . , wm−1} ∪ {wm}. Then u1w1u2w2u1

is a 4-cycle in the bipartite graph G(2m, 2m) which implies that the girth of G(2m, 2m) is 4.
Now since G(2m, 2m) is bipartite, then by Theorem 4.1, its girth is also 4.

(ii) Let G be an S-graph of diameter 4 and partite sets U and W . Then by
Lemma 2.6, each vertex in one of the partite sets is adjacent to exactly half of the vertices of
the other partite set. Thus, G cannot have a dominating set with number of elements less than
4. But for any two vertices u,w, where u ∈ U and w ∈ W , we have N(u) ∪ N(u) = W and
N(w) ∪N(w) = U. Therefore, {u, u,w,w} is a dominating set of G.

(iii) Let G be an S-graph of diameter 4 and partite sets U and W . By Lemma 2.6, each
vertex of G has degree either (1/2)|U| or (1/2)|W |. Therefore, the degree of every vertex of G
is even if and only if both |U| and |W | are multiples of 4.

One might put for further research the following question. For an S-graph of diameter
4 and partite sets U and W, where 2m = |U| ≤ |W |, a sharp lower bound and a sharp upper
bound of |W | are 2m and 2m, respectively. If m > 3, then for each integer t with m < t < 2m−1,
what about the existence of an S-graph of diameter 4 and partite setsU andW,where 2m = |U|
and |W | = 2t?

Acknowledgment

The authors are grateful to the referees for their valuable suggestions.

References

[1] A. Berman and A. Kotzig, “Cross-cloning and antipodal graphs,” Discrete Mathematics, vol. 69, no. 2,
pp. 107–114, 1988.
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