
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2008, Article ID 496720, 9 pages
doi:10.1155/2008/496720

Research Article
Skew Polynomial Extensions over Zip Rings

Wagner Cortes
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1. Introduction

Throughout this paper R denotes an associative ring with identity and σ : R→R an auto-
morphism of R, otherwise unless stated. We denote R[[x;σ]] (R[[x, x−1;σ]]) the skew series
rings (skew Laurent series rings) whose elements are the series

∑
i≥0aix

i (
∑∞

j=pbjx
j), where

the addition is defined as usual and the multiplication is defined by the rule, xa = σ(a)x
(xa = σ(a)x and x−1a = σ−1(a)x), for any a ∈ R. Note that the skew polynomial rings of
automorphism typeR[x;σ] (skew Laurent of polynomialR[x, x−1;σ]) are subrings ofR[[x;σ]]
(R[[x, x−1;σ]]) whose elements are

∑n
i=0aix

i (
∑m

j=qbjx
j) where the sum and multiplication are

defined as before.
Rege and Chhawchharia in [1] introduced the notion of an Armendariz ring. A ring R

is called Armendariz if whenever polynomials
∑n

i=0aix
i,
∑m

j=0bjx
j ∈ R[x] satisfy f(x)g(x) = 0,

then aibj = 0 for each 0 ≤ i ≤ n and 0 ≤ j ≤ m. The name Armendariz ring was chosen because
Armendariz [2] had shown that a reduced ring (i.e., ring without nonzero nilpotent elements)
satisfies this condition. Some properties of Armendariz rings have been studied by Rege and
Chhawchharia [1], Armendariz [2], Anderson and Camillo [3], and Kim and Lee [4].

Faith in [5] called a ring R right zip if the right annihilator rR(X) of a subset X of R
is zero, then rR(Y ) = 0 for a finite subset Y ⊆ X; equivalently, for a left ideal L of R with
rR(L) = 0, there exists a finitely generated left ideal L1 ⊆ L such that rR(L1) = 0. R is zip if it is
right and left zip. The concept of zip rings was initiated by Zelmanowitz [6] and appeared in
various papers [5, 7–12], and references therein. Zelmanowitz stated that any ring satisfying
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the descending chain condition on right annihilators is a right zip ring (although not so-called
at that time), but the converse does not hold. Extensions of zip rings were studied by several
authors. Beachy and Blair [7] showed that if R is a commutative zip ring, then the polynomial
ring R[x] over R is zip. The authors in [13] proved that R is a right (left) zip ring if and only if
R[x] is a right (left) zip ring when R is an Armendariz ring.

In this paper, we study skew polynomial extensions over zip rings by using skew
versions of Armendariz rings and we generalized the results of [13]. Our skew versions of
Armendariz rings follow the ideas of [14, Definition]. Moreover, we provide some examples to
display some of the phenomenas of Section 2.

2. Skew polynomial extensions over zip rings

Throughout this paper σ is an automorphism of R unless otherwise stated and S will denote
one of the following rings: R[x;σ], R[[x;σ]], R[x, x−1σ], and R[[x, x−1;σ]]. A left (right)
annihilator of a subset U of R is defined by lR(U) = {a ∈ R : aU = 0} (rR(U) = {a ∈ R :
Ua = 0}). For a ring R, put rAnnR(2

R) = {rR(U) : U ⊆ R} and lAnnR(2
R) = {lR(U) : U ⊆ R}.

We begin with the following lemma and use it without further mention.

Lemma 2.1. Let S be one of the rings above andU a subset of R. The following statements hold:
(i) lS(U) = SlR(U),
(ii) rS(U) = rR(U)S.

Proof. (i) We only prove for the case S = R[x;σ] because the other cases are similar. Let f(x) =
∑n

i=0aix
i ∈ R[x;σ] such that f(x)U = 0. Then σ−i(ai)U = 0 for all 0 ≤ i ≤ n and it follows that

σ−i(ai) ∈ lR(U) for all 0 ≤ i ≤ n. Hence f(x) =
∑n

i=0x
iσ−i(ai) ∈ R[x;σ]lR(U). So lR[x;σ](U) ⊆

R[x;σ]lR(U). We clearly have that R[x;σ]lR(U) ⊆ lR[x;σ](U). Therefore, we have lR[x;σ](U) =
R[x;σ]lR(U).

(ii)We only prove for the case S = R[x;σ] because the other cases are similar. Let f(x) =
∑n

i=0aix
i ∈ R[x;σ] such that Uf(x) = 0. Then Uai = 0 for all 0 ≤ i ≤ n and it follows that ai ∈

rR(U) for all 0 ≤ i ≤ n. Hence f(x) =
∑n

i=0aix
i ∈ rR(U)R[x;σ]. So rR[x;σ](U) ⊆ rR(U)R[x;σ].

We clearly have that rR(U)R[x;σ] ⊆ rR[x;σ](U). Therefore, we have rR[x;σ](U) = rR(U)R[x;σ].

With the above lemma, we have maps φ : rAnnR(2
R)→rAnnS(2

S) defined by φ(I) = IS
for every I ∈ rAnnR(2

R) and

Ψ : lAnnR

(
2R
) −→ lAnnS

(
2S
)

(2.1)

defined by Ψ(I) = SI for every I ∈ lAnnR(2
R). Moreover, we have maps Φ :

rAnnS(2
S)→rAnnR(2

R) defined by Φ(J) = J ∩ R for every J ∈ rAnnS(2
S) and Γ :

lAnnS(2
S)→lAnnR(2

R) defined by Γ(J) = J∩R for every J ∈ lAnnS(2
S). Obviously, φ is injective

and Φ is surjective. Clearly, φ is surjective if and only if Φ is injective, and in this case φ and Φ
are the inverses of each other. Note that Ψ and Γ satisfy the same relations as above. The first
item of the definition below appears in [14, Definition].

Definition 2.2. (i) Suppose that σ is an endomorphism of R. A ring R satisfies SA1′ if for f(x) =
∑n

i=0aix
i and g(x) =

∑m
j=0bjx

j in R[x;σ], f(x)g(x) = 0 implies that aiσ
i(bj) = 0 for all 0 ≤ i ≤ n

and 0 ≤ j ≤ m.
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(ii) Suppose that σ is an endomorphism of R. A ring R satisfies SA2′ if for f(x) =
∑∞

i=0aix
i

and g(x) =
∑∞

j=0bjx
j in R[[x;σ]], f(x)g(x) = 0 implies that aiσ

i(bj) = 0 for all i ≥ 0,
j ≥ 0.

(iii) Suppose that σ is an automorphism of R. A ring R satisfies SA3′ if for f(x) =
∑q

i=saix
i

and g(x) =
∑n

j=tbjx
j ∈ R[x, x−1;σ], f(x)g(x) = 0 implies that aiσ

i(bj) = 0 for all
s ≤ i ≤ q and t ≤ j ≤ n.

(iv) Suppose that σ is an automorphism of R. A ring R satisfies SA4′ if for f(x) =
∑∞

i=saix
i

and g(x) =
∑∞

j=tbjx
j ∈ R[[x, x−1;σ]], f(x)g(x) = 0 implies that aiσ

i(bj) = 0 for all i ≥ s
and j ≥ t.

Note that if R satisfies one of the conditions above, then all subrings S of R such that
σ(S) ⊆ S satisfies the same property. The following implications are easy to verify: SA4′ ⇒
SA3′ and SA2′ ⇒ SA1′. Following [15, Example 2.1] when σ = idR, the last implication is not
reversible.

Lemma 2.3. Let σ be an automorphism of R. Then
(i) R satisfies SA1′ if and only if R satisfies SA3′;
(ii) R satisfies SA2′ if and only if R satisfies SA4′.

Proof. Let f(x), g(x) ∈ R[x, x−1;σ] such that f(x)g(x) = 0, where f(x) =
∑q

i=−paix
i and g(x) =

∑s
j=−tbjx

j . We clearly have xpf(x) ∈ R[x;σ] and g(x)xt ∈ R[x;σ], then xpf(x)g(x)xt = 0. By
assumption, σp(ai)σi+p(bj) = 0 for all −p ≤ i ≤ q and −t ≤ j ≤ s. Hence aiσ

i(bj) = 0 for all
−p ≤ i ≤ q and −t ≤ j ≤ s. Since R[x;σ] ⊆ R[x, x−1;σ], the converse follows.

The proof of the other statement is similar.

The following definition appears in [16, Definition 2.1].

Definition 2.4. Let R be a ring and σ an endomorphism of R. Then R is said σ-compatible like
right R-module, if ar = 0 if and only if aσ(r) = 0 for any a ∈ R and r ∈ R.

Let R be a ring and α an endomorphism of R. Following [17], the endomorphism α is
said α-rigid if rα(r) = 0, then r = 0. A ringR is said a rigid ring if it exists a rigid endomorphism
α of R.

Proposition 2.5. Let σ be an endomorphism of R. If R is a reduced ring and σ-compatible like right
R-module, then R is a σ-rigid ring and hence satisfies SA1′ and SA2′.

Proof. We only prove the case of SA2′ because the other are similar. We claim that R[[x;σ]] is
a reduced ring. In fact, let f(x) =

∑∞
i=0aix

i such that (f(x))2 = 0. We have that a2
0 = 0. Since R

is reduced, then a0 = 0. Next, we have a1σ(a1) = 0, since R is σ-compatible and reduced, then
a1 = 0. By induction, we get f(x) = 0. Hence R[[x;σ]] is reduced. Using the same ideas of [14,
Proposition 3], we have that R is σ-rigid and using similar ideas of [14, Corollary 4], we obtain
that R satisfies SA2′.

Without the assumption that R is σ-compatible, Proposition 2.5 is not true. In fact, let
R = Z2 ⊕ Z2 and σ : R→R, defined by σ((a, b)) = (b, a). By [14, Example 2], R does not satisfy
SA2′ because R does not satisfy SA1′. Observe that (1, 0)(0, 1) = (0, 0) but (1, 0)σ(0, 1)/= (0, 0)
and so R is not σ-compatible. We have the following natural questions.
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Questions

(i) Let σ be an endomorphism of R. Suppose that R satisfies SA2′. Is Rσ-compatible like
right R-module?

(ii) Let σ be an endomorphism of R. Suppose that R is σ-compatible like right R-module.
Does R satisfy SA2′?

The question (i) is false. Let R0 be any domain and R = R0[x]. Let σ : R→R be defined
by σ(t) = 0 and σ|R0 = idR0 . By [16, Example 4.1], R is not σ-compatible and using the similar
ideas of the proof of [14, Proposition 10], we have that R satisfies SA2′ and consequently R
satisfies SA1′.

The question (ii) is false. Let R = K[x, y]/(x2, y2), where K is a field of characteristic 2,
and consider T = M2(R). In this case, take σ = idT . By [18, Example 3.6], S does not satisfy
SA2′ because T does not satisfy SA1′. Moreover, T is σ-compatible like right T -module.

In [19] the authors introduced the following version of skew Armendariz rings.

(i) Suppose that σ is an endomorphism of R. Let f(x) =
∑n

i=0aix
i, g(x) =

∑m
j=0bjx

j ∈
R[x;σ] such that f(x)g(x) = 0 implies aibj = 0 for all 0 ≤ i ≤ n and 0 ≤ j ≤ m.

(ii) Suppose that σ is an endomorphism of R. Let f(x) =
∑

i≥0aix
i, g(x) =

∑
j≥0bjx

j ∈
R[[x;σ]] such that f(x)g(x) = 0 implies aibj = 0 for all i ≥ 0 and j ≥ 0.

Note that the item (i) above in [20, Definition 1.1] the authors called it by σ-Armendariz,
the item (ii) above is similar with [20, Definition 1.1] and we call it here by σ-power
Armendariz.

In the next proposition, we give a relationship between the definition above and the skew
versions of Armendariz rings used in this paper. Using [21, Lemma 2.1] and [20, Theorem 1.8],
the proof of next proposition is easy to verify.

Proposition 2.6. Let σ be an endomorphism of R and suppose that R is σ-compatible like right R-
module. Then

(i) R satisfies SA1′ if and only if R is σ-Armendariz;
(ii) R satisfies SA2′ if and only if R is σ-power Armendariz.

The proposition above without the compatibility assumption is not true according to [20,
Example 1.9] and the authors in [22, Theorem 2.2] obtained an approach of the result above
without the compatibility assumption.

The following proposition is a generalization of [18, Proposition 3.4] and partially
generalizes [15, Proposition 2.6].

Lemma 2.7. Let S be any of the rings R[x;σ] and R[[x;σ]]. The following conditions are equivalent:
(i) R satisfies SA2′ (SA1′);
(ii) φ : rAnnR(2

R)→rAnnS(2
S) defined by φ(J) = JS is bijective;

(iii) Ψ : lAnnR(2
R)→lAnnS(2

S) defined by Ψ(J) = SJ is bijective.

Proof. We only prove the proposition in the case of SA2′ because the equivalence of (i) and (ii)
when R satisfies SA1′ was proved in [23, Proposition 3.2]. The equivalence between (i) and
(iii) when R satisfies SA1′ has similar proof.

(i)→(ii). It is only necessary to show that φ is surjective. For an element f(x) =
∑∞

i=0aix
i ∈

R[[x;σ]], define Cf(x) = {σ−i(ai), i ≥ 0}, and for a subset T of R[[x;σ]], we denote the set
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∪f(x)∈TCf(x) by CT . We show that rR[[x;σ]](f(x)) = rR[[x;σ]](Cf(x)). In fact, given g(x) =
∑∞

j=0bjx
j

in rR[[x;σ]](f(x)), we have f(x)g(x) = 0. Since R satisfies SA2′, then aiσ
i(bj) = 0 for all i ≥ 0 and

j ≥ 0. In particular, σ−i(ai)bj = 0 for all i ≥ 0 and j ≥ 0. Hence g(x) ∈ rR[[x;σ]](Cf(x)).
On the other hand, let h(x) =

∑∞
k=0ckx

k be an element in R[[x;σ]] such that Cf(x)h(x) =
0. It is clear that aiσ

i(ck) = 0 for all i ≥ 0 and k ≥ 0. So f(x)h(x) = (0). Since R satisfies SA2′

then rR[[x;σ]](T) = rR[[x;σ]](∪f(x)∈TCf(x)). Thus

rR[[x;σ]](T) =
⋂

f(x)∈T
rR[[x;σ]]

(
f(x)

)
=
⋂

f(x)∈T
rR[[x;σ]]

(
Cf(x)

)

=

(
⋂

f(x)∈T
rR
(
Cf(x)

)
)

R[[x;σ]] = rR
(
CT

)
R[[x;σ]].

(2.2)

Therefore, φ is surjective.
(ii)→(i). Let f(x) =

∑∞
i=0aix

i and g(x) =
∑∞

j=0bjx
j be elements in R[[x;σ]] such that

f(x)g(x) = 0. By assumption, rR[[x,σ]](f(x)) = BR[[x;σ]], for some right ideal B of R. Hence
g(x) ∈ BR[[x;σ]] and we have that bj ∈ B ⊂ rR[[x;σ]](f(x)) for all j ≥ 0. So aiσ

i(bj) = 0 for all
i ≥ 0 and j ≥ 0.

(iii)→(i). Let f(x) =
∑

i≥0aix
i and g(x) =

∑
j≥0bjx

j be elements in R[[x;σ]] such that
f(x)g(x) = 0. By assumption, lR[[x;σ]](g(x)) = R[[x;σ]]B for some left ideal B of R. We
can write f(x) =

∑
i≥0x

iσ−i(ai) ∈ R[[x;σ]]B. By the equality of the polynomials with the
coefficients on the right side, we have that σ−i(ai) ∈ B ⊆ lR[[x;σ]](g(x)) for all i ≥ 0. So
aiσ

i(bj) = 0 for all i ≥ 0 and j ≥ 0.
(i)→(iii). It is only necessary to show thatΨ is surjective. Let f(x) =

∑
i≥0aix

i ∈ R[[x;σ]].
Define Cf(x) = {ai, i ≥ 0}, and for a subset T of R[[x;σ]], we denote the set ∪f(x)∈TCf(x) by CT .
We show that

lR[[x;σ]]
(
f(x)

)
= lR[[x;σ]]

(
Cf(x)

)
. (2.3)

In fact, given g(x) =
∑

j≥0bjx
j ∈ lR[[x;σ]](f(x)), we have g(x)f(x) = 0. Since R satisfies SA2′,

then bjσ
j(ai) = 0 for all i ≥ 0 and j ≥ 0. Hence g(x) =

∑
j≥0x

jσ−j(bj) ∈ lR[[x;σ]](Cf(x)).
On the other hand, let g(x) ∈ R[[x;σ]] such that g(x)Cf(x) = 0. Thus g(x)ai = 0 for all

i ≥ 0. So g(x)
∑

i≥0aix
i = g(x)f(x) = 0, and we have that g(x) ∈ lR[[x;σ]](f(x)).

We easily have that for each subset T of R[[x;σ]],

lR[[x;σ]](T) = lR[[x;σ]]

(
⋃

f(x)∈T
Cf(x)

)

. (2.4)

We claim that lR[[x;σ]](Cf(x)) = R[[x;σ]]lR(Cf(x)). In fact, let g(x) =
∑

j≥0bjx
j such that

g(x)Cf(x) = 0. Then we have that 0 = g(x)ai =
∑

j≥0bjx
jai =

∑
j≥0x

jσ−j(bj)ai. Thus σ−j(bj) ∈
lR(Cf(x)), and it follows that

∑

j≥0
xjσ−j(bj

) ∈ R[[x;σ]]lR
(
Cf(x)

)
. (2.5)

The other inclusion is trivial. So
lR[[x;σ]](T) =

⋂

f(x)∈T
lR[[x;σ]]

(
Cf(x)

)
=
⋂

f(x)∈T
lR[[x;σ]]

(
Cf(x)

)

= R[[x;σ]]

(
⋂

f(x)∈T
lR
(
Cf(x)

)
)

= R[[x;σ]]lR
(
CT

)
.

(2.6)

Therefore, Ψ is surjective.



6 International Journal of Mathematics and Mathematical Sciences

Now we are able to prove the main results of this paper.

Theorem 2.8. Let σ be an automorphism of R.

(i) Suppose that R satisfies SA1′. The following conditions are equivalent:

(a) R is a right (left) zip ring;
(b) R[x;σ] is a right (left) zip ring;
(c) R[x, x−1, σ] is a right (left) zip ring.

(ii) Suppose that R satisfies SA2′. The following conditions are equivalent:

(a) R is right (left) zip ring;
(b) R[[x;σ]] is right (left) zip ring;
(c) R[[x, x−1;σ]] is right (left) zip ring.

Proof. (i) We will show the right case because the left case is similar.
Suppose that R[x;σ] is right zip. Let X be a subset of R such that rR(X) = 0, and f(x) =

∑n
i=0aix

i ∈ R[x;σ] such that Xf(x) = 0. Thus ai ∈ rR(X) = 0 and it follows that f(x) = 0. By
assumption, there existsX1 = {x0, . . . , xn} such that rR[x;σ](X1) = 0. Hence rR(X1) = rR[x;σ](X1)∩
R = (0).

Conversely, let Y ⊆ R[x;σ] such that rR[x;σ](Y ) = 0. By Lemma 2.7, rR[x;σ](Y ) =
rR(T)R[x;σ], where T = CY = ∪f(x)∈YCf(x) such that Cf(x) = {σ−i(ai) : 0 ≤ i ≤ n}
with f(x) =

∑n
i=0aix

i ∈ Y . We have that rR(T) = 0 and, by assumption, there exists T1 =
{σ−i1(ai1), . . . , σ

−in(ain)} such that rR(T1) = 0. For each σ−ij (aij ) ∈ T1, there exists gaij (x) ∈ Y

such that some of the coefficients of gaij (x) are aij for each 1 ≤ j ≤ n. Let Y0 be a minimal
subset of Y such that gaij (x) ∈ Y0 for each 1 ≤ j ≤ n. Then Y0 is nonempty finite subset of Y .
Set T0 = ∪f(x)∈Y0(Cf(x)) and we have that T1 ⊆ T0. Hence rR(T0) ⊆ rR(T1) = 0. By Lemma 2.7,
rR[x;σ](Y0) = rR(T0)R[x;σ] and it follows that rR[x;σ](Y0) = 0.

The proofs of (a)⇔(c) and of item (ii) follow similarly.

Let σ be an endomorphism of R and δ : R→R an additive map of R. The application δ is
said to be a σ-derivation if δ(ab) = δ(a)b + σ(a)δ(b). The Ore extension R[x;σ, δ] is the set of
polynomials

∑n
i=0aix

i with the usual sum, and the multiplication rule is xa = σ(a)x + δ(a).
Following [16], R is said to be (σ, δ)-compatible, where σ is an endomorphism of R and

δ is a σ-derivation of R if ab = 0 ⇔ aσ(b) = 0 and ab = 0 implies that aδ(b) = 0.
In the next result we obtain a necessary and sufficient condition for R[x;σ, δ] to be left

zip, when σ is an endomorphism of R using the skew version of Armendariz rings of [19].

Theorem 2.9. Let σ be an endomorphism of R and δ a σ-derivation of R. Suppose that if f(x)g(x) = 0
for f(x) =

∑n
i=0aix

i and g(x) =
∑m

j=0bjx
j ∈ R[x;σ, δ], then aibj = 0 for all 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Then R is left zip if and only if R[x;σ, δ] is left zip.

Proof. Let X be any subset of R[x;σ, δ] and CX = ∪f(x)∈XCf(x), where Cf(x) = {ai, 0 ≤ i ≤ n}
with f(x) =

∑n
i=0aix

i. Suppose that lR[x;σ,δ](X) = 0. We clearly have lR(CX) = 0. By assumption,
there exists {b0, . . . , bt} ⊆ CX such that lR(Y ) = 0. Let fbi(x) ∈ X be an element of X with
some of its coefficients are equal to bi for all 1 ≤ i ≤ t. Take X0 be a minimal subset of X with
this property. We clearly have that X0 is a finite set. We claim that lR[x;σ,δ](X0) = 0. In fact, we
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easily have lR(CX0) = 0, where CX0 = ∪f(x)∈X0Cf(x) with Cf(x) being defined as before. Next, let
g(x) =

∑m
j=0bjx

j such that g(x)X0 = 0. Hence for any f(x) =
∑n

i=0aix
i ∈ X0, g(x)f(x) = 0, and

we have, by assumption, bjai = 0 for all 0 ≤ j ≤ m and 0 ≤ i ≤ n. Thus bjCX0 = 0 for all 0 ≤ j ≤ m
and it follows that g(x) = 0. So lR[x;σ,δ](X0) = 0.

Using the methods of Theorem 2.8, the converse follows.

Remark 2.10. Let R be a ring and σ an endomorphism of R. Suppose that R is σ-power
Armendariz and left zip. Using similar methods of [20, Theorem 1.8], R satisfies SA2′ and
with similar ideas of Theorem 2.9, we have that R is a left zip ring if and only if R[[x;σ]] is a
left zip ring.

3. Examples

In this section, we present some examples of rings that satisfy SA1′ and SA2′, and they are zip
rings. Moreover, an example of a σ-rigid ring that is a zip ring is given.

Example 3.1. Let F be any field and σ : F→F any automorphism of F. Following [14, page 113],
we consider the ring T(F, F) with automorphism σ(a, b) = (σ(a), σ(b)) and we denote it by σ.
Note that

T(F, F) =

{(
a b
0 a

)

: a, b ∈ F

}

. (3.1)

By [14, Proposition 15], T(F, F) satisfies SA1′, and using similar methods, we can prove that
T(F, F) satisfies SA2′. We claim that T(F, F) is a zip ring. In fact, the unique one-sided ideals of
T(F, F) are

{(
0 0
0 0

)}
,

I =

{(
0 b
0 0

)

: b ∈ F

}

, (3.2)

and T(F, F). Note that rT(F,F)(I)/= {0} and lT(F,F)(I)/= 0. So we easily have that T(F, F) is a zip
ring.

Example 3.2. Let F be any field and σ a monomorphism of F, and let

R =

⎧
⎨

⎩

⎛

⎝
a b c
0 a d
0 0 a

⎞

⎠ : a, b, c ∈ F

⎫
⎬

⎭
(3.3)

with usual addition and multiplication of matrix. Note that the monomorphism σ is naturally
extended to R, and R has the following one-sided ideals:

I1 =

⎧
⎨

⎩

⎛

⎝
0 0 0
0 0 a
0 0 0

⎞

⎠ : a ∈ F

⎫
⎬

⎭
, I2 =

⎧
⎨

⎩

⎛

⎝
0 0 c
0 0 0
0 0 0

⎞

⎠ : c ∈ F

⎫
⎬

⎭
, (3.4)

R and the zero ideal. We easily have rR(I2)/= 0, lR(I2)/= 0, rR(I1)/= 0, and lR(I1)/= 0. Now we
clearly have that R is a zip ring and by [14, Proposition 17], R satisfies SA1′, and with similar
methods of [14, Proposition 17], we can prove that R satisfies SA2′.
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Example 3.3. Let D be any domain with identity, R = D[x], σ an endomorphism of R defined
by σ(f(x)) = f(0). Since R is a domain, then R is right and left zip. Moreover, using similar
methods of [14, Example 5], we have that R satisfies SA1′ and SA2′.

Example 3.4. Let D and D1 be any domains, σ an monomorphism of D, and τ an
monomorphism of D1. Set R = D ×D1 with usual addition and multiplication, and we define
an endomorphism γ of R by γ(a, b) = (σ(a), τ(b)). We easily have that γ is a monomorphism
of R. Since D is σ-rigid and D1 is τ-rigid, we easily obtain that R is γ-rigid. We claim that R is
left and right zip. In fact, let I be any left ideal of R. It is well known that I = A × B, where A
is a left ideal of D and B is a left ideal of D1. Suppose that rR(I) = 0. Then A/= 0 and B /= 0. It
is not difficult to show that rD(A) = 0 and rD1(B) = 0. Since D and D1 are left zip, then there
exists a left finitely generated ideal L ofD contained inA such that rD(L) = 0 and a left finitely
generated ideal L1 ofD1 contained in B such that rD1(L1) = 0. Thus rR(L×L1) = 0 and L×L1 is a
left finitely generated ideal of R contained inA×B. Hence R is left zip. Using similar methods,
we have that R is right zip.

Example 3.5. Let F be a field, σ an automorphism of F,

R =

⎧
⎨

⎩

⎛

⎝
a b c
0 a d
0 0 a

⎞

⎠ : a, b, c ∈ F

⎫
⎬

⎭
, (3.5)

and D a domain with automorphism τ . Set T = R × D and we define an endomorphism γ of
T by γ(a, b) = (σ(a), τ(t)). It is clear that γ is an automorphism of T and it is not difficult to
show that T satisfies SA1′ and SA2’ because R and D satisfy SA1′ by [14, Proposition 17] and
[14, Proposition 10], respectively, and using similar methods of [14, Proposition 17] and [14,
Proposition 10], R and D satisfy SA2′, respectively.

Using similar methods of Example 3.4, we have that T is right and left zip and note that
T is not γ-rigid, since T is not a reduced ring.
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