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1. Introduction

Let Ω be an open subset of R
n, n ≥ 3. Assign in Ω the uniformly elliptic second-order linear

differential operator

L = −
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a, (1.1)

with coefficients aij = aji ∈ L∞(Ω), i, j = 1, . . . , n, and consider the associate Dirichlet problem:

u ∈W2,p(Ω) ∩ ◦
W

1,p
(Ω),

Lu = f, f ∈ Lp(Ω),
(1.2)

where p ∈]1,+∞[.
It is well known that if Ω is a bounded and sufficiently regular set, the above problem

has been widely investigated by several authors under various hypotheses of discontinuity
on the leading coefficients, in the case p = 2 or p sufficiently close to 2. In particular, some
W2,p-bounds for the solutions of the problem (1.2) and related existence and uniqueness
results have been obtained. Among the other results on this subject, we quote here those
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proved in [1], where the author assumed that aij ’s belong to W1,n(Ω) (and considered the
case p = 2) and in [2–4] (where the coefficients belong to some classes wider thanW1,n(Ω)).
More recently, a relevant contribution has been given in [5–8], where the coefficients aij are
assumed to be in the class VMO and p ∈]1,+∞[; observe here that VMO contains the space
W1,n(Ω).

If the set Ω is unbounded and regular enough, under assumptions similar to those
required in [1], problem (1.2) has for instance been studied in [9–11] with p = 2, and in [12]
with p ∈]1,+∞[. Instead, in [13, 14] the leading coefficients satisfy restrictions similar to those
in [5, 6].

In this paper, we extend some results of [13, 14] to a weighted case. More precisely, we
denote by ρ a weight function belonging to a suitable class such that

inf
Ω
ρ > 0, lim

|x|→+∞
ρ(x) = +∞, (1.3)

and consider the Dirichlet problem:

u ∈W2,p
s (Ω) ∩ ◦

W
1,p

s (Ω),

Lu = f, f ∈ Lps(Ω),
(1.4)

where s ∈ R,W2,p
s (Ω),

◦
W

1,p

s (Ω), and Lps(Ω) are some weighted Sobolev spaces and the weight
functions are a suitable power of ρ. We obtain an a priori bound for the solutions of (1.4).
Moreover, we state a regularity result that allows us to deduce a uniqueness theorem for
the problem (1.4). A similar weighted case was studied in [15] with the leading coefficients
satisfying hypotheses of Miranda’s type and when p = 2.

2. Weight functions and weighted spaces

Let G be any Lebesgue measurable subset of R
n and let Σ(G) be the collection of all Lebesgue

measurable subsets of G. If F ∈ Σ(G), denote by |F| the Lebesgue measure of F, by χF the
characteristic function of F, by F(x, r) the intersection F ∩ B(x, r) (x ∈ R

n, r ∈ R+)—where
B(x, r) is the open ball of radius r centered at x—and by D(F) the class of restrictions to F of
functions ζ ∈ C∞

◦ (Rn) with F ∩ supp ζ ⊆ F. Moreover, if X(F) is a space of functions defined
on F, we denote by Xloc(F) the class of all functions g : F → R, such that ζg ∈ X(F) for any
ζ ∈ D(F).

We introduce a class of weight functions defined on an open subset Ω of R
n. Denote

byA(Ω) the set of all measurable functions ρ : Ω → R+, such that

γ−1ρ(y) ≤ ρ(x) ≤ γρ(y) ∀y ∈ Ω, ∀x ∈ Ω
(
y, ρ(y)

)
, (2.1)

where γ ∈ R+ is independent of x and y. Examples of functions inA(Ω) are the function

x ∈ R
n −→ 1 + a|x|, a ∈]0, 1[, (2.2)

and, if Ω/=R
n and S is a nonempty subset of ∂Ω, the function

x ∈ Ω −→ adist (x, S), a ∈]0, 1[. (2.3)
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For ρ ∈ A(Ω), we put

Sρ =
{
z ∈ ∂Ω : lim

x→z
ρ(x) = 0

}
. (2.4)

It is known that

ρ ∈ L∞
loc(Ω), ρ−1 ∈ L∞

loc(Ω \ Sρ) (2.5)

(see [16, 17]).
We assign an unbounded open subset Ω of R

n.
Let ρ1 be a function, such that ρ1 ∈ A(Rn) and

inf
Ω
ρ1 > 0, lim

|x|→+∞
ρ1(x) = +∞. (2.6)

We put

ρ = ρ1|Ω. (2.7)

For any a ∈]0, 1] and x ∈ R
n, we set

Ia(x) = Ω
(
x, aρ1(x)

)
. (2.8)

If k ∈ N0, 1 ≤ p < +∞, s ∈ R, and ρ ∈ A(Ω), consider the spaceWk,p
s (Ω) of distributions

u on Ω, such that ρs∂αu ∈ Lp(Ω) for |α| ≤ k, equipped with the norm

‖u‖
W

k,p
s (Ω) =

∑

|α|≤k

∥∥ρs∂αu
∥∥
Lp(Ω). (2.9)

Moreover, denote by
◦
W

k,p

s (Ω) the closure of C∞
◦ (Ω) inWk,p

s (Ω) and putW0,p
s (Ω) = L

p
s(Ω). A

more detailed account of properties of the above defined spaces can be found, for instance, in
[18].

From [15, Lemmas 1.1 and 2.1], we deduce the following two lemmas, respectively.

Lemma 2.1. For any p ∈ [1,+∞[, s ∈ R, and a ∈]0, 1], g ∈ L
p
s(Ω) if and only if g ∈ L

p

loc(Ω) and

the function x ∈ R
n → ρ

s−n/p
1 (x)||g||Lp(Ia(x)) belongs to Lp(Rn). Moreover, there exist c1, c2 ∈ R+,

such that

c1‖g‖pLps (Ω)
≤
∫

Rn

ρ
sp−n
1 (x)‖g‖p

Lp(Ia(x))
dx ≤ c2‖g‖pLps (Ω)

∀g ∈ Lps(Ω), (2.10)

where c1 and c2 depend on n, p, s, a, and ρ.

Lemma 2.2. If Ω has the segment property, then for any k ∈ N0, p ∈ [1,+∞[, and s ∈ R one has

W
k,p
s (Ω) ∩ ◦

W
k,p

loc (Ω) =
◦
W

k,p

s (Ω). (2.11)
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3. Some embedding lemmas

We now recall the definitions of the function spaces in which the coefficients of the operator
will be chosen. If Ω has the property

∣∣Ω(x, r)
∣∣ ≥ Arn ∀x ∈ Ω, ∀r ∈]0, 1], (3.1)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Ω, τ) (τ ∈ R+) of functions g ∈ L1

loc(Ω) such that

[g]BMO (Ω,τ) = sup
x∈Ω
r∈]0,τ]

—
∫

Ω(x,r)

∣∣∣∣g −—
∫

Ω(x,r)
g

∣∣∣∣ < +∞, (3.2)

where

—
∫

Ω(x,r)
g =
∣∣Ω(x, r)

∣∣−1
∫

Ω(x,r)
g. (3.3)

If g ∈ BMO(Ω) = BMO(Ω, τA), where

τA = sup

⎧
⎪⎪⎨

⎪⎪⎩
τ ∈ R+ : sup

x∈Ω
r∈]0,τ]

rn∣∣Ω(x, r)
∣∣ ≤

1
A

⎫
⎪⎪⎬

⎪⎪⎭
, (3.4)

we will say that g ∈ VMO(Ω) if [g]BMO(Ω,τ) → 0 for τ → 0+. A function η[g] : ]0, 1] → R+ is
called a modulus of continuity of g in VMO(Ω) if

[g]BMO (Ω,τ) ≤ η[g](τ) ∀τ ∈]0, 1], lim
τ→0+

η[g](τ) = 0. (3.5)

For t ∈ [1,+∞[ and λ ∈ [0, n[, we denote byMt,λ(Ω) the set of all functions g in Ltloc(Ω) such
that

‖g‖Mt,λ(Ω) = sup
r∈]0,1]
x∈Ω

r−λ/t‖g‖Lt(Ω(x,r)) < +∞, (3.6)

endowed with the norm defined by (3.6). Then, we defineMt,λ
◦ (Ω) as the closure of C∞

◦ (Ω) in
Mt,λ(Ω). In particular, we putMt(Ω) =Mt,0(Ω), andMt

◦(Ω) =Mt,0
◦ (Ω). In order to define the

modulus of continuity of a function g inMt,λ
◦ (Ω), recall first that for a function g ∈ Mt,λ(Ω)

the following characterization holds:

g ∈Mt,λ
◦ (Ω) ⇐⇒ lim

τ→0+

(
pg(τ) + ‖(1 − ζ1/τ

)
g‖Mt,λ(Ω)

)
= 0, (3.7)

where

pg(τ) = sup
E∈Σ(Ω)

supx∈Ω|E(x,1)|≤τ

∥∥χEg
∥∥
Mt,λ(Ω), τ ∈ R+, (3.8)
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and ζr , r ∈ R+, is a function in C∞
◦ (Rn) such that

0 ≤ ζr ≤ 1, ζr|Br = 1, supp ζr ⊂ B2r , (3.9)

with the position Br = B(0, r). Thus, the modulus of continuity of g ∈Mt,λ
◦ (Ω) is a function

σ◦[g] : ]0, 1] −→ R+, (3.10)

such that

pg(τ) +
∥∥(1 − ζ1/τ

)
g
∥∥
Mt,λ(Ω) ≤ σ◦[g](τ) ∀τ ∈]0, 1], lim

τ→0+
σ◦[g](τ) = 0. (3.11)

A more detailed account of properties of the above defined function spaces can be found in
[9, 19, 20].

We consider the following condition:

(h0) Ω has the cone property, p ∈]1,+∞[, s ∈ R, k, h, t are numbers such that

k ∈ N, h ∈ {0, 1, . . . , k − 1}, t ≥ p, t > p if p =
n

k − h, g ∈Mt(Ω). (3.12)

From [21, Theorem 3.1] we have the following.

Lemma 3.1. If the assumption (h0) holds, then for any u ∈Wk,p
s (Ω) one has g∂hu ∈ Lps(Ω) and

∥∥g∂hu
∥∥
L
p
s (Ω) ≤ c‖g‖Mt(Ω)‖u‖Wk,p

s (Ω), (3.13)

with c dependent only on Ω, n, k, h, p, and t.

From [21, Theorem 3.2] it follows Lemma 3.2.

Lemma 3.2. If the assumption (h0) is satisfied and in addition g ∈Mt
◦(Ω), then for any ε ∈ R+ there

exist a constant c(ε) ∈ R+ and a bounded open set Ωε ⊂⊂ Ω, with the cone property, such that

∥∥g∂hu
∥∥
L
p
s (Ω) ≤ ε‖u‖Wk,p

s (Ω) + c(ε)‖u‖Lp(Ωε) ∀u ∈Wk,p
s (Ω), (3.14)

where c(ε), Ωε depend on ε, Ω, n, k, h, p, t, ρ, s, and σ◦[g].

4. An a priori bound

Assume that Ω is an unbounded open subset of R
n, n ≥ 3, with the uniform C1,1-regularity

property, and let ρ be the function defined by (2.7). Moreover, let p ∈]1,+∞[ and s ∈ R.
Consider in Ω the differential operator:

L = −
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a, (4.1)
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with the following conditions on the coefficients:

(h1)

aij = aji ∈ L∞(Ω) ∩ VMOloc(Ω), i, j = 1, . . . , n,

∃ν > 0 :
n∑

i,j=1

aijξiξj ≥ ν|ξ|2 a.e. in Ω, ∀ξ ∈ R
n,

(4.2)

there exist functions eij , i, j = 1, . . . , n, g and μ ∈ R+ such that

(h2)

eij = eji ∈ L∞(Ω),
(
eij
)
xh

∈Mt,n−t
0 (Ω), with t ∈]2, n], i, j, h = 1, . . . , n,

n∑

i,j=1

eijξiξj ≥ μ|ξ|2 a.e. in Ω, ∀ξ ∈ R
n,

g ∈ L∞(Ω), g0 = ess inf
Ω

g > 0,

lim
r→+∞

n∑

i,j=1

∥∥eij − gaij
∥∥
L∞(Ω\Br) = 0,

(4.3)

(h3)

ai ∈Mt1◦ (Ω), i = 1, . . . , n,

a = a′ + a′′, a′ ∈Mt2◦ (Ω), a′′ ∈ L∞(Ω), ess inf
Ω

a′′ = a′′0 > 0,
(4.4)

where

t1 ≥ n if p < n, t1 > n if p = n, t1 = p if p > n,

t2 ≥ n/2 if p < n/2, t2 > n/2 if p = n/2, t2 = p if p > n/2.
(4.5)

Observe that under the assumptions (h1)–(h3), it follows that the operator L :
W

2,p
s (Ω) → L

p
s(Ω) is bounded from Lemma 3.1.

Theorem 4.1. If the hypotheses (h1), (h2), and (h3) are verified, then there exist a constant c ∈ R+

and a bounded open subset Ω0 ⊂⊂ Ω, with the cone property, such that

‖u‖
W

2,p
s (Ω) ≤ c

(
‖Lu‖Lps (Ω) + ‖u‖Lp(Ω0)

)
, ∀u ∈W2,p

s (Ω) ∩ ◦
W

1,p

s (Ω), (4.6)

with c and Ω0 depending on n, p, ρ, s, Ω, ν, μ, g0, a′′0, t, t1, t2, ‖aij‖L∞(Ω), ‖eij‖L∞(Ω), ‖g‖L∞(Ω),
‖a′′‖L∞(Ω), η[ζ2r0aij], σ◦[(eij)x], σ◦[ai], σ◦[a

′], where r0 ∈ R+ depends on n, p, Ω, μ, g0, a′′0, t,
‖eij‖L∞(Ω), ‖g‖L∞(Ω), ‖a′′‖L∞(Ω), σ◦[(eij)x].

Proof. We consider a function φ ∈ C∞
◦ (Rn), such that

φ|B1/2 = 1, suppφ ⊂ B1,

sup
Rn

∣∣∂αφ
∣∣ ≤ cα ∀α ∈ N

n
0 ,

(4.7)
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where cα ∈ R+ depends only on α, fix y ∈ R
n and put

ψ = ψy : x ∈ R
n −→ φ

(
x − y
ρ1(y)

)
. (4.8)

Clearly we have

ψ|B(y,(1/2)ρ1(y)) = 1, suppψ ⊂ B(y, ρ1(y)
)
,

sup
Rn

∣∣∂αψ
∣∣ ≤ cαρ−|α|1 (y) ∀α ∈ N

n
0 .

(4.9)

Now, we put

L0 = −
n∑

i,j=1

aij
∂2

∂xi∂xj
(4.10)

and fix u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω). Since ψu ∈ W2,p(Ω) ∩ ◦
W

1,p
(Ω), from [14, Theorem 3.3], it

follows that there exist c1 ∈ R+ and a bounded open subset Ω1 ⊂⊂ Ω, with the cone property,
such that

‖ψu‖W2,p(Ω) ≤ c1
(∥∥(L0 + a′′

)
(ψu)

∥∥
Lp(Ω) + ‖ψu‖Lp(Ω1)

)
, (4.11)

with c1 and Ω1 depending on n, p, Ω, ν, μ, g0, a′′0, t, ‖aij‖L∞(Ω), ‖eij‖L∞(Ω), ‖g‖L∞(Ω), ‖a′′‖L∞(Ω),
η[ζ2r0aij], σ◦[(eij)x], where r0 ∈ R+ depends on n, p, Ω, μ, g0, a′′0, t, ‖eij‖L∞(Ω), ‖g‖L∞(Ω),
‖a′′‖L∞(Ω), σ◦[(eij)x]. Since

L0(ψu) = ψL0u − 2
n∑

i,j=1

aijψxiuxj −
n∑

i,j=1

aijψxixj u, (4.12)

from (4.11) and (4.12), we have

‖ψu‖W2,p(Ω)

≤ c2
(
‖ψ(L0 + a′′

)
u‖Lp(Ω) +

n∑

i,j=1

∥∥ψxiuxj
∥∥
Lp(Ω)

+
n∑

i,j=1

∥∥ψxixj u
∥∥
Lp(Ω)

+ ‖ψu‖Lp(Ω1)

)
,

(4.13)

with c2 dependent on the same parameters of c1.
On the other hand, since ρ ∈ L∞

loc(Ω), we have that

‖ψu‖Lp(Ω1) ≤ c3ρ−21 (y)‖u‖Lp(I1(y)), (4.14)

where c3 ∈ R+ depends only on ρ.
Therefore, by (4.13) and (4.14), we deduce the bound:

‖u‖W2,p(I1/2(y)) ≤ ‖ψu‖W2,p(Ω)

≤ c4
(∥∥L0u + a′′u

∥∥
Lp(I1(y))

+ ρ−11 (y)‖ux‖Lp(I1(y)) + ρ−21 (y)‖u‖Lp(I1(y)
)
,

(4.15)

where c4 ∈ R+ depends on the same parameters of c2 and on ρ.



8 International Journal of Mathematics and Mathematical Sciences

From (4.15) it follows

∫

Rn

ρ
ps−n
1 (y)‖u‖p

W2,p(I1/2(y))
dy

≤ c5
(∫

Rn

ρ
ps−n
1 (y)

∥∥L0u + a′′u
∥∥p
Lp(I1(y))

dy

+
∫

Rn

ρ
ps−n−p
1 (y)

∥∥ux
∥∥p
Lp(I1(y))

dy +
∫

Rn

ρ
ps−n−2p
1 (y)‖u‖p

Lp(I1(y))
dy

)
,

(4.16)

where c5 ∈ R+ depends on the same parameters of c4.
Since

L
p
s(Ω) ↪→ L

p

s−1(Ω), L
p
s(Ω) ↪→ L

p

s−2(Ω), (4.17)

from (4.16) and from Lemma 2.1 we have that

‖u‖
W

2,p
s (Ω) ≤ c6

(∥∥L0u + a′′u
∥∥
L
p
s (Ω) +

∥∥ux
∥∥
L
p

s−1(Ω) + ‖u‖Lps−2(Ω)
)
, (4.18)

with c6 ∈ R+ dependent on the same parameters of c5 and also on s.
Moreover, from Lemma 3.2 it follows that for any ε ∈ R+, there exist c′(ε), c′′(ε) ∈ R+,

and two bounded open sets Ω′
ε, Ω

′′
ε ⊂⊂ Ω, both with the cone property, such that

∥∥ux
∥∥
L
p

s−1(Ω) + ‖u‖Lps−2(Ω) ≤ ε‖u‖W2,p
s (Ω) + c

′(ε)‖u‖Lp(Ω′
ε),

∥∥∥∥
n∑

i=1

aiuxi + a
′u
∥∥∥∥
L
p
s (Ω)

≤ ε‖u‖
W

2,p
s (Ω) + c

′′(ε)‖u‖Lp(Ω′′
ε),

(4.19)

where c′(ε),Ω′
ε depend on ε,Ω, n, p, ρ, s, and c′′(ε),Ω′′

ε depend on ε,Ω, n, p, t1, t2, ρ, s, σ◦[ai],
and σ◦[a′].

From (4.18) and (4.19) it follows (4.6) and then we have the result.

5. A uniqueness result

In this section, we will prove our uniqueness theorem. We begin to prove a regularity result.

Lemma 5.1. Suppose that the assumptions (h1), (h2), and (h3) (with t1 > n and t2 > n/2) hold, and
let u be a solution of the problem

u ∈W2,q
loc (Ω) ∩ ◦

W
1,q

loc (Ω) ∩ Lpm(Ω),

Lu ∈ Lps(Ω),
(5.1)

where q ∈]1, p] andm ∈ R. Then, u belongs toW2,p
s (Ω).
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Proof. By [13, Lemma 4.1] we have

u ∈W2,p
loc

(
Ω
) ∩ ◦

W
1,p

loc
(
Ω
)
. (5.2)

We choose r, r ′ ∈ R+, with r < r ′ < 1, and a function φ ∈ C∞
◦ (Rn), such that

φ|Br = 1, suppφ ⊂ Br ′ ,
sup
Rn

∣∣∂αφ
∣∣ ≤ cα

(
r ′ − r)−|α| ∀α ∈ N

n
0 ,

(5.3)

where cα ∈ R+ depends only on α.
We fix y ∈ R

n and put

ψ = ψy : x ∈ R
n −→ φ

(
x − y
ρ1(y)

)
. (5.4)

Clearly we have

ψ|B(y,rρ1(y)) = 1, suppψ ⊂ B(y, r ′ρ1(y)
)
,

sup
Rn

∣∣∂αψ
∣∣ ≤ cαρ−|α|1 (y)

(
r ′ − r)−|α| ∀α ∈ N

n
0 .

(5.5)

Since ψu ∈W2,p(Ω)∩ ◦
W

1,p
(Ω), from [14, Theorem 3.3] it follows that there exist c1 ∈ R+

and a bounded open subset Ω1 ⊂⊂ Ω, with the cone property, such that

‖ψu‖W2,p(Ω) ≤ c1
(∥∥L(ψu)

∥∥
Lp(Ω) + ‖ψu‖Lp(Ω1)

)
, (5.6)

with c1 and Ω1 depending on n, p, Ω, ν, μ, g0, a′′0, t, t1, t2, ‖aij‖L∞(Ω), ‖eij‖L∞(Ω), ‖g‖L∞(Ω),
‖a′′‖L∞(Ω), η[ζ2r0aij], σ◦[(eij)x], σ◦[ai], σ◦[a

′], where r0 ∈ R+ depends on n, p, Ω, μ, g0, a′′0, t,
‖eij‖L∞(Ω), ‖g‖L∞(Ω), ‖a′′‖L∞(Ω), σ◦[(eij)x].

Since

L(ψu) = −
n∑

i,j=1

aij(ψu)xixj +
n∑

i=1

ai(ψu)xi + aψu

= ψLu − 2
n∑

i,j=1

aij
(
ψxiu

)
xj
+

n∑

i,j=1

aijψxixj u +
n∑

i=1

aiψxiu,

(5.7)

from (5.6) and (5.7), we have

‖ψu‖W2,p(Ω)

≤ c2
(
‖ψLu‖Lp(Ω) +

n∑

i,j=1

∥∥(ψxiu
)
xj

∥∥
Lp(Ω)

+
n∑

i,j=1

∥∥ψxixj u
∥∥
Lp(Ω)

+
n∑

i=1

∥∥aiψxiu
∥∥
Lp(Ω) + ‖ψu‖Lp(Ω1)

)
,

(5.8)

with c2 dependent on the same parameters of c1.
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From Lemma 3.1 with s = 0, we have that

∥∥aiψxiu
∥∥
Lp(Ω) ≤ c3

∥∥ai
∥∥
Mt1 (Ω)

(∥∥ψxiu
∥∥
Lp(Ω) +

∥∥(ψxiu
)
x

∥∥
Lp(Ω)

)
, (5.9)

with c3 dependent on Ω, n, p, and t1.
Using [22, Corollary 4.5], we can obtain the following interpolation estimate:

∥∥ψxiu
∥∥
Lp(Ω) +

∥∥(ψxiu)xj
∥∥
Lp(Ω)

≤ c4
(∥∥(ψxiu

)
xx

∥∥1/2
Lp(Ω)

∥∥ψxiu
∥∥1/2
Lp(Ω) +

∥∥ψxiu
∥∥
Lp(Ω)

)
, (5.10)

where the constant c4 depends on Ω, n, p.
Thus, by (5.8)–(5.10), with easy computations, we deduce the bound:

‖u‖W2,p(Ir(y)) ≤ ‖ψu‖W2,p(Ω) ≤ c5
(
r ′ − r)−2

× (‖Lu‖Lp(Ir′ (y)) + ‖u‖1/2
W2,p(Ir′ (y))

(
ρ−11 (y)‖u‖Lp(Ir′ (y))

)1/2
+ ρ−11 (y)‖u‖Lp(Ir′ (y))

)
,

(5.11)

where c5 ∈ R+ depends on n, p, ρ, Ω, ν, μ, g0, a′′0, t, t1, t2, ‖aij‖L∞(Ω), ‖eij‖L∞(Ω), ‖g‖L∞(Ω),
‖a′′‖L∞(Ω), η[ζ2r0aij], σ◦[(eij)x], ‖ai‖Mt1 (Ω), σ◦[ai], σ◦[a′].

By a well-known lemma of monotonicity of Miranda (see [23, Lemma 3.1]), it follows
from (5.11) that

‖u‖W2,p(I1/2(y)) ≤ c6
(‖Lu‖Lp(I1(y)) + ρ−11 (y)‖u‖Lp(I1(y)) +

(
ρ−11 (y)‖u‖Lp(I1(y))

)1/2‖u‖1/2
W2,p(I1/2(y))

)
,

(5.12)

and then, using Young’s inequality, we deduce from (5.12) that

‖u‖W2,p(I1/2(y)) ≤ c7
(‖Lu‖Lp(I1(y)) + ρ−11 (y)‖u‖Lp(I1(y))

)
, (5.13)

with c6, c7 ∈ R+ dependent on the same parameters of c5.
From (5.13) it follows

∫

Rn

ρ
ps−n
1 (y)‖u‖p

W2,p(I1/2(y))
dy

≤ c8
(∫

Rn

ρ
ps−n
1 (y)‖Lu‖p

Lp(I1(y))
dy +

∫

Rn

ρ
ps−n−p
1 (y)‖u‖p

Lp(I1(y))
dy

)
,

(5.14)

where c8 ∈ R+ depends on the same parameters of c7.
Ifm ≥ s − 1, since

L
p
m(Ω) ↪→ L

p

s−1(Ω), (5.15)

from (5.14) and from Lemma 2.1 we have that

‖u‖
W

2,p
s (Ω) ≤ c9

(‖Lu‖Lps (Ω) + ‖u‖Lps−1(Ω)
)
, (5.16)

with c9 ∈ R+ dependent on the same parameters of c8 and on s. Therefore, u belongs to
W

2,p
s (Ω).
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Ifm < s − 1, we denote by k the positive integer, such that

s −m − 1 ≤ k < s −m. (5.17)

Then, for i = 1, . . . , k, we have that

L
p
s(Ω) ↪→ L

p

m+i(Ω). (5.18)

Therefore, using (5.14) and (5.16) with m + i, i = 1, . . . , k, instead of s, we deduce that u ∈
W

2,p
m+1(Ω), . . . , u ∈W2,p

m+k(Ω). On the other hand, we have that

W
2,p
m+k(Ω) ↪→ L

p

s−1(Ω) (5.19)

and then, since u ∈ Lps−1(Ω), (5.14) holds. Thus, u satisfies (5.16) and then u ∈W2,p
s (Ω).

Theorem 5.2. If conditions (h1), (h2), and (h3) (with t1 > n and t2 > n/2) hold, and a ≥ a0 > 0 a.e.
in Ω, then the problem

u ∈W2,p
s (Ω) ∩ ◦

W
1,p

s (Ω), Lu = 0, (5.20)

admits only the zero solution.

Proof. Fix u ∈ W
2,p
s (Ω) ∩ ◦

W
1,p

s (Ω), such that Lu = 0. From Lemma 5.1 it follows that u ∈
W2,p(Ω). On the other hand, since u ∈ W1,p(Ω) ∩ ◦

W
1,p

loc(Ω), from Lemma 2.2 we have that

u ∈ ◦
W

1,p
(Ω). Thus, from [13, Theorem 5.2] we deduce that u = 0.
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