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1. Introduction

A possible notion of superspace associated to a given 3-dimensional Lie algebra g0 might be a
Lie superalgebra g = g0 ⊕ g1. If one is to introduce a minimal set of assumptions, it seems quite
natural to consider those superalgebras for which g1 = g0 and for which the g0 action on g1 is the
adjoint representation. A complete classification of the real and complex (3, 3)-dimensional Lie
superalgebras having precisely this restriction was recently obtained in [1]. The classification
was given in terms of the dimension of the derived ideal g′0 = [g0, g0]. The most trivial case
was that corresponding to dim g′0 = 3 whereas the most difficult case was that of dim g′0 = 0.
Our aim in this paper is to explicitly produce the real and complex Lie supergroups associated
to the Lie superalgebras classified in [1] having a 2-dimensional derived ideal. This is just one
step forward in our understanding of the real and complex (3, 3)-dimensional Lie supergroups.

In order to maintain our exposition as self-contained as possible, we will summarize the
basic statements from [1]. Once we fix the adjoint representation, it is well known (see [1, 2])
that there are as many Lie superalgebras as bilinear symmetric maps Γ : g0×g0 → g0 satisfying

Γ
(
[x, y], z

)
+ Γ
(
y, [x, z]

)
=
[
x,Γ(y, z)

]
. (1.1)
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Table 1: Full set of representatives of the isomorphism classes of the 3-dimensional Lie algebras g0 that
have 2-dimensional derived ideal. The classes were obtained from the canonical form of the 2× 2 invertible
matrix A. In the first two cases, the field F can be either R or C.

g0 A Constraints

p
(
F
) (

1 1
0 1

)
—

qλ
(
F
) (

1 0
0 λ

)
0 < |λ| ≤ 1

q1λ
(
R
) (

λ −1
1 λ

)
λ ∈ R

Furthermore, the isomorphism class of the Lie superalgebra defined by such a given Γ is
completely determined by its orbit under the action of the group G ⊂ Aut(g0)×GL(g0) of pairs
(T, S) satisfying S ◦ T−1 ◦ ad(·) = ad(·) ◦ S ◦ T−1 given by

Γ −→ (T, S)·Γ = T
(
Γ
(
S−1(·), S−1(·))). (1.2)

Now, let F be either the real or the complex number field, and let g0 be a fixed 3-
dimensional Lie algebra over F. Let {e1, e2, e3} be a basis for g0, and let Symad(g0) be the real or
complex vector space of symmetric, bilinear maps Γ : g0 × g0 → g0 satisfying (1.1). Thus, we
can identify the space Symad(g0) with the set of triples (Γ1,Γ2,Γ3) of symmetric bilinear forms,
for which Γ(u, v) =

∑ 3
i=1Γ

i(u, v)ei satisfies (1.1).
Let g′0 = [g0, g0] be the derived ideal of g0. Lie algebras having dim g′0 = 2 can be classified

by choosing e1 /∈ g′0 and bringing ad(e1) into a convenient canonical form (see [3, 4] or [5] for
details). Thus,

[e1, e2] = ae2 + ce3,

[e1, e3] = be2 + de3, so that ad
(
e1
)∣∣

g′0
←→ A =

(
a b
c d

)

,

[e2, e3] = 0,

(1.3)

and, since dim g′0 = 2, thenAmust be an invertible matrix. Now, the classification up to isomor-
phism of the Lie algebras g0 having dim g′0 = 2 can be written as in Table 1, where we followed
the notation introduced in [1].

It is easy to see that the matrices of ad(ei) take the forms

ad
(
e1
)
=

(
0 0
0 A

)

, ad
(
e2
)
= −
(

0 0
Aδ1 0

)

, ad
(
e3
)
= −
(

0 0
Aδ2 0

)

, (1.4)

where δ1 = ( 1
0 ) and δ2 = ( 0

1 ). It is well known that the associated Lie groups for the Lie
algebras we are dealing with here are the so-called unimodular groups E(2) and E(1, 1) for
q1(F) and q−1(F), respectively, and for the other Lie algebras, the associated Lie groups are
called nonunimodular (see [6]). We shall denote by G0(A) any of those Lie groups.

It was proved in [1] that when A is invertible, any triple (Γ1,Γ2,Γ3), for which Γ(u, v) =∑ 3
i=1Γ

i(u, v)ei satisfies (1.1), is given, up to isomorphism, by

Γ1 = p

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , Γ2 =
p

2

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , Γ3 =
p

2

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , (1.5)
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where p is an arbitrary element of the ground field F for the three classes p(F), qλ(F), and q1
λ
(R),

with no relation between the parameters p and λ.
What we do in this paper is to describe explicitly all the Lie supergroups whose un-

derlying 3-dimensional Lie group is G0(A) and having as Lie superalgebras of left-invariant
supervector fields the Lie superalgebras given by the triple (Γ1,Γ2,Γ3) above. The method is
the one given in [7] and is essentially the one used in Lie’s classical theory, that is, we give first
a faithful representation of the Lie superalgebra into the Lie superalgebra of vector fields of
some supermanifold, and obtain the local coordinate version of the supergroup multiplication
law through composition of their integral flows depending on the integration parameters (see
[7]).

In more detail, we aim to describe the multiplication law in terms of tetrads (s, v;σ, θ),
where (s, v) ∈ F × F

2 are the local coordinates on the 3-dimensional Lie group G0(A), and σ
and θ are the odd coordinates on the supergroup (G0(A),Λ(E)), where Λ(E) stands for the sheaf
of sections of the exterior algebra bundle associated to the rank-3 vector bundle E → G0(A),
whose typical fiber g0 can be decomposed as S ⊕ g′0, with S 
 g0/g′0. Thus, σ is a local section
of G0(A) × S → G0(A), and θ is a local section of G0(A) × g′0 → G0(A). Then, the product
(s′, v′;σ ′, θ′)∗(s, v;σ, θ) is given by (see Theorem 3.1)

(
s′ + s − p

2
σ ′σ, v + e(−s+(p/2)σ

′σ)Av′ +
p

2
σe−sAθ′;σ ′ + σ, θ + e(−s+(p/2)σ

′σ)Aθ′ + σ ′Av

)
. (1.6)

The point of giving such an explicit expression is to actually see the way odd coordi-
nates are combined, within the supergroup composition law, to produce even sections. It was
this interaction between even and odd coordinates what apparently had some physical and
geometrical ideas that were worth studying but there are only a few explicit examples in the
literature; some of them are incomplete, and some are relatively trivial.

Once we obtain the multiplication law for the different Lie supergroups, we give in
Proposition 3.2 the supermorphisms that define the Lie supergroups within the spirit of [7, 8].
Finally, in Proposition 3.3 we compute the left-invariant supervector fields associated to the Lie
supergroups we have built, bringing us back to the Lie superalgebras we started with.

2. Lie superalgebra representations

Let us write

A1 =

(
0 0
0 A

)

, A2 =

(
0 0
δ1 0

)

, A3 =

(
0 0
δ2 0

)

, (2.1)

where δ1 and δ2 are defined as above. Let Br and Cr be 3 × 3 matrices (r = 1, 2, 3).

Proposition 2.1. Let g = g0 ⊕ g1 be a (3, 3)-dimensional Lie superalgebra, where g1 = g0, g0 acts on
g1 via the adjoint representation, and dim g′0 = 2. Let {e1, e2, e3} and {f1, f2, f3} be bases for g0 and
g1, respectively. Let V = V0 ⊕ V1 be a (3, 3)-dimensional supervector space and let ρ : g → gl(V ) be a
linear map such that

ρ
(
ei
)
=

(
Ai 0
0 Ai

)

, ρ
(
fi
)
=

(
0 Bi

Ci 0

)

. (2.2)



4 International Journal of Mathematics and Mathematical Sciences

Then, the choices

Bi =
p

2
Ai, Ci = KAi, (2.3)

where K =
( 0 0
0 A−1

)
, turn ρ : g → gl(V ) into a faithful representation of the Lie superalgebra g.

Proof. Let us write

Br =

(
βr uT

r

vr Br

)

, Cr =

(
εr xT

r

yr Cr

)

, (2.4)

where βr, εr ∈ F, ur, vr, xr, yr ∈ F
2 and Br and Cr are 2 × 2 matrices.

From the definition of ρ(ei), it is straightforward to check that {ρ(ei)} defines a Lie alge-
bra isomorphic to that described in (1.3).

In order to have g0 acting on g1 via the adjoint representation, we must have

[
ρ
(
ei
)
, ρ
(
fj
)]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aρ
(
f2
)
+ cρ

(
f3
)
, i = 1, j = 2,

bρ
(
f2
)
+ dρ

(
f3
)
, i = 1, j = 3,

−aρ(f2
) − cρ(f3

)
, i = 2, j = 1,

−bρ(f2
) − dρ(f3

)
, i = 3, j = 1,

(2.5)

but [ ρ(ei), ρ(fj)] =
(

0 AiBj−BjAi

AiCj−CjAi 0

)
, so we obtain

B1 =

(
β1 0

0 B1

)

, B2 =

(
0 0
v2 0

)

, B3 =

(
0 0
v3 0

)

,

C1 =

(
ε1 0
0 C1

)

, C2 =

(
0 0
y2 0

)

, C3 =

(
0 0
y3 0

)

,

(2.6)

whereand 1 is the 2 × 2 identity matrix. Now, we have to satisfy the condition [ρ(fi), ρ(fj)] =∑
kΓ

k
ijρ(ek), but [ ρ(fi), ρ(fj)] =

(
BiCj+BjCi 0

0 CiBj+CjBi

)
. Then,

β1ε1 = 0, 2B1C1 = pA = 2C1B1,

v2ε1 + B1y2 =
p

2
δ1 = y2β1 + C1v2, v3ε1 + B1y3 =

p

2
δ2 = y3β1 + C1v3.

(2.7)
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With no loss of generality, we can choose ε1 = 0 and y2 = A−1δ1, y3 = A−1δ2, so that
C1 = 1 and B1 = (p/2)A. Finally, by choosing v2 = (p/2)δ1 − β1y2 and v3 = (p/2)δ2 − β1y3

we find that all equations are satisfied. Actually, we can always choose β1 = 0, obtaining the
expressions given in the statement.

The choices we have made in the proof of Proposition 2.1 produce easier exponential
matrices (see Theorem 3.1 below). Since the representation ρ is to be faithful, different choices
made in the proof would have produced Lie superalgebras isomorphic to g inside gl(V ). There-
fore, the corresponding supergroups obtained via the constructivemethod used in Theorem 3.1
would have been isomorphic at the end. This is so because Lie’s theory looks for faithfully re-
alizing g in terms of vector fields whose integral flows will eventually define the supergroup
multiplication law via composition of (local) diffeomorphisms.

3. Lie supergroups for which A is invertible

Once we have the different Lie superalgebras represented in gl(V ) for some (3,3)-
dimensional supervector space V , we proceed to find a supermanifold that actually carries
a Lie supergroup structure following essentially the same steps followed in the classical theory
of Lie. In fact, we can always obtain explicitly a Lie group structure for G0(A) from its Lie al-
gebra g0, where Lie(G0(A)) = g0. So, let us write (s, v) as the local coordinates described in the
introduction.

Theorem 3.1. Let g = g0 ⊕ g1 be a Lie superalgebra satisfying g1 = g0, g0 acting on g1 via the adjoint
representation, and having 2-dimensional derived ideal g′0 = [g0, g0]. The Lie supergroups whose un-
derlying Lie superalgebras are g have the following multiplication law for the products of (s′, v′;σ ′, θ′)
and (s, v;σ, θ):

(
s′ + s − p

2
σ ′σ, v + e(−s+(p/2)σ

′σ)Av′ +
p

2
σe−sAθ′;σ ′ + σ, θ + e(−s+(p/2)σ

′σ)Aθ′ + σ ′Av

)
. (3.1)

Proof. According to [7, 8] we only have to compute the exponential of the matrices ρ(ei) and
ρ(fj) given in Proposition 2.1, and the supergroup composition law will be obtained from first
principles using the ODE theory in supermanifolds and following Lie’s original techniques as
described before (see [7]). If we denote by (t1, t2, t3; τ1, τ2, τ3) the composition

Exp
(
t1ρ
(
e1
))◦Exp(t2ρ

(
e2
))◦Exp(t3ρ

(
e3
))◦Exp(τ1ρ

(
f1
))◦Exp(τ2ρ

(
f2
))◦Exp(τ3ρ

(
f3
))
,

(3.2)

we notice that (t1, t2, t3; τ1, τ2, τ3) =
(

P Q
−R P

)
, where

In order to find themultiplication law, we have to findwhen the following identity holds:

(
t′′1, t

′′
2, t
′′
3; τ

′′
1, τ

′′
2, τ

′′
3
)
=
(
t′1, t

′
2, t
′
3; τ

′
1, τ

′
2, τ

′
3
)·(t1, t2, t3; τ1, τ2, τ3

)
, (3.3)
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that is, we have to solve

(
P ′′ Q′′

−R′′ P ′′

)

=

(
P ′ Q′

−R′ P ′

)(
P Q
−R P

)

=

(
P ′P −Q′R P ′Q +Q′P
−(R′P + P ′R) P ′P − R′Q

)

. (3.4)

From P ′′ = P ′P −Q′R, we obtain

et
′′
1A = e(t

′
1+t1)A

(
1 − p

2
τ ′1τ1A

)
= e(t

′
1+t1−(p/2)τ ′1τ1)A,

et
′′
1A

((
t′′2
t′′3

)

− p

2
τ ′′1

(
τ ′′2
τ ′′3

))

= et
′
1A

((
t′2
t′3

)

− p

2
τ ′1

(
τ ′2
τ ′3

))

+ e(t
′
1+t1)A

((
t2
t3

)

− p

2
τ1

(
τ2
τ3

)

− p

2
τ ′1

(
τ2
τ3

))

;

(3.5)

and from R′′ = R′P + P ′R, we obtain

τ ′′1e
t′′1A = (τ ′1 + τ1)e(t

′
1+t1)A,

et
′′
1AA−1

(
τ ′′2
τ ′′3

)

= et
′
1AA−1

(
τ ′2
τ ′3

)

+ e(t
′
1+t1)A·A−1

(
τ2
τ3

)

+ τ ′1e
(t′1+t1)A

((
t2
t3

)

− p

2
τ1

(
τ2
τ3

))

.

(3.6)

Now, it is straightforward to prove that

t′′1 = t1 + t′1 −
p

2
τ ′1τ1,

(
t′′2
t′′3

)

=

(
t2
t3

)

+ +e(−t1+(p/2)τ
′
1τ1)A

(
t′2
t′3

)

+
p

2
τ1e

−t1A
(
τ ′2
τ ′3

)

,

τ ′′1 = τ1 + τ ′1,

(
t′′2
t′′3

)

=

(
τ2
τ3

)

+ e(−t1+(p/2)τ
′
1τ1)A

(
τ ′2
τ ′3

)

+ τ ′1A

(
t2
t3

)

,

(3.7)

and defining s = t1, v =
( t2
t3

)
, σ = τ1, and θ =

( t2
t3

)
, we find the multiplication law given in the

statement.
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From (3.7), we can write the multiplication law in terms of morphisms as in [7, 8].

Proposition 3.2. Let G(p,A) be the (3, 3)-dimensional supermanifold whose underlying Lie group is
G0(A) and let {x1, x2, x3; ξ1, ξ2, ξ3} be local coordinates. For i = 1, 2, let πi : G(p,A) × G(p,A) →
G(p,A) be the direct product projections. Then G(p,A) is a Lie supergroup endowed with the morphism
m : G(p,A) × G(p,A) → G(p,A) defined by

m∗(x1) = π∗2(x1) + π∗1(x1) −
p

2
π∗1(ξ1)π

∗
2(ξ1),

(
m∗(x2)
m∗(x3)

)

=

(
π∗2(x2)
π∗2(x3)

)

+ e(−π
∗
2(x1)+(p/2)π∗1(ξ1)π

∗
2(ξ1))A

(
π∗1(x2)
π∗1(x3)

)

+
p

2
π∗2(ξ1)e

(−π∗2(x1)A

(
π∗1(ξ2)
π∗1(ξ3)

)

,

m∗(ξ1) = π∗2(ξ1) + π∗1(ξ1),

(
m∗(ξ2)
m∗(ξ3)

)

=

(
π∗2(ξ2)
π∗2(ξ3)

)

+ e(−π
∗
2(x1)+(p/2)π∗1(ξ1)π

∗
2(ξ1))A

(
π∗1(ξ2)
π∗1(ξ3)

)

+π∗1(ξ1)A

(
π∗2(x2)
π∗2(x3)

)

;

(3.8)

the morphism ε : G(p,A) → G(p,A) defined by ε∗(xi) = ε∗(ξi) = 0, and the morphism i : G(p,A) →
G(p,A) defined by

i∗(x1) = −x1,

(
i∗(x2)
m∗(x3)

)

= −ex1A

⎛

⎜
⎝

x2 −
p

2
ξ1ξ2

x3 −
p

2
ξ1ξ3

⎞

⎟
⎠ ,

i∗(ξ1) = −ξ1,

(
i∗(ξ2)
m∗(ξ3)

)

= −ex1A

(
ξ2
ξ3

)

+ ξ1Aex1A

(
x2

x3

)

.

(3.9)

Proof. It is straightforward to check that

(π1, m ◦ (π∗2, π∗3))∗ ◦m∗ = (m ◦ (π∗1, π∗2), π∗3)∗ ◦m∗,

(ε, id)∗ ◦m∗ = id∗ = (id, ε)∗ ◦m∗,

(i, id)∗ ◦m∗ = ε∗ = (id, i)∗ ◦m∗,

(3.10)

which are the associative law, the identity element, and inverse element properties,hold.



8 International Journal of Mathematics and Mathematical Sciences

Proposition 3.3. Assuming the hypotheses of Proposition 3.2, the left-invariant supervector fields can
be written as X = λ1X1 + λ2X2 + λ3X3 + μ1Y1 + μ2Y2 + μ3Y3, where

X1 =
∂

∂x1
− (ax2 + bx3)

∂

∂x2
− (cx2 + dx3)

∂

∂x3
− (aξ2 + bξ3)

∂

∂ξ2
− (cξ2 + dξ3)

∂

∂ξ3
,

X2 =
∂

∂x2
+ aξ1

∂

∂ξ2
+ cξ1

∂

∂ξ3
,

X3 =
∂

∂x3
+ bξ1

∂

∂ξ2
+ dξ1

∂

∂ξ3
,

Y1 =
∂

∂ξ1
+
p

2

[
(aξ2 + bξ3)ξ1

∂

∂ξ2
+ (cξ2 + dξ3)ξ1

∂

∂ξ3

]

+
p

2

[
ξ1

∂

∂x1
+ (ξ2 − (ax2 + bx3)ξ1)

∂

∂x2
+ (ξ3 − (cx2 + dx3)ξ1)

∂

∂x3

]
,

Y2 =
∂

∂ξ2
,

Y3 =
∂

∂ξ3
,

(3.11)

and λi, μj ∈ F. Furthermore, the Lie superalgebra defined by the left-invariant supervector fields
{X1, X2, X3, Y1, Y2, Y3} is isomorphic to the Lie superalgebra given by (1.3) and (1.5).

Proof. Any supervector field can be written as X =
∑

fi(∂/∂xi) + gi(∂/∂ξi) and X is a left-
invariant supervector field if the supervector field

X̂ =
∑

π∗2(fi)
∂

∂π∗2(xi)
+ π∗2(gi)

∂

∂π∗2(ξi)
(3.12)

satisfies

ε(2) ◦ X̂ ◦ (p1, m)∗ = ε2 ◦ (p1, m)∗ ◦ X̂, (3.13)

where ε(2) : G(p,A) → G(p,A)×G(p,A) is given by ε(2)
∗ ◦p∗1 = id∗ and ε(2)

∗ ◦p∗2 = ε∗, as in [7]. By
Proposition 3.2 we have the explicit multiplicationmorphismsm∗ and ε∗ and applying the local
coordinates {π∗1(xi), π∗2(xi), π∗1(ξi), π

∗
2(ξi)} on both sides of (3.13) we found the restrictions for

fi’s and gi’s and they are written as in the statement.
Finally, in order to prove that {X1, X2, X3, Y1, Y2, Y3} defines the Lie superalgebra given in

the beginning, we just have to compute the Lie superbrackets given for the supervector fields,
namely, [X,Z] = X ◦ Z − (−1)|X||Z|Z ◦ X to check that it is precisely the same Lie superalgebra
defined by (1.3) and (1.5). By defining the correspondence

ei �→ Xi, fj �→ Yj, (3.14)

we conclude that they are isomorphic.
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