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Let K be a nonempty closed convex subset of a reflexive and strictly convex Banach space E
with a uniformly Gateaux differentiable norm, F = {T(h) : h > 0} a generalized asymptotically
nonexpansive self-mapping semigroup of K, and f : K — K a fixed contractive mapping with
contractive coefficient p € (0,1). We prove that the following implicit and modified implicit
viscosity iterative schemes {x,} defined by x, = a, f(x,) + (1 — a)T(t,)x,, and x, = a,y, + (1 -
an)T(t)xXn, Yn = Puf (xn-1) + (1= Pn)x,-1 strongly converge top € F asn — oo and p is the unique
solution to the following variational inequality: (f(p) —p,j(y —p)) <Oforally € F.

Copyright © 2008 Yali Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let C be a closed convex subset of a Hilbert space H and T a nonexpansive mapping from
C into itself. We denote by F(T) the set of fixed points of T. Let F(T) be nonempty and u an
element of C. For each t with 0 <t < 1, let x; € C be the unique fixed point of the contraction
x — tu+ (1 —t)Tx. Browder [1] showed that {x;} defined by x; = tu + (1 — t)Tx; converges
strongly to the element of F(T') which is nearest to u in F(T) as t — 0.

In 2004, for a contraction f : C — C and a nonexpansive mapping T : C — C, Xu [2]
proposed the following viscosity approximation method in Banach space:

xp=tf(x)+(1-t)Tx;, te€(0,1), t—0, (1.1)

and Song and Xu [3] studied the convergence of the following implicit viscosity iterative
scheme:

Xy = “nf(xn) + (1= an)T(ty)xn, (1.2)

where {a,} € (0,1).
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On the other hand, for a fixed Lipschitz strongly pseudocontractive mapping f and
a continuous pseudocontractive mapping T, Song and Chen [4] proposed the following
motivated implicit viscosity iterative scheme:

Xn = XplYn + (1 - an)Txn/

Yn = ﬂnf(xn—l) + (1 - ,Bn)xn—l-

(1.3)

In this paper, we will still study the implicit viscosity iterative scheme (1.2) and
propose the following iterative scheme:

Xn = AnlYn + (1 — )T (t,)xn,
Yn = ﬁnf(xn—l) + (1 - ﬁn)xn—l/

(1.4)

where {T(h) : h > 0} is a generalized asymptotically nonexpansive self-mappings semigroup
and f a fixed contractive mapping with contractive coefficient g € (0,1).

2. Preliminaries

Throughout this paper, we assume that E is a Banach space and K a nonempty closed convex
subset of E. Let E* be a dual space of E, ] : E — 2F" the normalized duality mapping defined
by

Jx) =A{f € E*, (%, f) = Ixll- AN Nl = 1£11, (2.1)

where (-, -) denotes the generalized duality pairing.

Definition 2.1 (see [5]). A mapping T : E — E is said to be total asymptotically nonexpansive
if there exist nonnegative real sequences {kfll)} and {k,(f) }, n >0, with k,(il) and k,(f) — 0 as
n — oo, and strictly increasing and continuous functions ¢ : R* — R* with ¢(0) = 0 such that

IT"x =Ty < llx = yll + Ky p(lx - yll) + ki ¥ x,y € K. (2.2)

Remark 2.2. If (1) = A, the total asymptotically nonexpansive mapping coincides with
generalized asymptotically nonexpansive mapping. In addition, for all n € N, if kP =
0, then generalized asymptotically nonexpansive mapping coincide with asymptotically
nonexpansive mapping; if kﬁll) =0, k,(qz) = max{0,p,}, where p, := supx/yeK(HTnx - Tyl —|lx-
y|l), then generalized asymptotically nonexpansive mapping coincide with asymptotically
nonexpansive mapping in the intermediate sense; if k" = 0and k& = 0, then we obtain from
(2.2) the class of nonexpansive mapping.

Remark 2.3. In [5], for the total asymptotically nonexpansive mapping, the authors assume
that there exist M, M* > 0 such that ¢(1) < M*A for all A > M, so for My = max{¢p(M), M*},
¢(L) < Mo(1+ 1) for all A > 0O, then the total asymptotically nonexpansive mapping studied
by [5] coincides with generalized asymptotically nonexpansive mapping.
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A (one-parameter) generalized asymptotically nonexpansive semigroup is a family
¥ ={T(h) : h > 0} of self-mapping of K such that

(i) T(0)x = x for x € K;

(ii) T(s+t)x =T(s)T(t)x fort, s >0and x € K;
(iii) lim;oT(t)x = x for x € K;
)

(iv) for each h > 0, T(h) is generalized asymptotically nonexpansive, that is,
IT(h)x = T(hyyll < (1+k)llx -yl + k> ¥ x,y € K. (2.3)

We will denote by F the common fixed point set of ¥, that is,

F:=Fix(F)={xeK:T(h)x=x, h>0} = ﬂ Fix(T (h)). (2.4)
h>0

Definition 2.4. A Banach space E is said to be strictly convex if ||x +y||/2 < 1 for ||x|| = |ly|| =1
and x#y.

Definition 2.5. Let U = {x € E : ||x|| = 1}, the norm of E is said to be uniformly Gateaux
differentiable, if for each y € U, lim;_o((||x + ty|| — [|x||) /) exists uniformly for x € U.

Definition 2.6. Let u be a continuous liner functional on [* and let (ag, a;, . ..) € [*°. One writes
Un(ay) instead of p((ap, ai,...)). One calls u a Banach limit when y satisfies ||pu|| = pn(1) =1
and p,(ans1) = pn(ay) for each (ag, ai,...) € 1.

For a Banach limit y, one knows that lim . _a, < p,(a,) < lim,,_..,a, for every a =
(ag,aq,...) €1*.Soif a = (ap,ay,...) €1®, b= (by,by,...) €1* and a, — b, — 0 as n — oo, one
has py(an) = pn(bn).

Definition 2.7. Let K be a nonempty closed convex subset of a Banach space E, ¥ =
{T(h) : h > 0} a continuous operator semigroup on K. Then ¥ is said to be uniformly
asymptotically regular (in short, u.a.r.) on K if for all h > 0 and any bounded subset C of
K, limy . sup [T (h)(T(t)x) = T(t)x|| = 0.

Lemma 2.8 (see [6]). Let E be a Banach space with a uniformly Gateaux differentiable norm, then the
normalized duality mapping | : E — 2F" defined by (2.1) is single-valued and uniformly continuous
from the norm topology of E to the weak* topology of E* on each bounded subset of E.

The single-valued normalized duality mapping is denoted by j.

Lemma 2.9. Let E be a reflexive and strictly convex Banach space with a uniformly Gateaux
differentiable norm, K a nonempty closed convex subset of E. Suppose that {x,} is a bounded sequence
in K, {T(h) : h > 0} a continuous generalized asymptotically nonexpansive semigroup from K into
itself such that limy,_||x, — T (h)x,|| = 0 for all h > 0. Define the set

. 2 . 2
K ={x€K:yn||xn—x|| :ryrglglﬂn”xn—y” } (2.5)

If F# @, then K* N F #@.
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Proof. Set g(y) = pnllxn — y||%, then g(y) is a convex and continuous function, and g(y) — oo
as |ly|| — oo. Using [7, Theorem 1.3.11], there exists x € K such that g(x) = inf,cxg(y) by
the reflexivity of E, that is, K* is nonempty. Clearly, K* is closed convex by the convexity and
continuity of g(y).

Since lim,,_,o ||, — T (h)x,]| =0, limhﬂook}(;) =0 (i=1,2),and g(y) is continuous for all
z € K*, we have

g(limT(h)z) = limg(T(h)2)
= lim g [y = T(h)z|*
< lim iy [T (h)xy = T () 2] (26)
< Jim e (14 k)l = 211 + K,

= ﬂn”xn - 2”2-

Hence limy,_, T (h)z € K*.
Let p € F. Since K* is closed convex set, there exists a unique v € K* such that

llp = vll = minflp - x| (2.7)
Since p = limp—o, T (h)p and lim;,_..., T (h)v € K*,
|~ fimr o] = [[imTonp  fimTane]

= lim [T(h)p - T(h)||

(2.8)
< lim (1+K,")llp - o] + K,
= [lp -l
Therefore, limy,_,.. T (h)v = v. Since T(s + t)x = T(s)T (t)x for all x € K, then we have
v = tlimT(t)U = tlimT(s +tv = tlimT(s)T(t)U = T(s)tlimT(t)v =T(s)v (2.9)
for all s > 0. Therefore v € F and the proof is complete. O

Lemma 2.10 (see [8]). Let K be a nonempty convex subset of a Banach space E with a uniformly
Gateaux differentiable norm, and {x,} a bounded sequence of E. If zy € K, then

pnllacn = zol* = min o 12, - yII? (2.10)
yeK
if and only if
Hn(y — 20, J (xn —20)) <0 Vy €K (2.11)

Lemma 2.11 (see [9]). Let {a,} be a sequence of nonnegative real numbers satisfying the following
conditions:

an1 <(1-Ay)ay,+b,+c, Yn>ny, (2.12)

where ny is some nonnegative integer, A, € [0,1] with 3771\, = oo, limsup,,_,_ (b,/X,) <0, and
>iCn < oo. Then a, — 0as n — co.
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3. Implicit iteration scheme

Theorem 3.1. Let E be a real reflexive and strictly convex Banach space with a uniformly Gateaux
differentiable norm, K a nonempty closed convex subset of E, ¥ = {T(h) : h > 0} a u.a.r generalized
asymptotically nonexpansive semigroup from K into itself with sequences {k,i1> } {k}?) },h >0, such
that F#@, and f : K — K a fixed contractive mapping with contractive coefficient p € (0,1). If
{xn} is given by (1.2), where limy,_t, = o0, a, € (0,1), lim,_,,at, = 0 and limnaoo(kt(:;)/an) =
0 (i =1,2), then {x,} converges strongly to some common fixed point p of F such that p is the unique
solution in F to variational inequality:

(fp)-p,jly-p)) <0 VyeF (3.1)

Proof. For any fixed y € F,

s = Y12 = (o (f () = 9) + (1= @) (T(E) X~ ), jXn = )
=an(f(xn) = f(y), j(xn—y)) +anl{f(y) -y, j(xn —y))
(1= @) (T(t)xn = T(E0) Y, j(Xn — )
< aPllxn — Y12 + anl f(y) = Y, j (xa — 1)) (3.2)
+ (1= an) =yl [(1+ k)Y ln = yll + K]
= (1= au(1= ) + (1= a)k)an = yI? + au( F () = v, (xa — )
+ (1= a)k? | = yll-

Letdy = (k\" /ay) (i =1,2).Since lim,_.o. (k" /a,) = 0 for all € € (0,1~ ), there exists N € N

such that kt(:)/an <e<l-p<1-p)/(1-ay) foralln> N.
Furthermore,

W) -y iGn-y) (- a)dy |z -yl

3.3
1-p-(1-a)dy  1-p-(1-a,)d (33)

12 =yl <
foralln > N. Thatis, ||x, — || < (If () -yl + (1 —a,)d?) /(1= - (1 - a,)d) foralln > N.
Thus {x,} is bounded, so are {T(t,)x,} and { f (x,)}. This imply that
lim ”xn - T(tn)xn” = hman”T(tn)xn - f(xn)” =0. (34)
Since {T'(h)} is u.a.r and lim,,_..f,, = oo, then for all h > 0,

lim ||T(h)T (tn)x, — T (t) x| < lim sup||T (h)T (t,)x — T (t,) x| =0, (3.5)
n—oo n—oo xeC

where C is any bounded subset of K containing {x,}. Since {T'(h)} is continuous, hence

”xn - T(h)xn” < ”xn - T(tn)xn” + ”T(tn)xn - T(h)(T(tn)xn)”

(3.6)
+ |IT(h) (T (tn)xn) = T(h)xu|| — O.
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That is, for all h > 0, limy, . ||x, — T(h)x,|| = 0. We claim that the set {x,} is sequentially
compact. Indeed, define the set

K* = {x € K ol = x| = min o~y (3.7)
By Lemma 2.9, we can found p € K* N F. Using Lemma 2.10, we get that

pnly —p, j(xn—p)) <0 Yy eK. (3.8)
It follows from (3.3) that

FP)=piGau=p)) A= a)dx—pl
1-p-(-a)dd " 1-p-(1-a)dd

pnllxn = pI* < pin — 0. (3.9)

Then we have py,||x, - p|| = 0.

Hence, there exists a subsequence {x,, } of {x,} which strongly converges top € F as
k — oo.

Next we show that p is a solution in F to the variational inequality (3.1). In fact, for
any fixed y € F, there exists a constant Q > 0 such that ||x, — y|| < Q, then

1260 = YlI* = (an(f (xn) = y) + (1 = @) (T(tn)Xn = y), j (X0 = y))
= an(f(xn) = f(P) +P =%, j(xn —y)) + an(f(P) =P, j(xn = Y))
+ (X =Y, j(xn —y)) + (1= an)(T(tn)xn = T(tn)y, j(xn — y)) (3.10)
< an(B+ Dllxn = pIQ +an(f(p) =p, j(xn = y)) + 2w — yl>
+(1-an)k"Q* + (1 - a)kPQ.
Therefore,
() =P iy = x)) < (B+Dlacn = plQ + (1 - an)dy @ + (1 - an)dy Q. (3.11)

Taking limit as nx — oo in two sides of (3.11), by Lemma 2.8 and {x,,} — p as k — oo, we
obtain

(fp)-p.jly-p)) <0 VyeF (3.12)

That is, p € F is a solution of variational inequality (3.1).
Suppose that p, q € F satisfy (3.1), we have

(f(p-p,ilg-p)) <0, (3.13)
(f@-4q,jlp-9) <0. (3.14)

Combining (3.13) and (3.14), it follows that
(1=Plp-al* <(p-a) - f(p) + f(a),j(p-9)) <O. (3.15)

Hence p = g, that is, p € F is the unique solution of variational inequality (3.1), so each
cluster point of sequence {x,} is equal to p. Therefore, {x,} converges to p and the proof is
complete. O
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Remark 3.2. Let E, K, F, f, {a,}, and {t,} be as in Theorem 3.1, ¥ = {T'(h) : h > 0} au.ar
nonexpansive semigroup from K into itself, then our result coincides with Theorem 3.2 in [3].
4. Modified implicit iteration scheme

Theorem 4.1. Let E be a real reflexive and strictly convex Banach space with a uniformly Gateaux
differentiable norm, K a nonempty closed convex subset of E, ¥ = {T(h) : h > 0} a u.a.r generalized
asymptotically nonexpansive semigroup from K into itself with sequences {k;(ll) } {k;lz) }, h >0, such
that F#@, and f : K — K a fixed contractive mapping with contractive coefficient p € (0,1). If
{xn} is given by (1.4), where lim,_t, = oo, ay, B € (0,1], lim,oaxy, = 0, >y P = o0, and
> (kt(nl) /ay) <o, X2y (kt(f) /ay) < oo, then {x,} converges strongly to some common fixed point
p of F such that p is the unique solution in F to variational inequality (3.1).

Proof. For any fixed y € F,
15¢n =yl = llan(yn — y) + (1 = an) (T (t2) X0 — )|
< (A= a)lIT(tn)xn — yll + anllyn -yl (4.1)
< (- an) [(1+ k) xn - yll + k2] + aullyn - yll-
Letdy = (k\"/a,) (i =1,2). Hence,

(-a)d?  lyn -yl
1-(1-a)d) 1-(1-a,)dy

dy)  Pullf Conr) ~yll+ (1= Bo)llxns -

lln =yl <

T 1-dy 1-dy
@) — — -
< A Blf) SO Bl =yl eyl
(1) 1) 1) (1)
1-d, 1-d, 1-d, 1-d,
(L= Pu( =P (s —yll+ ) Pulf @)~ yll + i)
B 1-d) 1-dy
@)
B @ If @) -yll+dx
< o o -yl s, RS

By induction, we get that

— N lene =yl + 2 o) 1) -yl +d2y 1f @) - yll+df) |
_1_d7(11) 1_d£zl—)1 " (1_dfll—)1)(1—ﬁ)/ 1-p

1
<
(1-dy)- (1-d}")

Lo @) -yl+d ~yll +dy”
xmax{||x1—y||+2d§2>, fl 1_y[5 L ,...,”f(y)l_yg .
i=1

(4.3)
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Since Zi‘ledﬁ < (i =1,2), we know from Abel-Dini theorem that there exists r > 0 such
that lim, e, (1 - d{”) -+ (1 - d§1>) = r. Thus {x,} is bounded, so are {T'(t,)x,}, {f(x,)} and
{y.}. This imply that

lim ”xn - T(tn)xn” = limlanyn - T(tn)xn” =0. (4-4)
n—oo n—co

Since {T'(h) : h > 0} is u.a.r. and lim,_,,t, = oo forall h > 0,

Um ||T(h)T (tn)xn — T (t,)x,]| < lim sup||T(h)T (t,)x — T(t,)x|| =0, (4.5)
n—oo n—oo xec

where C is any bounded subset of K containing {x,}. Since T (h) is continuous, hence

llc, =T (R)xpll < |lxn = T (tn)xull + T (tn)xn =T (h) (T (t2) x0) || + [IT (R)(T (tn)xn) =T (h)x,|| — O.
(4.6)

That is, forall h >0,

lim [|x, — T(h) x| = 0. (4.7)

From Theorem 3.1, there exists the unique solution p € F to the variational inequality (3.1).
Since p = T(h)p for all h > 0, we have

i1 =PI = @it (Yot = P, j i1 = p)) + (1= a1 (T (Ens1) X1 = P, j (X1 = P))
= ap1 (Pusr f(Xn) + (1 = Pus1)Xn — P, (X1 — p))
+ (1= an )(T(tns1)Xni1 = p, j(Xns1 —p))
< tp1 Pt (f (xn) = f(P), j(Xna1 = P)) + ani1Pun (f(p) — P, j(Xni1 = p))
+ 01 (1 = Bus1) (X — P, j(Xne1 = p))
+ (1= ) s = pI[(1+ Ky s = pll+ K]

12 = pI* + llner — plI?
2

Pl = plI* + s — plI?
2

< pi1fnn +an (1= Pus)

O]

tns1

2

+ (1= ) ma = pIP + (1= e)kE e = pI + (1= @)k s =

+ 01 P (f(p) =P, j(Xp1 — p))

_ Ontl

24
= T”xnﬂ - P“2 + (1 - “n+1)||xn+1 - P”z + n_+1(1 + pzﬁnﬂ - ﬁn+1)||xn - P||2

2

2
+ (1= )k o = pIP + (1 = @)k |01 -

n+l n+1

+ ‘xn+1ﬂn+l<f(p) _p/j(xn+1 —P)>
(4.8)

Therefore
R P||2 <(1-(1- ﬁz)ﬁml)”xn - P”z + 2ﬁn+1 <f(r’) - P/j(xn+1 - P)>

(4.9)
+ 2(1 - lxn+1)(d£ll+)1”xn+1 - P” + d;(12+)1) ||xn+1 - P”
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That is,

2601 =PI < (1= L) 1w = plI* + by + cn,y (4.10)

where A, = (1= 2)us1, b = 2Bn1 (f (D) =P, j(Xns1 = p)) and ¢, = 2(1 = 1) (A, 16011 = pl| +

dﬁfl)ﬂxnﬂ - pl|. Since X721, = oo, Z,‘;"zlds) < oo (i =1,2), ||xn1 — pll is bounded, we have

> i1Cn < 0. So we only need to show that limsup,_,_ (b,/A,) <0, that is,
Lim (f(p) = p, jxn1 = p)) <O. (4.11)

Let z,, = amf(zm) + (1 = am)T (tn)zm, where t,, and a,, satisfy the condition of Theorem 3.1.
Then it follows from Theorem 3.1 that p = lim;,;,—,., Z.
Since

%t = Zml? = (1= @) (T (ban) Zon = Xns1, (2 = Xne1)) + o (Zan) = Xs1, (2 = Xna1))
= (1=2ty) (T () Zua=T () Xoas1, j (Zm=X1) )+ T (b) X1 X1,  (Zm—Xs1)))
+am(f(zZm) = Zm = (f(P) = P), j(Zm = Xu1)) + @ f(P) = P, j(Zm = Xns1))
+ (2~ Xnst, ] (Zn = Xns1))
< otwer = Zml? + (1= ) (k7 Q + k2)Q + (1 = )T (b) st — Xt [Q

+ (D) =P, j(Zm = Xni1)) + A (1 + B) ||z — PIIQ.
(4.12)

Furthermore,

(F(D) =P, (1 — zm)) < tﬂ(kﬁi)Q + kt(i))Q N IT (tm) X1

m am

— Xps1]| Q+ 1 +P)lzm - plQ,
(4.13)

where Q is a constant such that Q > ||z, — x,.1]]- Hence, taking upper limit as n — oo firstly,
and then as m — oo in (4.13), we have

lim Lim ( f(p) = p, j(Xni1 — zm)) <O. (4.14)
On the other hand, since p = lim;,_,,z,, and by Lemma 2.8, we have

(f(p) =P, j(xXni1 = 2m)) — (f(p) = P, j(Xns1 = p)) uniformly. (4.15)

Thus given ¢ > 0, there exists N > 1 such that if m > N for all n we have

(f(P) _p/j(xn+1 - P)) < <f(P) _P/j(xn+1 —-Zm)) +€. (4.16)

Hence, taking upper limit as n — oo firstly, and then as m — oo in two sides of (4.16), we get
that

Lim(f(p) = p, j(xwr = p)) < im Lm (f(p) = p, j(xne1 = zm)) +e<e. (417)

For the arbitrariness of ¢, (4.11) holds. By Lemma 2.11, x,, — p and the proof is complete. [
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