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By a near-ring we mean a right near-ring. Jr0 , the right Jacobson radical of type 0, was introduced
for near-rings by the first and second authors. In this paper properties of the radical Jr0 are studied.
It is shown that Jr0 is a Kurosh-Amitsur radical (KA-radical) in the variety of all near-rings R, in
which the constant part Rc of R is an ideal of R. So unlike the left Jacobson radicals of types 0 and 1
of near-rings, Jr0 is a KA-radical in the class of all zero-symmetric near-rings. Jr0 is not s-hereditary
and hence not an ideal-hereditary radical in the class of all zero-symmetric near-rings.
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1. Introduction

R denotes a right near-ring and all near-rings considered are right near-rings and not necessar-
ily zero-symmetric.

In [1, 2], the first author studied the structure of near-rings in terms of right ideals, and
showed that as in rings, matrix units determined by right ideals identify matrix near-rings.
To show the importance of the right Jacobson radicals of near-rings in the extension of a form
of the Wedderburn-Artin theorem of rings involving the matrix rings to near-rings, the right
Jacobson radicals of type ν were introduced and studied by the first and second authors in
[3–6], ν ∈ {0, 1, 2, s}. In [6], Wedderburn-Artin theorem was extended to near-rings, and some
generalizations of it were presented.

In this paper, properties of the right Jacobson radical of type 0 are studied. It is
known that the left Jacobson radicals of types 0 and 1 are not KA-radicals in the class of all
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zero-symmetric near-rings, and only the left Jacobson radicals of types 2 and 3 are KA-radicals
in the class of all zero-symmetric near-rings. Surprisingly, Jr0 , the right Jacobson radical of type
0, is a KA-radical in the class of all zero-symmetric near-rings. It is also shown that Jr0 is a
KA-radical even in a bigger class of near-rings, namely, in the variety of all near-rings R, in
which the constant part of R is an ideal of R. Moreover, Jr0 is not s-hereditary, and hence not an
ideal-hereditary radical in the class of all zero-symmetric near-rings.

2. Preliminaries

Near-rings considered are right near-rings and not necessarily zero-symmetric. Unless other-
wise specified, R stands for a right near-ring. Near-ring notions not defined here can be found
in [7].

R0 and Rc denote the zero-symmetric part and the constant part of R, respectively.
F denotes the class of near-rings R, in which the constant part Rc of R is an ideal of R.

In [8], Fuchs has shown that the class of near-rings F is a variety. Obviously, F contains all
zero-symmetric, constant, and abstract affine near-rings. Now we give here some definitions
and results of [3], which will be used later.

An element a ∈ R is called right quasiregular if and only if the right ideal of R generated
by the set {x − ax | x ∈ R} is R. A right ideal (left ideal, ideal, subset) K of R is called a right
quasiregular right ideal (left ideal, ideal, subset) of R if each element of K is right quasiregular.

A right idealK ofR is called right modular if there is an element e ∈ R such that x−ex ∈ K
for all x ∈ R. In this case, we say that K is right modular by e.

A maximal right modular right ideal of R is called a right 0-modular right ideal of R.
Jr1/2(R) is the intersection of all right 0-modular right ideals of R, and if R has no right

0-modular right ideals, then Jr1/2(R) = R.
The largest ideal of R contained in Jr1/2(R) is denoted by Jr0(R) and called the right Jacob-

son radical of R of type 0.
The largest ideal contained in a right 0-modular right ideal ofR is called a right 0-primitive

ideal of R. R is called a right 0-primitive near-ring if {0} is a right 0-primitive ideal of R.
A group (G, +) is called a right R-group if there is a mapping ((g, r) → gr) of G × R into

G such that (i) (g + h)r = gr + hr and (ii) g(rs) = (gr)s for all g,h ∈ G and r,s ∈ R. A subgroup
(normal subgroup) H of a right R-group G is called an R-subgroup (ideal) of G if hr ∈ H for all
h ∈ H and r ∈ R.

Let G be a right R-group. An element g ∈ G is called a generator of G if gR = G and
g(r + s) = gr + gs for all r,s ∈ R. G is said to be monogenic if G has a generator.

G is said to be simple if G /= {0}, and G and {0} are the only ideals of G.
A monogenic right R-group G is said to be a right R-group of type 0 if G is simple.
The annihilator of a right R-group G, denoted by (0 : G), is defined as (0 : G) = {a ∈ R |

Ga = {0}}.

Lemma 2.1. The constant part of R is right quasiregular.

Lemma 2.2. A nilpotent element of R is right quasiregular.

Theorem 2.3. Jr1/2(R) is the largest right quasiregular right ideal of R.

Theorem 2.4. Jr0(R) is the largest right quasiregular ideal of R.
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Theorem 2.5. Jr0(R) is the intersection of all right 0-primitive ideals of R.

Theorem 2.6. Let P be an ideal of R. P is a right 0-primitive ideal of R if and only if R/P is a right
0-primitive near-ring.

Proposition 2.7. Let G be a right R-group of type 0 and g0 a generator of G. Then (0 : g0) := {r ∈ R |
g0r = 0} is a right 0-modular right ideal of R.

Proposition 2.8. Let G be a right R-group. G is a right R-group of type 0 if and only if there is a
maximal right modular right idealK of R such that G is R-isomorphic to R/K.

Proposition 2.9. Let P be an ideal of a zero-symmetric near-ring R. P is right 0-primitive if and only
if P is the largest ideal of R contained in (0 : G) for some right R-group G of type 0.

LetQ be amappingwhich assigns to each near-ringR an idealQ(R) ofR. Suchmappings
are called ideal-mappings. We consider the following properties which Q may satisfy:

(H1) h(Q(R)) ⊆ Q(h(R)) for all homomorphisms h of R;
(H2) Q(R/Q(R)) = {0} for all R;
Q is r-hereditary if I ∩Q(R) ⊆ Q(I) for all ideals I of R;
Q is s-hereditary if Q(I) ⊆ I ∩Q(R) for all ideals I of R;
Q is ideal-hereditary if it is both r-hereditary and s-hereditary, that is, if Q(I) = I ∩ Q(R)

for all ideals I of R;
Q is idempotent if Q(Q(R)) = Q(R) for all R;
Q is complete if Q(I) = I and I is an ideal of R that implies I ⊆ Q(R).
With Q we associate two classes of near-rings RQ and SQ defined by RQ := {R | Q(R) =

R}, SQ := {R | Q(R) = {0}}, and are called a Q-radical class and a Q-semisimple class, respec-
tively.

An ideal-mapping Q is a Hoehnke radical (H-radical) if it satisfies conditions (H1) and
(H2).

An ideal-mapping Q is a Kurosh-Amitsur radical (KA-radical) if it is a complete idempo-
tentH-radical.

Let M be a class of near-rings. Classes of near-rings are always assumed to be abstract,
that is, they contain the one element near-ring and are closed under isomorphic copies. With
every near-ring R, we associate two ideals of R, depending on M. These ideals are defined by
the following:

M(R) := Σ{I | I is an ideal of R, I ∈ M},
(R)M := ∩{I | I is an ideal of R, R/I ∈ M}.

(2.1)

The mapping P defined by P(R) := (R)M is always an H-radical and is called the H-radical
corresponding to M.

From Theorems 2.5 and 2.6, we have the following.

Proposition 2.10. Jr0 is anH-radical corresponding to the class of all right 0-primitive near-rings.

3. Properties of the radical Jr0

If (A,+) is a group and T is a subset ofA, then the subgroup (normal subgroup) ofA generated
by T is denoted by 〈T〉s(〈T〉n).
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Remark 3.1. Let G be a right R-group. It is clear thatH = {g ∈ G | gR = {0}} is an ideal of G. So
if G is simple and gR = {0}, then g = 0 provided GR /= {0}.

Theorem 3.2. Let G be a right R-group of type 0. Suppose that S is an invariant subnear-ring and a
right ideal of R. If GS /= {0}, then G is also a right S-group of type 0.

Proof. Suppose that GS /= {0}. Clearly, G is a right S-group. Let g ∈ G and gS := {gs | s ∈
S} ⊆ G. Consider the normal subgroup 〈gS〉n of (G,+). Let r ∈ R, h ∈ 〈gS〉n. Now h =
(x1+δ1(gs1)−x1)+(x2+δ2(gs2)−x2)+ · · ·+(xk +δk(gsk)−xk), si ∈ S, xi ∈ G, δi ∈ {1,−1}. Since
SR ⊆ S, hr = (x1r+δ1(g(s1r))−x1r)+(x2r+δ2(g(s2r))−x2)+· · ·+(xkr+δk(g(skr))−xkr) ∈ 〈gS〉n.
So 〈gS〉n is an ideal of the right R-group G, and hence it is also an ideal of the right S-group
G. Let 0 /= h ∈ G. Suppose that hS = {0}. Since hR /= {0}, 〈hR〉n is a nonzero ideal of the right
R-group G. Since G is a simple right R-group, 〈hR〉n = G. So GS = 〈hR〉nS ⊆ 〈hS〉n = {0}, a
contradiction to GS /= {0}. Therefore, hS /= {0}. Let g0 be a generator of the right R-group G.
So g0 is a distributive element of the right R-group G and g0R = G. Clearly, g0 is a distributive
element of the right S-group G and hence g0S is a subgroup of (G,+). We have (g0S)R =
g0(SR)g0S. So g0S is an R-subgroup of G. Let g ∈ G and s ∈ S. Since g0R = G, g = g0r for
some r ∈ R. So g + g0s − g = g0r + g0s − g0r = g0(r + s − r) ∈ g0S, as S is a normal subgroup
of (R,+). Therefore, g0S is an ideal of the right R-group G and hence g0S = G. So g0 is also a
generator of the right S-groupG. LetK be a nonzero ideal of the right S-groupG. Let 0 /= y ∈ K.
As seen above, 〈yS〉n is a nonzero ideal of the right R-group G, and hence 〈yS〉n = G. Since
G = 〈yS〉n ⊆ K, G = K. Therefore, {0} and G are the only ideals of the right S-group G and
hence G is a right S-group of type 0.

Proposition 3.3. LetG be a rightR-group of type 0 and let T be a right quasiregular invariant subnear-
ring of R. If T is a right ideal of R, then GT = {0}.

Proof. Suppose that T is a right ideal of R and g0 is a generator of G. So g0(r + s) = g0r + g0s
for all r, s ∈ R and g0R = G. Now L := (0 : g0) = {r ∈ R | g0r = 0} is a right 0-modular right
ideal of R. Therefore, L contains the largest right quasiregular right ideal of R. Since T is a right
quasiregular right ideal of R, T ⊆ L, that is, g0T = {0}. Let g ∈ G and t ∈ T . Now g = g0r for
some r ∈ R. gt = g0(rt) = 0, as rt ∈ T . Therefore, GT = {0}.

Since Rc is right quasiregular in R, we have the following.

Corollary 3.4. If Rc is a normal subgroup of (R,+), then GRc = {0} for all right R-groups G of type 0.

Corollary 3.5. Let R ∈ F. If G is a right R-group of type 0, then GJr0(R) = {0}.

Proof. Let G be a right R-group of type 0. We have that I := Jr0(R) is the largest right quasireg-
ular ideal of R. Since Rc is a right quasiregular ideal of R,Rc ⊆ I. So I is an invariant ideal of R.
Therefore, by Proposition 3.3, GI = {0}.

Proposition 3.6. Let R ∈ F. Let I be an ideal of R and K := I + Rc. If G is a right K-group of type 0,
then G is a right I-group of type 0.

Proof. Suppose thatG is a rightK-group of type 0 and g0 is a generator ofG. So g0 is distributive
over K and g0K = G. Let Kc be the constant part of K. Since Kc = Rc is a normal subgroup of
K, by Corollary 3.4, GRc = {0}. Clearly, G is a right I-group. Now G = g0K = g0(I + Rc) = g0I,



Ravi Srinivasa Rao et al. 5

and hence g0 is a generator of the right I-group G. Let H be a nonzero ideal of the right I-
group G. Let h ∈ H and k ∈ K. k = i + rc, i ∈ I, rc ∈ Rc and h = g0t, t ∈ I. hk = g0t(i + rc) =
g0((t(i + rc) − ti) + ti) = g0(t(i + rc) − ti) + g0(ti) = 0 + (g0t)i = hi ∈ H. Therefore,H is a nonzero
ideal of the right K-group G and henceH = G. So G is a right I-group of type 0.

We show now that the Hoehnke radical Jr0 is complete in the variety F.

Theorem 3.7. Let R ∈ F. If I is an ideal of R and Jr0(I) = I, then I ⊆ Jr0(R).

Proof. Let I be an ideal of R and Jr0(I) = I. Suppose that I/⊆Jr0(R). SoK := I +Rc is an ideal of R
and K/⊆Jr0(R). We get a right R-group G of type 0 such that GK /= {0}. Since K is an invariant
ideal of R, by Theorem 3.2, G is a right K-group of type 0. Therefore, by Proposition 3.6, G is a
right I-group of type 0. This is a contradiction to the fact that Jr0(I) = I. Therefore, I ⊆ Jr0(R).

Theorem 3.8. Jr0 is a complete Hoehnke radical in the variety F.

Theorem 3.9. Jr0 is a complete Hoehnke radical in the class of all zero-symmetric near-rings.

Theorem 3.10. Suppose that S is an invariant subnear-ring of R. IfG is a right S-group of type 0, then
G is also a right R-group of type 0.

Proof. Suppose that G is a right S-group of type 0 and g0 is a generator. We have that g0 is
distributive over S and g0S = G. For g ∈ G and r ∈ R, define gr := g0(sr), if g = g0s, s ∈ S. We
show now that this operation is well defined. Suppose that g = g0s = g0t, s, t ∈ S. Let r ∈ R and
h := g0(sr)−g0(tr). Now hk = (g0(sr)−g0(tr))k = g0((sr)k)−g0((tr)k) = g0(s(rk))−g0(t(rk)) =
g(rk) − g(rk) = 0 for all k ∈ S. Therefore, hS = {0}, and hence h = 0, that is, g0(sr) = g0(tr).
We show that G is a right R-group of type 0. It is clear that G is a right R-group. g0 = g0e
for some e ∈ S. Now G ⊇ g0R = g0(eR) ⊇ g0(eS) = g0S = G. So g0R = G. Let p, q ∈ R and
x = g0(p + q) − (g0p + g0q). xs = (g0(p + q) − (g0p + g0q))s = (g0(p + q))s − ((g0p + g0q))s =
g0(ps+qs)−(g0ps+g0qs) = (g0(ps)+g0(qs))−(g0(ps)+g0(qs)) = 0 for all s ∈ S. Therefore, x = 0,
and hence g0 is a generator of the right R-group G. It can be easily verified that the action of R
on G is an extension of the action of S on G. So an ideal of the right R-group G is also an ideal
of the right S-group G. Since the right S-group G has no nontrivial ideals, the right R-group G
also has no nontrivial ideals. Therefore, G is also a right R-group of type 0.

We show now that the Hoehnke radical Jr0 is idempotent in the variety F.

Theorem 3.11. Let R ∈ F. Then Jr0(J
r
0(R)) = Jr0(R).

Proof. Let I := Jr0(R). I is the largest right quasiregular ideal ofR. SinceRc is a right quasiregular
ideal of R, Rc ⊆ I. So I is an invariant ideal of R. Suppose that Jr0(I) /= I. So there is a right I-
group G of type 0. By Theorem 3.10, G is an R-group of type 0. Now, by Corollary 3.5, GI =
GJr0(R) = {0}. This is a contradiction to the fact that G is an I-group of type 0. Therefore,
Jr0(I) = I, that is, Jr0(J

r
0(R)) = Jr0(R).

From Theorems 3.7 and 3.11, we have the following.

Theorem 3.12. Jr0 is a Kurosh-Amitsur radical in the variety F.

Theorem 3.13. Jr0 is a Kurosh-Amitsur radical in the class of all zero-symmetric near-rings.
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Theorem 3.14. Jr0 is not s-hereditary in the class of all zero-symmetric near-rings.

Proof. Consider G := Z8, the group of integers under addition modulo 8. Now T : G → G,
defined by T(g) = 5g, for all g ∈ G, is an automorphism ofG. T fixes 0, 2, 4, and 6, andmaps 1 to
5 and 3 to 7. A := {I, T} is an automorphism group of G. {0}, {2}, {4}, {6}, {1, 5}, and {3, 7} are
the orbits. LetR be the centralizer near-ringMA(G), the near-ring of all self maps ofGwhich fix
0 and commute with T . An element of R is completely determined by its action on {1, 2, 3, 4, 6}.
An element f ∈ R maps 2G into 2G and f(1) and f(3) are arbitrary in G. This example was
considered in [9] and showed that P := (0 : 2G) = {f ∈ R | f(h) = 0, for all h ∈ 2G} is the
only nontrivial ideal of R. Let f0 be the element of P which fixes all the elements in G − 2G.
Clearly f − f0f ∈ (2G : G) = {t ∈ R | t(G) ⊆ 2G} for all f ∈ R. Since (2G : G) is a proper
right ideal of R, f0 is not right quasiregular in R. So P is not a right quasiregular ideal of R.
Since R is a near-ring with identity, it is not right quasiregular. Therefore, {0} is the largest right
quasiregular ideal of R, and hence Jr0(R) = {0}. So R is Jr0 -semisimple. It is shown in [9] that
K := (4G : G)P is a nonzero ideal of P and K2 = {0}. Since a nil ideal is right quasiregular, K
is a right quasiregular ideal of P . Therefore, {0} /=K ⊆ Jr0(P) and hence P is not Jr0 -semisimple.
So Jr0 is not s-hereditary in the class of all zero-symmetric near-rings.

Corollary 3.15. Jr0 is not s-hereditary in the class of all near-rings.

Theorem 3.16. Jr0 is not an ideal-hereditary radical in the class of all zero-symmetric near-rings.

It is not known to the authors whether Jr0 is a KA-radical in the class of all near-rings. Jr0
may fail to be idempotent and thus Kurosh-Amitsur in the class of all near-rings.
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