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We associate a covering relation to the usual order relation defined in the set of all idempotent
endomorphisms (projections) of a finite-dimensional vector space. A characterization is given of
it. This characterization makes this order an order verifying the Jordan-Dedekind chain condition.
We give also a property for certain finite families of this order. More precisely, the family of parts
intervening in the linear representation of diagonalizable endomorphism, that is, the orthogonal
families forming a decomposition of the identity endomorphism.
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1. Introduction

In this paper, we consider a poset P, there is a set of all idempotent endomorphisms (projec-
tions) of a finite-dimensional vector space E endowed with a reflexive, symmetric, and tran-
sitive binary relation (denoted ≤) ([1, 2]). Given two elements p and q of P, p ≤ q ⇔ p ◦ q =
q ◦ p = p is equivalent to Im p ⊆ Im q and ker q ⊆ ker p. We say that q covers p (denoted p ≺ q)
if p ≤ q, p /= q, and the interval ]p, q[ is empty. So an element p of P is an atom (resp., a coatom)
if p coverers 0P (resp., covered by idE) where 0P ≡ zero endomorphism (resp., idE ≡ identity
endomorphism) is the least element (resp., the greatest element) ofP. When the bounds of two
elements p and q exist we denote their meet (resp., their join) by p ∧ q (resp., p ∨ q) ([3, 4]). We
remark that the usual order relation defined in P between two elements p and q is expressed
by relations of inclusion between their kernels and their ranges, then between elements of Es:
set of subspaces of E which is well known that when this later is endowed with the relation
of set inclusion, the couple (Es,⊆) is a geometric lattice ([5–7]) where the covering relation is
defined for two subspaces F and G by F ≺ G ⇔ F ⊂ G and dimG = dimF + 1.

The extension of the notion of covering constitutes my principal motivation in this pa-
per. Indeed, the main result of this paper, given in Section 2, is a characterization of covering
relation defined by means of the one from (Es,⊆) ([6, 8]). We use this result to show that P
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is a graded poset with the rank function R defined by R(p) = dim Im p, for all p ∈ P; and
all maximal chains between the same endpoints have the same finite length ([3, 4]). As a fi-
nal point, when two elements p and q of P satisfy p ◦ q = q ◦ p we observe, as we will show
in Section 3, that the poset P possesses some properties, among other things is the covering
property ([5, 6]).

2. Covering relation

Proposition 2.1. If E is of finite dimension, the ordered set P verifies the ascending chain condition.

Proof. Let (pi)i∈N
be an increasing sequence of elements from P. Then p1 ≤ p2 ≤ · · · ≤ pi ≤ pi+1 ≤

· · · is equivalent to Im p1 ⊆ Im p2 ⊆ · · · ⊆ Im pi ⊆ Im pi+1 ⊆ · · · and · · · ⊆ ker pi+1 ⊆ ker pi ⊆
· · · ⊆ ker p2 ⊆ ker p1. Since E is of finite dimension, then (Es,⊆) verifies the ascending chain
condition, that is, there exists i0 ∈ N such that Im pi0 = Im pi0+1 = · · · for all i ≥ i0. Hence, for
all i ≥ i0, the elements ker pi are two by two isomorph. Since they are two by two comparable,
they are equal. Hence, pi = pi0 for all i ≥ i0.

We will prove later that this proposition is a consequence of Proposition 4.1.
Before stating a theorem, we remark that for two elements p and q of P such that p < q,

one has this following equivalence: Im p ≺ Im q ⇔ ker q ≺ ker p. From this, we have the
following theorem.

Theorem 2.2. If p and q are two elements of such that p < q, the two following properties are equivalent:

(i) ]Im p, Im q[= ∅;

(ii) ]p, q[= ∅.

Proof. (i)⇒(ii) Assume that q does not cover p, that is, there exists in P an element r such that
p < r < q, or equivalently, Im p ⊂ Im r ⊂ Im q and ker q ⊂ ker r ⊂ ker p. Hence, we have a
contradiction.

Conversely, assume that Im q does not cover Im p, it follows from the precedent remark
that ker p does not cover ker q.

The chains of (Es,⊆) of respective endpoints (Im p, Im q) and (ker q,ker p) are then at
least of length two. There exists then at least a couple of elements (Es,⊆) such that

Im p ⊂ F ⊂ Im q,

ker q ⊂ G ⊂ ker p
(2.1)

with dimG = dimker p − 1 and dimF = dim Im p + 1.
Amongts these couples, we prove that it exists one which is the direct sum of E, that

is F ⊕ G = E. From the relation ker q ⊂ ker p, it follows ker p = ker q ⊕ (Im q ∩ ker p). Then
E = Im p ⊕ ker q ⊕ (Im q ∩ ker p).

Set r1 = dim Im p, r2 = dimker p, s1 = dim Im q, s2 = dimker q with s1 + s2 = r1 + r2 =
dimE, and (g1, g2, . . . , gs2) a basis of ker q, (gs2+1, . . . , gr2) a basis of Im q ∩ ker p and (f1, . . . , fr1)
a basis of Im p. If we consider the union of the precedent bases, we obtain obviously a base
of E. Thus, the subspaces F and G defined as follows: F = [f1, . . . , fr1 , gr2] subspace generated
by (f1, . . . , fr1 , gr2), G = [g1, . . . , gs2 , gs2+1, . . . , gr2−1] subspace generated by (g1, . . . , gr2−1) form,
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in fact, a couple of Es for which E is a direct sum, that is, E = F ⊕ G; moreover, verifying the
relations Im p ⊂ F ⊂ Im q and ker q ⊂ G ⊂ ker p. Thus, the existence of the projection on F along
G. Hence, we have a contradiction.

Corollary 2.3. The elements of P for which the image is a line are atoms. Dually, the elements of P for
which the image is a hyperplane are coatoms.

3. Covering property

Several ordered sets having the property of lattice satisfy the covering property (e.g., (Es,⊆)).
In the following result, we prove that one also finds it in P when two arbitrary elements com-
mute.

Proposition 3.1. Let r and p be two elements of P. If r is an atom such that p ∧ r = r ∧ p = 0, then the
covering property is verified, that is, p ≺ p ∨ r.

Dually, if r is a coatom, then p ∧ r ≺ p.

Proof. It is well known that p ∨ r and p ∧ r exist, and we have the following:

p ∨ r = p + r − p ◦ r, with Im (p ∨ r) = Im p + Im r, ker(p ∨ r) = ker p ∩ Im r,

p ∧ r = p ◦ r, with Im (p ∧ r) = Im p ∩ Im r, ker(p ∧ r) = ker p + ker r.
(3.1)

If r is an atom, the subspaces Im r (resp., ker r) represent in (Es,⊆) an atom (line) (resp., a
coatom is a hyperplane in (Es,⊆)). So, the assumption p ∧ r = 0 implies

ker p + ker r = E, (3.2)

Im p ∩ Im r = {0} (3.3)

Hence, in (Es,⊆) the equality (3.2) implies Im p ≺ Im p + Im r or equivalently Im p ≺ Im (p ∨ r).
Furthermore, the equality (3.3) implies ker p ∩ ker r ≺ ker p or equivalently ker(p ∨ r) ≺ ker p.
Then from Theorem 2.2 p ≺ p ∨ r.

Using a similar reasoning as above we obtain p ∧ r ≺ p.

Proposition 3.2. Let p, q, s be three elements of P such that p ◦ q = q ◦p. If s ≺ p and s ≺ q, s = p∧ q.
Dually, if p ≺ s and q ≺ s, s = p ∨ q.

Proof. From Theorem 2.2, s ≺ p and s ≺ q imply Im s ≺ Im p, ker p ≺ ker s and Im s ≺ Im q,
ker q ≺ ker s. So, in (Es,⊆) we have Im s = Im p ∩ Im q and ker s = ker p + ker q. We have then
s = p ∧ q. In a similar reasoning we can prove that s = p ∨ q if p ≺ s and q ≺ s.

4. Rank function

Theorem 2.2 allows us to define in P a rank function R defined by R(p) = dim Im p, p ∈ P. We
can easily prove that

R(0p) = 0 = dim0P

p /= q, p ≤ q imply R(p) < R(q), p, q ∈ P (strict isotonicity)

p ≺ q implies R(q) = R(p) + 1.

(4.1)
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Proposition 4.1. P is of finite length and of length equal to the dimension of E.

Proof. Let a maximal chain of P: 0P ≺ p1 ≺ p2 ≺ · · · ≺ pi ≺ pi+1 ≺ · · · ≺ idE. By applying R to this
sequence, we get 0 < R(p1) = 1 < 2 = R(p2) < · · · < dimE, which proves that the length of P is
equal to the dimension of E.

P being of finite length, it verifies the ascending and descending chain condition.

Corollary 4.2. The poset P with the rank function R is of finite length, it verifies then the Jordan-chain
condition, that is, all maximal chain between the same endpoints have the same finite length.

Corollary 4.3. If p and q are two elements of P such that p ◦ q = q ◦ p, R(p ∨ q) = R(p) + R(q).

Proof. This follows from a property of the dimension of an endomorphism of a finite-
dimensional vector space.

It is well known that when p, q, and r are three elements commuting two by two, each
one of them commutes with the supremum and infimum of the two others. We propose to
generalize this result in the theorem below.

Theorem 4.4. If p1, p2, . . . , pm is a family ofm elements of P commuting two by two, that is, pi ◦ pj =
pj ◦ pi i /= j, 1 ≤ i, j ≤ n, then

m∨

i=1

pi =
m∑

i=1

pi −
∑

i/=j

pi ◦ pj +
∑

i/=j/=k

pi ◦ pj ◦ pk − · · · + (−1)m−1p1 ◦ p2 ◦ · · · ◦ pm. (4.2)

In particular, if this family is orthogonal, then ∨m
i=1 pi =

∑m
i=1 pi.

Proof. For proving the equality we use induction on m ≥ 2. Since by assumption the elements
pi commuting two by two, we have form = 2, p1 ∨ p2 = p1 + p2 − p1 ◦ p2. Form = 3,

p1 ∨ p2 ∨ p3 =
(
p1 ∨ p2

) ∨ p3

=
(
p1 ∨ p2

)
+ p3 −

(
p1 ∨ p2

) ◦ p3

= p1 + p2 − p1 ◦ p2 + p3 − p1 ◦ p3 − p2 ◦ p3 + p1 ◦ p2 ◦ p3

=
3∑

i=1

pi −
∑

1≤i/=j≤3
pi ◦ pj + p1 ◦ p2 ◦ p3.

(4.3)

Assume that the equality is verified until the orderm − 1,

m−1∨

i=1

pi =
m−1∑

i=1

pi −
∑

1≤i/=j≤m−1
pi ◦ pj +

∑

1≤i/=j/=k≤m−1
pi ◦ pj ◦ pk

− · · · + (−1)m−2p1 ◦ p2 ◦ · · · ◦ pm−1.

(4.4)



M. Yazi 5

Then

m∨

i=1

pi =

(
m−1∨

i=1

pi

)
∨ pm

=
m−1∨

i=1

pi + pm −
(

m−1∨

i=1

pi

)
◦ pm

=
m−1∑

i=1

pi −
∑

1≤i/=j≤m−1
pi ◦ pj +

∑

1≤i/=j/=k≤m−1
pi ◦ pj ◦ pk − · · · + (−1)m−2p1 ◦ p2 ◦ · · · ◦ pm−1

+ pm −
(

m−1∑

i=1

pi

)
◦ pm +

∑

1≤i/=j≤m−1

(
pi ◦ pj

) ◦ pm −
∑

1≤i/=j/=k≤m−1

(
pi ◦ pj ◦ pk

) ◦ pm

+ · · · + (−1)m−1p1 ◦ p2 ◦ · · · ◦ pm−1 ◦ pm

=
m−1∑

i=1

pi −
∑

1≤i/=j≤m−1
pi ◦ pj −

(
m−1∑

i=1

pi

)
◦ pm +

∑

1≤i/=j/=k≤m−1
pi◦ pj ◦ pk

+
∑

1≤i/=j≤m−1

(
pi◦ pj

) ◦ pm −
∑

1≤i/=j/=k≤m−1

(
pi ◦ pj ◦ pk

) ◦ pm + · · · + (−1)m−1p1◦ p2 ◦ · · · ◦ pm−1◦ pm.

(4.5)

It follows from the combinatorial relation Cs
m = Cs

m−1 + Cs−1
m−1 for all s ≤ m that

∑

1≤i/=j/=k≤m−1
pi ◦ pj ◦ pk +

(
∑

1≤i/=j≤m−1
pi ◦ pj

)
◦ pm =

∑

1≤i/=j/=k≤m
pi ◦ pj ◦ pk. (4.6)

Hence we have the desired equality.

It is clear that if the family p1, p2, . . . , pm is orthogonal (pi ◦ pj = pj ◦ pi = 0P, i /= j), the
equality proved before becomes ∨m

i=1 pi =
∑m

i=1 pi. It is well known in Linear algebra that if
(p1, . . . , pm) is an orthogonal family verifying in addition ∨m

i=1 pi = idE, then this family charac-
terizes diagonalizable endomorphisms.

5. Conclusion

The consequence of the preceding theorem can constitute a characterization of a diagonalizable
endomorphism of a finite dimensional vector space by means of the ordered set of the idem-
potent endomorphism in the same space. It is thus natural to ask the following question. Can
one in the general case for a given order ϑ of finite length satisfying in addition the condition
of Jordan-Dedekind identify a finite family x1, . . . , xp such that ∨xi= 1ϑ and xi ∧ xj= 0ϑ for i /= j,
where 1ϑ and 0ϑ are the bounds of ϑ. If the answer is affirmative, can one in this case establish
a junction between the Linear algebra and the ordered structures so that the identification of a
diagonalizable endomorphism is concrete.
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