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1. Introduction

Let Y be a nonempty subset of X and let T(X) denote the semigroup of transformations from
X into itself. We consider the sub-semigroup of T(X) defined by

T(X,Y ) =
{
α ∈ T(X) : Xα ⊆ Y

}
, (1.1)

when Xα denotes the range of α. In fact, if |Y | = 1, then T(X,Y ) contains exactly one element
(namely, the constant map with range Y ) and if Y = X, then T(X,Y ) = T(X).

In 1975, Symons [1] described all the automorphisms of T(X,Y ) and found that the
most difficult case occurs when |Y | = 2. He also determined when T(X1, Y1) is isomorphic
to T(X2, Y2) and, surprisingly, the answer depends on the cardinals |Xi| and |Xi \ Yi|, not on
|Yi| for i = 1, 2. Here, we study other algebraic properties of this semigroup. Recall that an
element a of a semigroup S is called regular if a = axa for some x in S. A semigroup S is
regular if every element of S is regular. It is already known that T(X) is a regular semigroup
(see [[2], page 33]). But T(X,Y ) is not regular in general. So, in Section 2, we prove that
T(X,Y ) is regular if and only if |Y | = 1 or Y = X. We also prove that if T(X,Y ) is not regular,
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the set F = {α ∈ T(X,Y ) : Xα ⊆ Yα} is the largest regular sub-semigroup of T(X,Y ). In
Section 3, we characterize the Green’s relations on T(X,Y ) and find that its D and J relations
are surprising, but they reduce to those on T(X) when Y = X. And in Section 4, we give a
class of maximal inverse sub-semigroups of T(X,Y ), of the form Fa = {α ∈ F : aα = a and α
is injective on X \ aα−1}. When Y = X, the set Fa = {α ∈ T(X) : aα = a and α is injective on
X \ aα−1} is a class of maximal inverse sub-semigroups of T(X) given in [4].

Note that throughout the paper, we write functions on the right; in particular, this
means that for a composition αβ, α is applied first.

2. Regularity of T(X,Y )

To give a necessary and sufficient condition for the semigroup T(X,Y ) to be regular, we first
note the following.

(1) If |Y | = 1, say Y = {a}, then T(X,Y ) contains exactly one element (namely, the
constant map Xa with range {a}), so T(X,Y ) is regular.

(2) If Y = X, then T(X,Y ) = T(X)which is a regular semigroup.

(3) If |X| ≤ 2, then |Y | = 1 or Y = X, and T(X,Y ) is regular by (1) and (2).

Now, we need some notation. We adopt the convention introduced in ([[3], page 241]),
namely, if α ∈ T(X,Y ), then we write

α =
(
Xi

ai

)
, (2.1)

and take as understood that the subscript i belongs to some (unmentioned) index set I, the
abbreviation {ai} denotes {ai : i ∈ I}, and that Xα = {ai} and aiα

−1 = Xi.

Theorem 2.1. T(X,Y ) is a regular semigroup if and only if |Y | = 1 or Y = X.

Proof. Assume that |Y |/= 1 and Y /=X. Let a, b ∈ Y be such that a/= b and choose c ∈ X \ Y . Let

α =
(
Xi

yi

)
(2.2)

be any element in T(X,Y ),where Xα = {yi} ⊆ Y and Xi = yiα
−1.

We define β =
(
c X\{c}
a b

)
, and it is clear that β ∈ T(X,Y ).

Since c /∈Y , so yi /= c for all i, and

αβ =
(
Xi

yi

)(
c X \ {c}
a b

)
=
(
X
b

)

/= β. (2.3)

So, we conclude that αβ /= β for all α ∈ T(X,Y ), this implies that β is a nonregular element in
T(X,Y ). Therefore, T(X,Y ) is not a regular semigroup. The converse is clear by the previous
note.
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Now, we consider the set

F =
{
α ∈ T(X,Y ) : Xα ⊆ Yα

}
. (2.4)

It is easy to see that F = {α ∈ T(X,Y ) : (X \ Y )α ⊆ Yα} = {α ∈ T(X,Y ) : Xα = Yα}. Since
Y /=∅, there exists a ∈ Y and we see that the constant map Xa with range {a} satisfies the
condition in F, therefore, Xa ∈ F and so F /=∅. And for each α ∈ F and β ∈ T(X,Y ), we have
Xαβ = (Xα)β ⊆ (Yα)β = Yαβ, and thus αβ ∈ F. This proves the following.

Lemma 2.2. F is a right ideal of T(X,Y ).

In general, F is not a left ideal of T(X,Y ) as shown in the following example.

Example 2.3. Let X = N denote the set of positive integers, let Y denote the set of all positive
even integers, and define

α =
(

n
2n

)
, β =

(
2n X \ Y
2n 2

)
. (2.5)

Then α ∈ T(X,Y ) \ F and β ∈ F, but αβ = α/∈F. Thus F is not a left ideal of T(X,Y ).

Theorem 2.4. F is the largest regular sub-semigroup of T(X,Y ).

Proof. From Lemma 2.2, we see that F is a sub-semigroup of T(X,Y ). Let α ∈ F and write

α =
(
xiα

−1

xi

)
, (2.6)

where
⋃

i∈I xiα
−1 = X and Xα = {xi : i ∈ I} = Yα. For each x ∈ Yα, choose dx ∈ xα−1 ⋂Y , so

dxα = x, and dy /=dz, for all y, z ∈ Yα such that y /= z. Choose k ∈ I and let J = I \ {k}. Define

β =
(
xj X \ {xj

}

dxj dxk

)
, (2.7)

where {xj : j ∈ J} = Yα \ {xk}. Then β ∈ T(X,Y ) and αβα = α. Since Xβ = {dxi : i ∈
I} ⊆ (Yα)β ⊆ Yβ, we have β ∈ F. Hence F is a regular sub-semigroup of T(X,Y ). Now, let
α be any regular element in T(X,Y ). Then αβα = α, for some β ∈ T(X,Y ), so Xα = Xαβα =
(Xαβ)α ⊆ Yα, and thus α ∈ F. Therefore, F is the largest regular sub-semigroup of T(X,Y ) as
required.

Note that if Y = {a}, then for each α ∈ T(X,Y ), we have Xα = {a} = Yα which implies
that F = T(X,Y ) consists of only one element and so is a regular semigroup, and if X = Y,
then F = {α ∈ T(X,Y ) : Xα ⊆ Yα} = {α ∈ T(X) : Xα ⊆ Xα} = T(X) which is also a regular
semigroup.
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3. Green’s relations on T(X,Y )

Let S be a semigroup. Thenwe define S1 to be a semigroup of adding an identity to S if S does
not already have an identity element in it and S1 = S if S contains an identity. The following
definitions are due to J. A. Green. For any a, b ∈ S, we define

aLb iff S1a = S1b, (3.1)

or equivalently; aLb if and only if a = xb, b = ya for some x, y ∈ S1.
Dually, we define

aRb to means aS1 = bS1, (3.2)

or equivalently; aRb if and only if a = bx, b = ay for some x, y ∈ S1.
And we define

aJb tomeans S1aS1 = S1bS1, (3.3)

or equivalently; aJb if and only if a = xby, b = uav for some x, y, u, v ∈ S1.
Finally, we define H = L ∩ R and D = L ◦ R.
In [2, 3], Clifford and Preston characterized Green’s relations on the full transforma-

tion semigroup T(X),where X is an arbitrary set. They proved that

αLβ iff Xα = Xβ,

αRβ iff πα = πβ.
(3.4)

Here, we do the same for the semigroup T(X,Y ) and we obtain results which generalize the
same results on T(X).

Lemma 3.1. Let α, β ∈ T(X,Y ). If β ∈ F, then Xα ⊆ Xβ if and only if α = γβ for some γ ∈ T(X,Y ).

Proof. Let β be an element of F. It is clear that if α = γβ for some γ ∈ T(X,Y ), then Xα ⊆ Xβ.
Now, we assume that Xα ⊆ Xβ and write

α =
(
aiα

−1

ai

)
, β =

(
bjβ

−1

bj

)
, (3.5)

where {ai} ⊆ {bj}. For each a ∈ Xα ⊆ Xβ ⊆ Yβ (since β ∈ F), we get a = yβ for some y ∈ Y
which implies y ∈ aβ−1 and thus y ∈ Y ∩ aβ−1 /=∅. Choose da ∈ Y ∩ aβ−1, so da ∈ Y and
daβ = a. Since X =

⋃
ai∈Xα aiα

−1 is the disjoint union of the aiα
−1, we can define

γ =
(
aiα

−1

dai

)
. (3.6)

Then γ ∈ T(X,Y ) and γβ = α.
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From now on, the notations Lα (Rα,Hα,Dα) denote the set of all elements of T(X,Y )
which are L-related (R-related, H-related, D-related) to α, where α ∈ T(X,Y ).

Theorem 3.2. For α ∈ T(X,Y ), the following statements hold.

(1) If α ∈ F, then Lα = {β ∈ F : Xα = Xβ}.
(2) If α ∈ T(X,Y ) \ F, then Lα = {α}.

Proof. Let α be any element in T(X,Y ) and let β ∈ Lα. Then αLβ which implies that α = α′β
and β = β′α, for some α′, β′ ∈ T(X,Y )1.

(1) Assume that α ∈ F. If β = α, then β ∈ F and Xα = Xβ. If β /=α, then α′ and β′ both
belong to T(X,Y ). Thus Xβ = (Xβ′α′)β ⊆ Yβ, and hence β ∈ F. From α ∈ F and β = β′α, we
get Xβ ⊆ Xα by Lemma 3.1. Similarly, from β ∈ F and α = α′β, we get Xα ⊆ Xβ. Therefore,
Xα = Xβ. Now, if γ ∈ F and Xα = Xγ, then it is clear by Lemma 3.1 that γ ∈ Lα.

(2) Assume that α ∈ T(X,Y ) \ F. If α′, β′ ∈ T(X,Y ), then Xα = X(α′β) = X(α′(β′α)) =
(Xα′β′)α ⊆ Yα. Thus α ∈ F which is a contradiction, so α′ = 1 or β′ = 1 and β = α.

We note that for any α ∈ T(X,Y ), πα = {(a, b) ∈ X ×X : aα = bα} is an equivalence on
X and |X/πα| = |Xα|. The relation πα is usually called the kernel of α.

Theorem 3.3. Let α, β ∈ T(X,Y ). Then πβ ⊆ πα if and only if α = βγ for some γ ∈ T(X,Y ). Hence
αRβ if and only if πα = πβ.

Proof. It is clear that if α = βγ for some γ ∈ T(X,Y ), then πβ ⊆ πα. Now, suppose that πβ ⊆ πα.
If x ∈ Xβ, then x = zβ for some z ∈ X, so we define γ : X→X by

xγ =

{
zα, if x ∈ Xβ,

xβ, if x ∈ X \Xβ.
(3.7)

Then γ is well defined (since πβ ⊆ πα) and γ ∈ T(X,Y ). For each x ∈ X, let y = xβ ∈ Xβ, so
xβγ = (xβ)γ = yγ = xα by the definition of γ . Thus α = βγ as required, and the remaining
assertion is clear.

Lemma 3.4. Let α, β ∈ T(X,Y ). If πα = πβ then either both α and β are in F, or neither is in F.

Proof. Assume that πα = πβ and suppose that α, β ∈ F is false. So one of α or β is not in F, we
suppose that α/∈F. Thus (X \ Y )α/⊆Yα, so there is x0 ∈ X \ Y such that x0α/=yα for all y ∈ Y .
Thus (x0, y)/∈πα for all y ∈ Y . If β ∈ F, then Xβ = Yβ, so (x0, y) ∈ πβ for some y ∈ Y which
contradicts πα = πβ. Therefore, β /∈F.

Using Theorem 3.3 and Lemma 3.4, we have the following corollary.

Corollary 3.5. For α ∈ T(X,Y ), the following statements hold.

(1) If α ∈ F, then Rα = {β ∈ F : πα = πβ}.
(2) If α ∈ T(X,Y ) \ F, then Rα = {β ∈ T(X,Y ) \ F : πα = πβ}.

As a direct consequence of Theorems 3.2 and 3.3, we have the following.
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Theorem 3.6. For α ∈ T(X,Y ), the following statements hold.

(1) If α ∈ F, thenHα = {β ∈ F : Xα = Xβ and πα = πβ}.
(2) If α ∈ T(X,Y ) \ F, thenHα = {α}.

In [2, 3], volume 1, Clifford and Preston proved that two elements of T(X) are D-
related if and only if they have the same rank (i.e., the ranges of the two elements have the
same cardinality). But for T(X,Y ),we have the following.

Theorem 3.7. For α ∈ T(X,Y ), the following statements hold.

(1) If α ∈ F, then Dα = {β ∈ F : |Xα| = |Xβ|}.
(2) If α ∈ T(X,Y ) \ F, then Dα = {β ∈ T(X,Y ) \ F : πα = πβ}.

Proof. Let α be any element in T(X,Y ) and let β ∈ Dα. Then αLγ and γRβ for some γ ∈
T(X,Y ).

(1) If α ∈ F, then since αLγ, we must have γ ∈ F and Xα = Xγ . From γRβ, we get
πγ = πβ and β = γλ for some λ ∈ T(X,Y )1. Since F is a right ideal of T(X,Y ), so β ∈ F. And
|Xα| = |Xγ | = |X/πγ | = |X/πβ| = |Xβ|. Conversely, assume that λ ∈ F and |Xα| = |Xλ|. Then
there is a bijection θ : Xλ→Xα. We let μ = λθ, then μ ∈ T(X,Y ) andXμ = Xλθ = (Xλ)θ = Xα.
Since λ ∈ F implies Xλ ⊆ Yλ, so Xμ = Xλθ ⊆ Yλθ = Yμ, hence μ ∈ F. Since α, μ ∈ F and
Xα = Xμ, so αLμ by Theorem 3.2. Now, since μ = λθ and θ is injective onXλ,we get πμ = πλ,
so μRλ. Therefore, α and λ are D-related and λ ∈ Dα.

(2) If α ∈ T(X,Y ) \F, then γ = α (since αLγ) and thus αRβwhich implies that πα = πβ.
So by Lemma 3.4 we must have β ∈ T(X,Y ) \ F. The other containment is clear since R ⊆
D.

In order to characterize the J-relation on T(X,Y ), the following lemma is needed.

Lemma 3.8. Let α, β ∈ T(X,Y ). If α = λβμ for some λ ∈ T(X,Y ) and μ ∈ T(X,Y )1, then |Xα| ≤
|Yβ|.

Proof. If α = λβμ for some λ ∈ T(X,Y ) and μ ∈ T(X,Y )1. Then Xλ ⊆ Y , which implies that
(Xλ)β ⊆ Yβ and so |Xλβ| ≤ |Yβ|. If μ = 1, then α = λβ and so |Xα| = |Xλβ| ≤ |Yβ|. If μ ∈
T(X,Y ), then |Xα| = |X(λβμ)| = |(Xλβ)μ| ≤ |Xλβ| ≤ |Yβ|. Thus |Xα| ≤ |Yβ| as required.

Theorem 3.9. Let α, β ∈ T(X,Y ). Then

αJβ iff πα = πβ or |Xα| = |Yα| = |Yβ| = |Xβ|. (3.8)

Proof. First, assume that αJβ. Then α = γβλ and β = γ ′αλ′ for some γ, λ, γ ′, λ′ ∈ T(X,Y )1. If
γ = 1 = γ ′, then α = βλ and β = αλ′ which imply αRβ and thus πα = πβ. If γ ∈ T(X,Y )
or γ ′ ∈ T(X,Y ), then we conclude that α = σβδ and β = σ ′αδ′ for some σ, σ ′ ∈ T(X,Y ) and
δ, δ′ ∈ T(X,Y )1. For example, if γ = 1 and γ ′ ∈ T(X,Y ), then α = βλ and β = γ ′αλ′ imply
α = βλ = (γ ′αλ′)λ = γ ′α(λ′λ) = γ ′(βλ)λ′λ = γ ′β(λλ′λ). By using Lemma 3.8, we get that
|Yβ| ≥ |Xα| ≥ |Yα| ≥ |Xβ| ≥ |Yβ|, so it follows that |Xα| = |Yα| = |Yβ| = |Xβ|.

Conversely, if πα = πβ, then αRβ which implies that αJβ since R ⊆ J. If |Xα| = |Yα| =
|Yβ| = |Xβ|, then by applying Lemma 2.7 in [2, 3], to |X/πα| = |Xα| = |Yβ| and |X/πβ| = |Xβ| =
|Yα|, we get there are γ, λ ∈ T(X,Y ) such that πγ = πα, Xγ = Yβ; and πλ = πβ, Xλ = Yα. From
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πγ = πα and πλ = πβ, we get γRα and λRβ, so α = γγ ′ and β = λλ′ for some γ ′, λ′ ∈ T(X,Y )1.
And from Xγ = Yβ, we write Yβ = {yi : i ∈ I}, so

γ =
(
yiγ

−1

yi

)
. (3.9)

For each i ∈ I, choose ai ∈ yiβ
−1 ∩ Y and define β′ : X→X by

β′ =
(
yiγ

−1

ai

)
. (3.10)

Then β′ ∈ T(X,Y ) and γ = β′β. Similarly, from Xλ = Yα, we can prove that λ = α′α for some
α′ ∈ T(X,Y ).

Therefore, α = γγ ′ = β′βγ ′ and β = λλ′ = α′αλ′ which implies that αJβ as required.

Recall that D ⊆ J on any semigroup and D = J on T(X); but in T(X,Y ), this is not
always true, as shown in the following example.

Example 3.10. Let X = N denote the set of positive integers and let Y denote the set of all
positive even integers. Then we define

α =
(

n
2n

)
, β =

(
2n X \ Y
4n 2

)
. (3.11)

Hence α, β ∈ T(X,Y ) \ F and |Xα| = |Yα| = ℵ0 = |Yβ| = |Xβ|, so αJβ. Since πα /=πβ, we have α
and β are not D-related on T(X,Y ).

As a consequence of Theorems 3.7 and 3.9, we see that D = J on the sub-semigroup F
of T(X,Y ).

Corollary 3.11. If α, β ∈ F, then αJβ on T(X,Y ) if and only if αDβ on T(X,Y ).

Proof. In general, we have D ⊆ J. Let α, β ∈ F and αJβ on T(X,Y ). Then πα = πβ or |Xα| =
|Yα| = |Yβ| = |Xβ|. If πα = πβ, then |Xα| = |X/πα| = |X/πβ| = |Xβ|. Thus, both cases imply
|Xα| = |Xβ| and αDβ on T(X,Y ) by Theorem 3.7.

If we replace Y with X in the above corollary, we then get D = J on T(X,Y ) = T(X).
Next, we will consider the case when Y is a finite subset of X.

Theorem 3.12. If Y is a finite subset of X, then D = J on T(X,Y ).

Proof. Let Y be a finite subset of X and let α, β ∈ T(X,Y ) be such that α and β are J-related.
Then πα = πβ or |Xα| = |Yα| = |Yβ| = |Xβ|. We note that if α/∈F, then |Xα| > |Yα|. For if
|Xα| = |Yα|, then Xα is a finite set (since Y is finite) which implies that Xα = Yα and thus
α ∈ F. Now, if α ∈ F and β /∈F, then |Xα| = |Yα| but |Yβ| < |Xβ|, so πα = πβ which contradicts
Lemma 3.4. Therefore, either both α and β are in F, or neither is in F. If α, β ∈ F, then αDβ
by Corollary 3.11. If α, β /∈F, then |Xα| > |Yα| which implies that πα = πβ and thus αDβ by
Theorem 3.7. Therefore, J ⊆ D and the other containment is clear.
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4. Maximal inverse sub-semigroups on T(X,Y )

We first recall that a semigroup is said to be an inverse semigroup if it is regular and any two
idempotents commute. In this section, we give one class of maximal inverse sub-semigroups
on T(X,Y ). If |Y | = 1, then there is only one element in T(X,Y ), the constant map. Hence, in
this case, there is no maximal inverse sub-semigroup on T(X,Y ). Therefore, from now on, we
assume that |Y | ≥ 2.

In 1976, Nichols [4] gave a class of maximal inverse sub-semigroups of T(X). Later
in 1978, Reilly [5] generalized Nichols’ result. Here, with some mild modifications of the
proof given in [4], we get one class of maximal inverse sub-semigroups of T(X,Y ) which
generalizes Nichols’ result.

Let X be a set and Y a nonempty subset of X. For each a ∈ Y , define

Fa =
{
α ∈ F : aα = a and α is injective on X \ aα−1}. (4.1)

We see that Fa /=∅, since the constant map Xa ∈ Fa. To describe maximal inverse sub-
semigroups on T(X,Y ), we first prove the following.

Theorem 4.1. Let α ∈ T(X,Y ) and a ∈ Y . Then α ∈ Fa if and only if {a} ∪ (X \ Y ) ⊆ aα−1 and α is
injective on Y \ aα−1.

Proof. If Y = X, then X \ Y = ∅ and F = T(X), thus α ∈ Fa if and only if α ∈ T(X), {a} ⊆ aα−1

and α is injective on X \ aα−1.
Now, we prove for the case Y /=X. Assume that α ∈ Fa. So α ∈ F, aα = a and α

is injective on X \ aα−1. We show that (X \ Y )α = {a}. Let b ∈ (X \ Y )α, so there exists
x ∈ X \ Y such that xα = b. Thus b ∈ (X \ Y )α ⊆ Yα since α ∈ F. Hence b = yα for
some y ∈ Y . So, x, y ∈ bα−1 and x /=y. By the definition of Fa, we must have b = a. Therefore,
{a}∪(X\Y ) ⊆ aα−1 and α is injective on Y \aα−1. Conversely, assume that the conditions hold.
Since a ∈ Y and {a} ⊆ aα−1, we get a = aα ∈ Yα, and thus {a} ⊆ Yα. So (X \ Y )α = {a} ⊆ Yα
and therefore α ∈ F. Since α is injective on Y \ aα−1 and Y \ aα−1 = X \ aα−1, it follows that α
is injective on X \ aα−1, and so α ∈ Fa.

Recall that for each α ∈ T(X), α is an idempotent in T(X) if and only if xα = x for all
x ∈ Xα. Since T(X,Y ) is a sub-semigroup of T(X), we conclude that α is an idempotent in
T(X,Y ) if and only if xα = x for all x ∈ Xα. And by Theorem 4.1, if α is an idempotent in Fa,
then xα = x for all x ∈ Y \ aα−1.

Lemma 4.2. Let L be a regular sub-semigroup of T(X,Y ) such that Fa � L and suppose that α ∈
L \ Fa. Then

(i) αLβ on L for some idempotent β ∈ Fa.

(ii) If aα = a, then α is not R-related on L to any element in Fa.

Proof. (i)We write

α =
(
aα−1 Ai

a ai

)
, (4.2)
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where
⋃
Ai = X \ aα−1, and define β ∈ T(X,Y ) by

β =
(
ai X \ B
ai a

)
, (4.3)

where {ai} = B. Then β : X→Y , is an identity map on B and X \ B = aβ−1. So B = X \ aβ−1
and β is injective on X \ aβ−1 = B. Since a ∈ X \ B, so a = aβ ∈ Yβ and {a} ⊆ Yβ. From
B = {ai} ⊆ Y , we get (X \ Y )β ⊆ (X \ B)β = {a} ⊆ Yβ, so β ∈ F. Thus β ∈ Fa and it is also
an idempotent. From the fact that L ⊆ F is a regular sub-semigroup of T = T(X,Y ), it follows
from Hall’s theorem that LL = LT ∩ (L × L) ⊆ LT ∩ (F × F), where (a, b) ∈ LS means there
exist s, t in S1 such that a = sb, b = ta. Since Xα = Xβ, we must have by Theorem 3.2 that
αLβ on L.

(ii) Assume that aα = a and suppose that αRβ on L for some β ∈ Fa. Thus πα = πβ

by Theorem 3.3, and hence aα−1 = aβ−1. Now, let x1, x2 ∈ X \ aα−1 be such that x1α = x2α.
Then (x1, x2) ∈ πα implies (x1, x2) ∈ πβ (since πα = πβ), so x1β = x2β and since β is injective
on X \ aβ−1 = X \ aα−1, we get x1 = x2 which implies that α is injective on X \ aα−1, which
contradicts α/∈Fa. Therefore, α is not R-related to any element in Fa.

Theorem 4.3. Fa is a maximal inverse sub-semigroup of T(X,Y ).

Proof. First, we prove that Fa is a sub-semigroup of T(X,Y ).
Let α, β be elements in Fa. Then α, β ∈ F, aα = a = aβ, and α, β are injective on

X \ aα−1 and X \ aβ−1, respectively. Since F is a right ideal of T(X,Y ), it follows that αβ ∈ F.
Clearly a(αβ) = a, and αβ is injective on X \ a(αβ)−1. Therefore, αβ ∈ Fa.

Next, we show that Fa is a regular sub-semigroup of T(X,Y ). For each α ∈ Fa, aα = a
and |xα−1| = 1 for all x ∈ Yα \ {a} (see Theorem 4.1). Let {xi} = Yα \ {a} and write xiα

−1 = yi

for all i, thus

α =
(
yi aα−1

xi a

)
, (4.4)

where
⋃{yi} = Y \ aα−1, X = Y

⋃
aα−1 and define β ∈ T(X,Y ) by

β =
(
xi A
yi a

)
, (4.5)

where {xi} = Yα \ {a} and A = X \ {xi}. Since a ∈ A, we get a = aβ ∈ Yβ, and so {a} ⊆ Yβ.
And for each x ∈ X \ Y , x /=xi for all i since xi ∈ Y. Thus (X \ Y )β = {a} ⊆ Yβ, and so β ∈ F.
Since aβ = a and β is injective on {xi} = X \ aβ−1, it follows that β ∈ Fa. And, it is clear that
α = αβα.

Now, we prove that any two idempotents in Fa commute, which is enough to show
that Fa is an inverse semigroup. Assume that α, β are idempotents in Fa. Then xα = x for all
x ∈ X \ aα−1 and xβ = x for all x ∈ X \ aβ−1. Let x be any element in X.

Case 1. x ∈ X \aα−1. Then xα = x. So, if x ∈ X \aβ−1, we get xβ = x and x(αβ) = (xα)β = xβ =
x = xα = (xβ)α = x(βα). But if x ∈ aβ−1, then xβ = a, and x(αβ) = (xα)β = xβ = a = aα =
(xβ)α = x(βα). Thus in this case αβ = βα.
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Case 2. x ∈ aα−1. Then xα = a. So by the same proof as given in Case 1, we get αβ = βα.
Therefore, Fa is an inverse sub-semigroup of T(X,Y ).

To prove the maximality, we suppose that Fa is properly contained in an inverse sub-
semigroup L of T(X,Y ), where L ⊆ F ⊆ T(X,Y ) and let α ∈ L\Fa. Let β be the constant
map with range {a}, so β is an idempotent in Fa, and thus βα is an idempotent in L. Since
βαβ = β and every two idempotents in L commute, it follows that β = βαβ = ββα = βα and
aα = (aβ)α = a(βα) = aβ = a. Since L is regular, α = αα′α for some α′ ∈ L and αRαα′ on L such
that αα′ is an idempotent in L. Let γ = αα′, then by Lemma 4.2 we must have γ ∈ L \ Fa and
γLσ for some idempotent σ ∈ Fa. Since every idempotent e in a semigroup is a right identity
for Le, we have γ = γσ = σγ = σ which is a contradiction since γ /∈Fa but σ ∈ Fa. Therefore,
L = Fa as required.

As an application of Theorem 4.3, we get the following corollary which first appeared
in [4].

Corollary 4.4. Fa = {α ∈ T(X) : aα = a and α is injective on X \ aα−1} is a maximal inverse
sub-semigroup of T(X).

Proof. By taking Y = X in Theorem 4.3, we get T(X,Y ) = T(X) = F and Fa = {α ∈ T(X) : aα =
a and α is injective on X \ aα−1}which is a maximal inverse sub-semigroup of T(X).

Recall that the number of combinations of n distinct things taken r at a time written(
n
r

)
is given by

(
n
r

)
=

n!
(n − r)!r!

. (4.6)

That is,
(
n
r

)
is the number of ways that r objects can be chosen from n distinct objects.

In the next result, we use the above information to find the number of elements in Fa

when Y is a finite subset of X.

Theorem 4.5. Suppose that X is an arbitrary set and Y is a nonempty subset of X such that |Y | = n.
Then for each a ∈ Y , |Fa| =

∑n−1
r=0 r!

(
n−1
r

)2.

Proof. Let a ∈ Y and α ∈ Fa. Then by Theorem 4.1 we see that

α =

(
(X \ Y )

⋃
Y1 Y2

a Y3

)

, (4.7)

where Y = Y1
⋃̇
Y2, a ∈ Y1, Y3 ⊆ Y \ {a}, and |Y2| = |Y3|. If Y2 = ∅, then α can have only one

form, the constant map Xa. If Y2 has t elements, where 1 ≤ t ≤ n − 1, then Y2 can have
(
n−1
t

)

choices and for each choice of Y2, Y3 can have
(
n−1
t

)
choices, thus there are

(
n−1
t

)2 ways to
choose Y2 and Y3. Since the restriction of α to Y2 is a permutation, for each choice of Y2 and
Y3, the map α has t! possible forms. Hence in this case α can have t!

(
n−1
t

)2 forms.
Therefore, |Fa| = 1 +

∑n−1
r=1 r!

(
n−1
r

)2 =
∑n−1

r=0 r!
(
n−1
r

)2 as required.
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We observe that the number of elements in Fa depends only on the elements of Y ,
and when we replace Y with X in Theorem 4.5, we have the following corollary which first
appeared in [4].

Corollary 4.6. If X is a finite set with |X| = n, then the number of elements in Fa = {α ∈ T(X) :
aα = a and α is injective on X \ aα−1} equals∑n−1

r=0 r!
(
n−1
r

)2.
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