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M(")—growth with restricted order r € N, where the function M(x)

Let % ;VI'([R) be the generalized tempered distributions of e
grows faster than any linear functions as |x| — ©0. We show the convergence of multiresolution expansions of %’ ;V['(R) in the test

function space ', (R) of #’ Z'W’(IR). In addition, we show that the kernel of an integral operator K : ;/I'(R) A ;\,['(IR) provides

approximation order in %’ ;w'(IR) in the context of shift-invariant spaces.

1. Introduction

Multiresolution analysis was shown to be very useful in
extending the expansions in orthogonal wavelets from L*(R)
to a certain class of tempered distributions. Some interactions
between wavelets and tempered distributions have been
presented by Walter’s work in [1-3]. Walter has found the ana-
Iytic representation of tempered distributions of polynomial
growth with restricted order, S'(R), r € Ny, by wavelets [1]
and the multiresolution expansions’ pointwise convergence
of &;(R) [3]. Pilipovi¢ and Teofanov have showed the
uniform convergence on compact sets of the derivatives of
multiresolution expansions of &' (R) and the convergence
of multiresolution expansions of S:(R) in the test function
space §,(R) of S'(R). As an application, Pilipovi¢ and
Teofanov have shown that the kernel of an integral operator
K: S;(R) — &;(IR) provides approximation order in &;(R)
in the context of shift-invariant spaces [4].

In the meantime, the tempered distributions of poly-
nomial growth were extended to tempered distributions of

e'xl-growth, ,%”I(IR), in [5, 6] and e'xlp-growth, %’;(IR), in
[7, 8] or eM(x)—growth, ‘%E\/I(R)’ in [9, 10], where the function
M(x) grows faster than any linear functions as |x| — oo.
We have considered the analytic representation of tempered

distributions of eM®)- growth with restricted order, # 5\/1, (R),
by wavelets [11]. Also, we have shown that the multiresolution

expansions of F ;/I’([R{) converges pointwise to the value of
the distribution where it exists [12].

In this paper, we will show the uniform convergence on
compact sets of the derivatives of multiresolution expansions
of & ;VI'(IR) and convergence of multiresolution expansions
of .%&'(R) in the test function space %,(R) of %&’(R). In
addition, we will show that the kernel of an integral operator
K : % ;VI’([R) - X ?VI'([R{) provides approximation order
in & M(R). This is an extension of the works of Pilipovi¢

and Teofanov [4] in the context of generalized tempered
distributions, % ;VI(IR).

2. The Generalized Tempered Distribution
Spaces 7 ;V[(R)

Throughout this paper, we will use C or C; to denote the
positive constants, which are independent parameters and
may be different at each occurrence.

Let (&) (0 < & < 00) denote a continuous increasing
function such that ¢(0) = 0 and p(c0) = co. For x > 0, we
define

M (x) = Lx#(ﬁ) de. )

The function M(x) is an increasing, convex, and contin-
uous function with M(0) = 0, M(0o) = oo and satisfies the
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fundamental convexity inequality M(x;) + M(x,) < M(x, +
x,). Further, we define M(x) for negative x by means of the
equality M(x) = M(—x). Note that since the derivative u(x)
of M(x) is unbounded in R, the function M(x) will grow
faster than any linear function as [x| — ©0. Now we list
some properties of M(x) which will be frequently used later.
Consider the following:

M)+ M(y)<M(x+y) Vx,y=0,

)
M(x+y)<M@2x)+M(2y) Vx,y=>0.

Using the function M(x), we define the space # ,(R) as
the space of all functions ¢ € C*°(R) such that

Mk=) k=1,2,....

©)

The topology in % ,;(R) is defined by the family of the
seminorms | - || Hap Then % ,;(R) become a Fréchet space
and Z(R) — Fy(R) — S(R) — &(R) are continuous
and dense inclusions; here 2(R) denotes the spaces of all
C®(R) functions with compact supports, §(R) the spaces of
polynomially decreasing functions (Schwartz functions), and
&(R) the space of all C*(R) functions. By ‘%/;\/I(IR)’ we mean
the space of continuous linear functionals on % ,,(R).

00| <co

= sup e
ol = sup

Definition 1. We say that the elements of %},(R) are gener-
alized tempered distributions.

Clearly, when M(x) = log(1 + |x]), ‘%’5\4([&) are tempered
distributions (Schwarz distributions), &(R). When M(x) =
|x|, & ;VI([R) are tempered distributions, # ;([R), which are
introduced and characterized by Yoshinaga [6] and Hasumi
[5], independently. When M(x) = |x|?, p > 1, #},(R) are
tempered distributions, # ;(R), which are introduced and
characterized by Sznajder and Zielezny [7, 8]. For details
about L%fjw(lR), we refer to [9, 10].

For a natural number r, we define by %#",(R) the space of
all ¢ € C"(R) such that

o
M(rx)
., = sup e —0 (x)| < 00,
”¢| %M xER,Eﬁr dx(x (P ( )
h (4)
lim sup "™ |=—g (x)| = 0.
|x|"°°0$zxgr dx“(P( )

The topology of #,(R) is defined by the family of || - | s,
and the dual of #',(R) is denoted by F# R/([R). Clearly,
H p(R) is the projective limit of #7,(R) when r — o0
and %}A(R) =U,en %;VI'(IR). Also, we have continuous and
dense inclusion mapping as following:

Har (R) = = Tt (R) = Hy (R) — -
, 5)
= Ky ) = Ky (R) = - Hy (R).
Definition 2. We say that the elements of %, (R) are
generalized tempered distributions of order r.

We define by ‘A%#/R/I(IR) the space of all y € C"(R) such that

M(I
Z = sup e )
M
x€R,0<a<r

I=1,2,....
(6)

The topology of F (R) is defined by the family of | - "5’?34
and the dual of & "(R) is denoted by 54 7. (R). Obviously,
Hyu(R) ¢ Hy(R).

Now, we give a theorem that will be used later.

< 00,

vl

d(x
i (x)

Theorem 3. Let ¢ and sequence {$,,},n be given in H5i' (R)
such that {(d*/dx")},} e converges uniformly to (d*/dx")
on every compact set K ¢ R and forao = 0, 1,...,7. If {¢,}eny
is bounded in ;' (R), then the sequence {$,},,cn converges to
¢ € HHR) in K, (R).

Proof. Lete > 0 be given and let « € {0, 1,...,7}. Then there
exist N such that

d(x
ﬁ (¢n - ¢) (x)

sup M)

x€K

<€, n=N, (7)

for arbitrary K ¢ R. Also, since the sequence {¢,},cy is
bounded in %' (R), we can take a positive number A > 0
and a compact set K such that |x| > A when x ¢ K and

M(rx) d‘x
sup e — (¢, — ¢) (x)
sup T (®—¢)
M M((r+1)x) M((r+1 d*
= supe (rx) =M((r+1)x) M((r+1)x) (¢n _ ¢) (x)
x¢K dx*
o
- ~Mx) M((r+1)x) | 4 B (8)
<supe e T (B9 ()

d(x

+
dx*

< e‘M(A)sup eM((r+1)x) <|dd7¢" (x) (/5 (x)

x€R

)

< Ce™MA ¢
From (7) and (8), we have

dot
% ((/)n - ¢) (x)

M(rx)

lim supe
"7 OxeR

=0, 0<a<r. (9

O

3. Multiresolution Expansion of % &(IR)

Definition 4. A multiresolution analysis (shortly MRA) con-
sists of a sequence of closed subspaces V,,n € Z, of L*(R)
satisfying the following:

(i) {w(t — n)},cz is an orthonormal basis of V),
(ii) ---c V., cVycV, c--- c LA(R),
(iii) f eV, © f(2) e V.1,
@(iv) N, V, = {0}, UV, = L*(R).

The function ¥ whose existence is asserted in (i) is
called a scaling function of the given MRA.
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Definition 5. We say that a multiresolution analysis V,,, n €
Z,is (M, r-) regular MRA of L*(R) if the scaling function y
isin & u(R).

Example 6. It is impossible that the scaling function v has
exponential decay and v € C%(R), with all derivatives
bounded, unless ¢ = 0. Refer to [13, Corollary 5.5.3]. So we
will restrict our attention to %7, (R) or F "(R). From the
remark in [13] or, page 152 [2, Example 4, page 48], Battle-
Lemarié’s wavelets are in %7,(R) for some r € N when
M(x) = |x|, but not in # "(R) even if they have exponential
decay and smoothness. In [13], Daubechies shown that for an
arbitrary nonnegative integer r, there exists an (M, r-) regular
MRA of L*(R) such that the scaling function ¥ has compact
supports.

Let V; be an (M, r-) regular MRA of L*(R) and let ybea
scaling function. The reproducing kernel of V,, is given by

Q@ (% y) = D yx-ny(y-n). (10)

nez

The series and its derivatives with respect to x or y of
order < r converge uniformly on R because of the regularity

of y € H},(R). The reproducing kernel of the projection
operator onto V; is

q; (%, ) =2'q,(Yx,27y), xyeR, (1)

and the projection of f € L*(R) onto V; is given by

a;f ) =(f(»),q;(x))

(12)
= jf(y)qj (. y)dy, xeR.

The sequence {g,} ;cz, given in (12), is called the multires-
olution expansion of f € L*(R).

Definition 7. For a given f € %M'(R), the sequence {g;} ez
defined by

(a;£,0) =(fra;6), ¢€Hy(R) (13)

is called the multiresolution expansion of f € # ;VI'(IR).
We deduce the following properties of the reproducing
kernel g, with scaling function y € %7, (R):

(@) qo(x,¥) = qo(y,x) and qy(x + k, y + k) = q,(x, y) for
allk € 7.

(b) Foreveryl € Nand 0 < , f <, there exist C, > 0
such that

‘a“ P

_ <
Ox® ayﬁqo (x’y)‘ = ;

d NI .
v )| v - )

< chefM((ZH1)(xfj))efM((21+1)(yfj))
J

< che—M(zl(x—j))e—M(x—j)
J

% e—M(2l(j—y)) e—M(j-y)

< G MU Y g Mg M)

J
< Cl/e—M(l(x—y))’
(14)

where we used the properties (2).
() I_OZO Go(x, y)y*dy =x", yeR, 0<a<r.

Let V; be an (M, r-) regular MRA of L*(R). We fix a
function g € 2(R) with _[g(x)dx = 1. We let g; denote

the function 2/g(27x) and let G; denote the operation of
convolution by g;. For each fixed x, we consider the function
05qo(x, y) of the variable y. From (c), we have

Jaf:% (x.y) yPdy =0, (15)

for 0 < 8 < &, whereas

Ja,‘fqo (%, y) y*dy = al. (16)

Now, it follows from integration by parts that the kernal
g(x — y) of the operator G shares these properties (15) and
(16) with gy (x, y).

Let

R*(x,y) = 07qy (x, y) —9cg (x - y). (17)
From (b) and the fact that g € D(R) ¢ F,(R), we have

~M(k(x~y))

[R* (x, y)| < cee x%yeR, keN, (18)

and these functions also satisfy
JR“ (x,y)dy=0 19)

identically in x for every o = 1,2,...,r. They, for every j € Z
and f € C'(R) with at most eM(x)—growth, define operator R‘;

by

Rif (x) = 2 J R* (2jx, ij) f(y)dy (20)



which are such that

d* d*
9wt )

d” .
=Gigal MRl ), @

that is,

qu (x.y) %f(y) dy

Vg Sf Oy e

(23

+ ZjJR“ (2/x,27y) ddy“f

(y)dy.

From Theorem 1.1 in [14], we have

jlirrgoGj%f(y) dy = ;lx“f(x) , xeR, a>0, (23)

uniformly on compact sets. Now we will show the uniform
convergence on compact sets of the derivatives of multireso-

lution expansions of % R/I'(R).

Theorem 8. Let f € C'(R) such that the corresponding
derivatives (A% [dx") f are bounded by a eME®) yhen |x| —
0o, for every « = 0,1,...,r and some k, € N. If q;f,
given by (12), be the projection of f onto an (M,r-) regular
MRA of L*(R), then the sequence {(d"‘/dx“)qu}jez converges
uniformly on compact sets to (d%/dx™) f as j — oo, for every
a=0,1,...,r

Proof. If |y — x| < ¢, we have
dOC
dy*

<ey (y-x), (24

)

fly v

y=x
where efxw (x) is a continuous function with e™*o®) growth and
eol\f(O) = 0. From (18), given a compact set K, we have

)

[e4

iy d
R*(2/x,2
[ECE ) gt
SZjJR“(ij,ij)<$a

<o J Cke—M(sz(x—y)) | 624 (y - x)| dy,

2/

() dyl

)

dy

(25)

for large enough jand x € K. Since k can be chosen arbitrary,
we obtain by dominated convergence theorem,

J R* (ij, ij) ;;C ) dyl

SJIiijcke @k 'e (y- x)|dy 0

jooo

lim 2/
j—oo

(26)

uniformly for x € K. From (21) and (23), we have the
conclusion. O
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We now ready to show the main theorem.

Theorem 9. Let ¢ € ', (R) and let q;¢(x), given by (7), be
a projection of ¢ onto an (M, r-) regular MRA of L*(R). If ¢) €
%féf'l)(R), then the sequence {qjgb(x)} converges to ¢(x) in
Hy(R)asj — oo.

Proof. Let g and R” be given in (21) such that g € Z(R) and
J g(x)dx = 1. From Theorems 3 and 8 and (21), it suffices to
show that

G oo
supe KR ¢(y)dy

x€R

J
h
_ M((r+1)x) 1 J (x—y> d” d
supe h‘ 9= dy,x¢(y) y (27)

%)

is bounded for every « € {0, 1,.. .,
compact support, then

M((r+1)x) 1 J' ( )
supe 5 o (%5

r}and h > 0. Since g hasa

K

< sups J ( ) M((r+1)x) -MQ@(r+1)y) 4 | (28)
xe[R

<sup j < ) MQ2(r+1)(x—-y)) dy <C.
xe[R

Hence we have only to show that

1 x y\ d
K = M((’“)")—UR"‘(—,—) By <C,
supe ; o dya¢(y) y| <
x €R,
(29)
for every « € {0,1,...,r} and h > 0. Let S; = {y : [x — y| <
LS, ={y:lx -yl > 1land (1/2)|x] < |y|} and S5 = {y :

|x — y| > 1 and (1/2)|x| > |y|}. Then, by (18), we have

x€R

1 x y\ d*
I M((r+1)x)_“R ( ) d ‘
supe z o —dyaqS(y) y

< gsupe
x€R

M((r+1)x) 1 (30)
=qgsupe HXE(J +J +J>
xeR N S, S3

*M(l((xfy)/h))e*M@(Hl)y)dy

1 - _ .
M((7+1)x)ﬁ Je MU(x=p)/h)) , M(Z(r+1)y)dy

xXe

=g +L+1).
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By a simple change of variable, we have

1 - . —
I, = sup M@0 J ¢ MG/ MU+ g
x€R h S,
< supl J e‘M(l((x—y)/h))eM(z(rH)(x_y))dy
xeR S, (31)
1
1 _
< 2eM(z(r+1)) J e M(l(t/h))dt _ ZeM(Z(”l))
o h
1/h 1
X J e MWy <.
0
Since (1/2)|x| < |yl and (1/2)|y| < |x — y| on S,, then
1 - — -
I, = sup M@+ 1 j ¢ MUG=Y)/) g =-MC(r+13) g,
x€R h S,
1 _ — —_
< sup M+10 1 J' ¢ MUG=PI =M+ g, 3
x€R h S,

1 _
L[ g <,
N

for sufficiently large I. Since (1/2)|x| > |x — y| on S;, then

I, = sup eM((r+l)x)l

J e—M(l((X—y)/h))e—M(Z(Hl)y)dy
xeR h s,

<supe
x€R

1 _ -
M((r+l)x)ﬁe M((l/Z)(X/h))J e M((r+1)y)dy (33)

S

1 _
< Cgﬁ L e MerI gy <
3

for sufficiently large /. O

4. Approximation Order of %7 &(R)

A space of functions S is called shift invariant if it is invariant
under all integer translate, that is,

feS—= f(+k)eS VkeZ (34)

The principal shift-invariant subspaces S = S(¢) are
generated by the closure of the linear span of the shifts of ¢.
The stationary ladder of spaces {S"(¢) : h > 0} is given by

Sh(qb):{f(Z):feS}. (35)

To rate the efficiency for approximation of such spaces,
the concept of approximation order is widely used. We say
that the scale of the space S"(¢) provides approximation order
k in F if for every sufficiently smooth f,

. k
b = glls < G >0 (36)

where C = C(f) > 0. For further details about the theory on
the approximation order provided by shift-invariant spaces,

we refer to [15, 16]. We will focus our attention to the so-called
approximation order of an integral operator.
Let K be an integral operator of the following form

(KN @) = [Ky) f(Ddy xeR @7

We assume that K(x —k, y) = K(x, y+k), he Z, x,y €
R. For h > 0, we define

Ky, = 0nKoy (38)

where g is the scaling operator g, f = f(-/h) . We say that the
integral operator K defined by (37) provides approximation
order k in F if for every sufficiently smooth f,

IKuf = fllp <CH, h>o, (39)

where C = C(f) > 0. For further details about the theory
on the approximation order provided by integral or kernel
operator, we refer to [17, 18].

Definition 10 (see [4]). Let f € %R/(R). Let K(x, y), x,y,€
R, be the kernel of an integral operator K : % ?M'(R) -
', (R). Kf is given by (Kf,¢) = (f, K¢). We say that the
operator K provides approximation order k in % ;VI'(R) if

sup  |(Kyfog) — (f )] < CHE,
ol i, (40)

h>0,

IK.f - £]

rik | =
‘%M

where the constant C = C(f) > 0.

We will now show that the kernel of an integral operator
K:% ;VII(IR) - RA’(R) provides approximation order in
A (R).

Theorem 11. Let ¢ € F ;}k(R) with compact support such
that the integer shifts of ¢ form an orthogonal basis of S(¢)
with respect to the inner product in L*(R). Assume that d(x) =
Y nen 6P (2x — k) for some sequence {c,},cn- Let

K(xy)=Y¢x-Dé(y-1), xyeR (4

lez

be the kernel of the integral operator given by (37). Then K
provides approximation order k in K M(R).

Proof. Firstly, we will show that

J =Ky - ¢l

F

= sup e | (K, (5,7), 6 () -6 )| (a2)

x€R

< Cllé|

k
s
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where ¢ € H; ™k ke N.If we accept the result (42) for a
moment, it follows that for f € %?M’(R) C %;}k "(R), we

have
|<th - f’¢>| = |<f>Kh¢ - ¢>|
X (43)
<[l UK = B, < CHE9)
hence
IKif = flye = sup [(Knfig) = (fi9)] < CH,
||¢”5r;2k:1 (44)

h>0,

which implies the conclusion.

Since {SZ_I (¢) : j € Z} satisty the conditions of (M, r-)
regular MRA of L*(R) with S(¢) = V;, we can apply (21) to
the operator K, that is,

d

)dy

(45)

%J( >5y

where g and R* are given in (21). For0 < a < 7,
g g

ey | d*
J = supe™™ - (K (6.2),¢ () -6 ()
x€R X
M(rx) l xX—-)
<swpe |1 [9(*37)
d° d°
- d
b)) o
M(rx) l o u
Tsupe hJR< h )
d° d*
X(dy"‘ = v ¢(y) _)dyl
=]+

(46)

In order to estimate J;, we consider g € 2(R) with
Jg(x)dx = 1and fg(x)x“dx =0,0 < |a| < max{r,k - 1}.

Let ¢ be a constant such that supg < [—c,c]. If we assume
h € (0, 1), the smoothness of ¢ € %;}k(ﬂ%) c C"*(R) implies

]1 = sup eM(rhx)

hxeR

LMSC g(x-y)

( )

dy

—_— d‘x
yehy D*

¢ (»)

y=hx

ngc g(x-y)

o+1

(-0 o)

y=hx

k-1

(y-x)

hk . dochk 1
k—-1)!

dyoc+k 1¢ (y)

y=hx

_ k a+k
(y-x" xd ) dy
y=£(»)

t e xh dmﬁb(y)

dy
y=E(»)

d(x+k

k
M(rhx) C c hk
d ya+k

< supe

Su
hxeR k! P

f(y) €[hx—hc,hx+hc]

40)

o+

K
c
= C—'hksup M sup

seER te[s—c,s+c]

k
"

dtot+

-cS % h sup ™™ sup (eM(")eM(m

seR te[s—c,s+c]

dtx+k
)

4ot +k
)

C _ _
<CcZ hksup eM(rs)e M(r(|s| c))sup< M(rt)

seR teR
=C¢| Kk
(47)
where &(y) = hx + Oh(y — x) € [hx — hc, hx + hc] for some

6 € (0,1) and C, = C(c*/k)HFsup, peMe M=) o0,

To show the finiteness of C; in the last statement, we use

sup eM(rs —M(r(|s|-c
seR
< sup eM(rS)e—M(V(ISI—C))
Is|<c



International Journal of Mathematics and Mathematical Sciences 7

+sup eM(rS)e—M(r(ISI—C))

|s|>c

< sup M9 Mulls-0)

|s|<c

+sup eM(rS)e—M(r(ISI—C))

|s|>c

< eM(rc) + e—M(rc).

(48)

We will estimate ], by using the following facts. Since ¢
has a compact support, there exists M > 0 such that K(x, y) =
0 for |x — y| > M. Also, by the choice of g and property (c) of
the reproducing kernel g,, we have

[o4

(04 S d S
JR (x,y)y'dy = o IK(x)y)y dy

[

o jg(x-y)y dy

a da*
_ s _ t) x°dt
dx"‘x dx® J g( ) x
- jxaxs_;;axs:(), 0<s<r+k-1.
(49)
Hence
J, = sup ™™ J R*(x,y)
hxeR
( o0l ~Lo0 )dy[
dy y=hy dy y=hx
= sup M) J R (x,y)
hxeR
(( ) d(x+l ( )
x| (y—x) xh———¢(y
dy ! y=hx
(y _ x)k’l 1 thJrkfl
+o k1) dy"‘+k‘1¢(y) S
(y- x)k k d**
+ T xh dy“+k¢(y) dy
: y=£(y)
K M(rhx) a k
= —supe J R*(x,y) (y - x)
k! hxeR |x—ylsM
doH—k
X w$() dy‘
4 y=E(y)
MFR* ) | A%
< 0 sup  sup M) a a+k¢()’)
+ hxeR hx<{(y)<hy Y y=&(y)

X

| R w02

1k M) ~MOsio) Mo | 4
< C'=Hsup e M gyp [ MV t
' Sap ek el
= G, |¢]l 57755
(50)
O
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