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The purpose of this paper is to study n-dimensional QR-submanifolds of (𝑝 − 1) QR-dimension in a quaternionic projective space
QP(𝑛+𝑝)/4 and especially to determine such submanifolds under some curvature conditions.

1. Introduction

Let 𝑀 be a connected real 𝑛-dimensional submanifold of
real codimension 𝑝 of a quaternionic Kähler manifold 𝑀

with quaternionic Kähler structure {𝐹, 𝐺,𝐻}. If there exists
an 𝑟-dimensional normal distribution ] of the normal bundle
𝑇𝑀
⊥ such that

𝐹]𝑥 ⊂ ]𝑥, 𝐺]𝑥 ⊂ ]𝑥, 𝐻]𝑥 ⊂ ]𝑥,

𝐹]
⊥

𝑥 ⊂ 𝑇𝑥𝑀, 𝐺]
⊥

𝑥 ⊂ 𝑇𝑥𝑀, 𝐻]
⊥

𝑥 ⊂ 𝑇𝑥𝑀
(1)

at each point 𝑥 in 𝑀, then 𝑀 is called a QR-submanifold
of 𝑟 QR-dimension, where ]⊥ denotes the complementary
orthogonal distribution to ] in 𝑇𝑀⊥ (cf. [1–3]). Real hyper-
surfaces, which are typical examples of QR-submanifold with
𝑟 = 0, have been investigated by many authors (cf. [2–9]) in
connection with the shape operator and the induced almost
contact 3-structure (for definition, see [10–13]). In their paper
[2, 3], Kwon and Pak had studied QR-submanifolds of (𝑝 −
1) QR-dimension isometrically immersed in a quaternionic
projective space QP(𝑛+𝑝)/4 and proved the following theorem
as a quaternionic analogy to theorems given in [14, 15], which
are natural extensions of theorems proved in [6] to the case

of QR-submanifolds with (𝑝 − 1) QR-dimension and also
extensions of theorems in [16].

Theorem K-P. Let 𝑀 be an 𝑛-dimensional 𝑄𝑅-submanifold
of (𝑝 − 1) 𝑄𝑅-dimension isometrically immersed in a quater-
nionic projective space𝑄𝑃(𝑛+𝑝)/4, and let the normal vector field
𝑁1 be parallel with respect to the normal connection. If the
shape operator 𝐴1 corresponding to𝑁1 satisfies

𝐴1𝜙 = 𝜙𝐴1, 𝐴1𝜓 = 𝜓𝐴1, 𝐴1𝜃 = 𝜃𝐴1, (2)

then 𝜋−1(𝑀) is locally a product of 𝑀1 × 𝑀2
where 𝑀1 and 𝑀2 belong to some (4𝑛1 + 3)- and (4𝑛2 + 3)-
dimensional spheres (𝜋 is the Hopf fibration 𝑆𝑛+𝑝+3(1) →

𝑄𝑃(𝑛+𝑝)/4).
On the other hand, when 𝑀 is a real hypersurface

of QP(𝑛+𝑝)/4, if 𝜋−1(𝑀) is (1) an Einstein space or (2) a
locally symmetric space, then 𝜋−1(𝑀) has a parallel second
fundamental form (cf. [4, 6, 7, 9]). Projecting the quantities
on 𝜋−1(𝑀) onto 𝑀 in QP(𝑛+𝑝)/4, we can consider QR-
submanifolds of (𝑝 − 1) QR-dimension with the conditions
corresponding to (1) or (2). In this paper, we will study such
QR-submanifolds isometrically immersed in QP(𝑛+𝑝)/4 and
obtainTheorem 3 and other results stated in the last Section 5
as quaternionic analogies to theorems given in [16, 17] and as
the extensions of theorems given in [18] by using Theorem
K-P.
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2. Preliminaries

Let 𝑀 be a real (𝑛 + 𝑝)-dimensional quaternionic Kähler
manifold.Then, by definition, there is a 3-dimensional vector
bundle 𝑉 consisting of tensor fields of type (1, 1) over 𝑀
satisfying the following conditions (a), (b), and (c).

(a) In any coordinate neighborhood U, there is a local
basis {𝐹, 𝐺,𝐻} of 𝑉 such that

𝐹
2
= −𝐼, 𝐺

2
= −𝐼, 𝐻

2
= −𝐼,

𝐹𝐺 = −𝐺𝐹 = 𝐻, 𝐺𝐻 = −𝐻𝐺 = 𝐹,

𝐻𝐹 = −𝐹𝐻 = 𝐺.

(3)

(b) There is a Riemannianmetric𝑔which isHermitewith
respect to all of 𝐹, 𝐺, and𝐻.

(c) For the Riemannian connection ∇ with respect to 𝑔,

(

∇𝐹

∇𝐺

∇𝐻

) = (

0 𝑟 −𝑞

−𝑟 0 𝑝

𝑞 −𝑝 0

)(

𝐹

𝐺

𝐻

) , (4)

where 𝑝, 𝑞, and 𝑟 are local 1-forms defined inU. Such
a local basis {𝐹, 𝐺,𝐻} is called a canonical local basis
of the bundle 𝑉 inU (cf. [10, 19, 20]).

For canonical local bases {𝐹, 𝐺,𝐻} and { 󸀠𝐹, 󸀠𝐺, 󸀠𝐻} of 𝑉
in coordinate neighborhoodsU and

󸀠
U, it follows that inU∩

󸀠
U

(

󸀠
𝐹
󸀠
𝐺
󸀠
𝐻

) = (𝑠𝑥𝑦)(

𝐹

𝐺

𝐻

) (𝑥, 𝑦 = 1, 2, 3) , (5)

where 𝑠𝑥𝑦 are local differentiable functionswith (𝑠𝑥𝑦) ∈ SO(3)
as a consequence of (3). As is well known (cf. [19]), every
quaternionic Kähler manifold is orientable.

Now let𝑀 be an 𝑛-dimensional QR-submanifold of (𝑝 −
1) QR-dimension isometrically immersed in 𝑀. Then by
definition, there is a unit normal vector field 𝑁 such that
]⊥𝑥 = Span{𝑁} at each point 𝑥 in𝑀. We set

𝑈 = −𝐹𝑁, 𝑉 = −𝐺𝑁, 𝑊 = −𝐻𝑁. (6)

Denoting by D𝑥 the maximal quaternionic invariant sub-
space 𝑇𝑥𝑀 ∩ 𝐹𝑇𝑥𝑀 ∩ 𝐺𝑇𝑥𝑀 ∩ 𝐻𝑇𝑥𝑀 of 𝑇𝑥𝑀, we have
D⊥𝑥 = Span{𝑈, 𝑉,𝑊}, where D⊥𝑥 means the complementary
orthogonal subspace toD𝑥 in 𝑇𝑥𝑀 (cf. [1–3]). Thus, we have

𝑇𝑥𝑀 = D𝑥 ⊕ Span {𝑈, 𝑉,𝑊} , 𝑥 ∈ 𝑀, (7)

which together with (3) and (6) implies

𝐹𝑇𝑥𝑀, 𝐺𝑇𝑥𝑀, 𝐻𝑇𝑥𝑀 ⊂ 𝑇𝑥𝑀⊕ Span {𝑁} . (8)

Therefore, for any tangent vector field 𝑋 and for a local
orthonormal basis {𝑁𝛼}𝛼=1,...,𝑝 (𝑁1 := 𝑁) of normal vectors
to𝑀, we have

𝐹𝑋 = 𝜙𝑋 + 𝑢 (𝑋)𝑁,

𝐺𝑋 = 𝜓𝑋 + V (𝑋)𝑁,

𝐻𝑋 = 𝜃𝑋 + 𝑤 (𝑋)𝑁,

(9)

𝐹𝑁𝛼 = −𝑈𝛼 + 𝑃1𝑁𝛼,

𝐺𝑁𝛼 = −𝑉𝛼 + 𝑃2𝑁𝛼,

𝐻𝑁𝛼 = −𝑊𝛼 + 𝑃3𝑁𝛼,

(10)

(𝛼 = 1, . . . , 𝑝). Then it is easily seen that {𝜙, 𝜓, 𝜃} and
{𝑃1, 𝑃2, 𝑃3} are skew-symmetric endomorphisms acting on
𝑇𝑥𝑀 and𝑇𝑥𝑀

⊥, respectively.Moreover, the Hermitian prop-
erty of {𝐹, 𝐺,𝐻} implies

𝑔 (𝑋, 𝜙𝑈𝛼) = −𝑢 (𝑋) 𝑔 (𝑁1, 𝑃1𝑁𝛼) ,

𝑔 (𝑋, 𝜓𝑉𝛼) = −V (𝑋) 𝑔 (𝑁1, 𝑃2𝑁𝛼) , 𝛼 = 1, . . . , 𝑝,

𝑔 (𝑋, 𝜃𝑊𝛼) = −𝑤 (𝑋) 𝑔 (𝑁1, 𝑃3𝑁𝛼) ,

(11)

𝑔 (𝑈𝛼, 𝑈𝛽) = 𝛿𝛼𝛽 − 𝑔 (𝑃1𝑁𝛼, 𝑃1𝑁𝛽) ,

𝑔 (𝑉𝛼, 𝑉𝛽) = 𝛿𝛼𝛽 − 𝑔 (𝑃2𝑁𝛼, 𝑃2𝑁𝛽) , 𝛼, 𝛽 = 1, . . . , 𝑝,

𝑔 (𝑊𝛼,𝑊𝛽) = 𝛿𝛼𝛽 − 𝑔 (𝑃3𝑁𝛼, 𝑃3𝑁𝛽) .

(12)

Also, from the hermitian properties 𝑔(𝐹𝑋,𝑁𝛼) =

−𝑔(𝑋, 𝐹𝑁𝛼), 𝑔(𝐺𝑋,𝑁𝛼) = −𝑔(𝑋, 𝐺𝑁𝛼), and 𝑔(𝐻𝑋,𝑁𝛼) =

−𝑔(𝑋,𝐻𝑁𝛼), it follows that

𝑔 (𝑋,𝑈𝛼) = 𝑢 (𝑋) 𝛿1𝛼, 𝑔 (𝑋, 𝑉𝛼) = V (𝑋) 𝛿1𝛼,

𝑔 (𝑋,𝑊𝛼) = 𝑤 (𝑋) 𝛿1𝛼,
(13)

and hence,

𝑔 (𝑈1, 𝑋) = 𝑢 (𝑋) , 𝑔 (𝑉1, 𝑋) = V (𝑋) ,

𝑔 (𝑊1, 𝑋) = 𝑤 (𝑋) , 𝑈𝛼 = 0,

𝑉𝛼 = 0, 𝑊𝛼 = 0, 𝛼 = 2, . . . , 𝑝.

(14)

On the other hand, comparing (6) and (10) with 𝛼 = 1, we
have 𝑈1 = 𝑈, 𝑉1 = 𝑉, and𝑊1 = 𝑊, which together with (6)
and (14) implies

𝑔 (𝑈,𝑋) = 𝑢 (𝑋) , 𝑔 (𝑉,𝑋) = V (𝑋)

𝑔 (𝑊,𝑋) = 𝑤 (𝑋) , 𝑢 (𝑈) = 1, V (𝑉) = 1, 𝑤 (𝑊) = 1.

(15)

In the sequel, we will use the notations 𝑈, 𝑉, and𝑊 instead
of 𝑈1, 𝑉1, and𝑊1.

Next, applying𝐹 to the first equation of (9) and using (10),
(14), and (15), we have

𝜙
2
𝑋 = −𝑋 + 𝑢 (𝑋)𝑈, 𝑢 (𝑋) 𝑃1𝑁 = −𝑢 (𝜙𝑋)𝑁. (16)
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Similarly, we have

𝜙
2
𝑋 = −𝑋 + 𝑢 (𝑋)𝑈, 𝜓

2
𝑋 = −𝑋 + V (𝑋)𝑉,

𝜃
2
𝑋 = −𝑋 + 𝑤 (𝑋)𝑊,

(17)

𝑢 (𝑋) 𝑃1𝑁 = −𝑢 (𝜙𝑋)𝑁, V (𝑋) 𝑃2𝑁 = −V (𝜓𝑋)𝑁,

𝑤 (𝑋) 𝑃3𝑁 = −𝑤 (𝜃𝑋)𝑁,

(18)

from which, taking account of the skew symmetry of 𝑃1, 𝑃2,
and 𝑃3 and using (11), we also have

𝑢 (𝜙𝑋) = 0, V (𝜓𝑋) = 0, 𝑤 (𝜃𝑋) = 0,

𝜙𝑈 = 0, 𝜓𝑉 = 0, 𝜃𝑊 = 0, 𝑃1𝑁 = 0,

𝑃2𝑁 = 0, 𝑃3𝑁 = 0.

(19)

So (10) can be rewritten in the form

𝐹𝑁 = −𝑈, 𝐺𝑁 = −𝑉, 𝐻𝑁 = −𝑊,

𝐹𝑁𝛼 = 𝑃1𝑁𝛼, 𝐺𝑁𝛼 = 𝑃2𝑁𝛼, 𝐻𝑁𝛼 = 𝑃3𝑁𝛼

(20)

(𝛼 = 2, . . . , 𝑝). Applying 𝐺 and𝐻 to the first equation of (9)
and using (3), (9), and (20), we have

𝜃𝑋 + 𝑤 (𝑋)𝑁 = −𝜓 (𝜙𝑋) − V (𝜙𝑋)𝑁 + 𝑢 (𝑋)𝑉,

𝜓𝑋 + V (𝑋)𝑁 = 𝜃 (𝜙𝑋) + 𝑤 (𝜙𝑋)𝑁 − 𝑢 (𝑋)𝑊,
(21)

and consequently,

𝜓 (𝜙𝑋) = −𝜃𝑋 + 𝑢 (𝑋)𝑉, V (𝜙𝑋) = −𝑤 (𝑋) ,

𝜃 (𝜙𝑋) = 𝜓𝑋 + 𝑢 (𝑋)𝑊, 𝑤 (𝜙𝑋) = V (𝑋) .
(22)

Similarly, the other equations of (9) yield

𝜙 (𝜓𝑋) = 𝜃𝑋 + V (𝑋)𝑈, 𝑢 (𝜓𝑋) = 𝑤 (𝑋) ,

𝜃 (𝜓𝑋) = −𝜙𝑋 + V (𝑋)𝑊, 𝑤 (𝜓𝑋) = −𝑢 (𝑋) ,

𝜙 (𝜃𝑋) = −𝜓𝑋 + 𝑤 (𝑋)𝑈, 𝑢 (𝜃𝑋) = −V (𝑋) ,

𝜓 (𝜃𝑋) = 𝜙𝑋 + 𝑤 (𝑋)𝑉, V (𝜃𝑋) = 𝑢 (𝑋) .

(23)

From the first three equations of (20), we also have

𝜓𝑈 = −𝑊, V (𝑈) = 0, 𝜃𝑈 = 𝑉,

𝑤 (𝑈) = 0, 𝜙𝑉 = 𝑊, 𝑢 (𝑉) = 0,

𝜃𝑉 = −𝑈, 𝑤 (𝑉) = 0, 𝜙𝑊 = −𝑉,

𝑢 (𝑊) = 0, 𝜓𝑊 = 𝑈, V (𝑊) = 0.

(24)

Equations (14)–(17), (19), and (22)–(24) tell us that 𝑀
admits the so-called almost contact 3-structure and conse-
quently 𝑛 = 4𝑚 + 3 for some integer𝑚 (cf. [12]).

Now let ∇ be the Levi-Civita connection on 𝑀, and let
∇⊥ be the normal connection induced from ∇ in the normal

bundle of𝑀.Then Gauss andWeingarten formulae are given
by

∇𝑋𝑌 = ∇𝑋𝑌 + ℎ (𝑋, 𝑌) , (25)

∇𝑋𝑁𝛼 = −𝐴𝛼𝑋 + ∇
⊥

𝑋𝑁𝛼, 𝛼 = 1, . . . , 𝑝, (26)

for 𝑋, 𝑌 tangent to 𝑀. Here ℎ denotes the second fun-
damental form and 𝐴𝛼 the shape operator corresponding
to 𝑁𝛼. They are related by ℎ(𝑋, 𝑌) = ∑

𝑝

𝛼=1 𝑔(𝐴𝛼𝑋,𝑌)𝑁𝛼.
Furthermore, put

∇
⊥

𝑋𝑁𝛼 =

𝑝

∑
𝛽=1

𝑠𝛼𝛽 (𝑋)𝑁𝛽, (27)

where (𝑠𝛼𝛽) is the skew-symmetric matrix of connection
forms of ∇⊥.

Differentiating the first equation of (9) covariantly and
using (4), (9), (10), (14) (25), and (26), we have

(∇𝑌𝜙)𝑋 = 𝑟 (𝑌) 𝜓𝑋 − 𝑞 (𝑌) 𝜃𝑋 + 𝑢 (𝑋)𝐴1𝑌

− 𝑔 (𝐴1𝑌,𝑋)𝑈,

(∇𝑌𝑢)𝑋 = 𝑟 (𝑌) V (𝑋) − 𝑞 (𝑌)𝑤 (𝑋) + 𝑔 (𝜙𝐴1𝑌,𝑋) .

(28)

From the other equations of (9), we also have

(∇𝑌𝜓)𝑋 = − 𝑟 (𝑌) 𝜙𝑋 + 𝑝 (𝑌) 𝜃𝑋 + V (𝑋)𝐴1𝑌

− 𝑔 (𝐴1𝑌,𝑋)𝑉,

(∇𝑌V)𝑋 = −𝑟 (𝑌) 𝑢 (𝑋) + 𝑝 (𝑌)𝑤 (𝑋) + 𝑔 (𝜓𝐴1𝑌,𝑋) ,

(∇𝑌𝜃)𝑋 = 𝑞 (𝑌) 𝜙𝑋 − 𝑝 (𝑌)𝜓𝑋 + 𝑤 (𝑋)𝐴1𝑌

− 𝑔 (𝐴1𝑌,𝑋)𝑊,

(∇𝑌𝑤)𝑋 = 𝑞 (𝑌) 𝑢 (𝑋) − 𝑝 (𝑌) V (𝑋) + 𝑔 (𝜃𝐴1𝑌,𝑋) .

(29)

Next, differentiating the first equation of (20) covariantly
and comparing the tangential and normal parts, we have

∇𝑌𝑈 = 𝑟 (𝑌)𝑉 − 𝑞 (𝑌)𝑊 + 𝜙𝐴1𝑌,

𝑔 (𝐴𝛼𝑈,𝑌) = −

𝑝

∑
𝛽=2

𝑠1𝛽 (𝑌) 𝑃1𝛽𝛼, 𝛼 = 2, . . . , 𝑝.
(30)

From the other equations of (20), we have similarly

∇𝑌𝑉 = −𝑟 (𝑌)𝑈 + 𝑝 (𝑌)𝑊 + 𝜓𝐴1𝑌,

𝑔 (𝐴𝛼𝑉,𝑌) = −

𝑝

∑
𝛽=2

𝑠1𝛽 (𝑌) 𝑃2𝛽𝛼, 𝛼 = 2, . . . , 𝑝,

∇𝑌𝑊 = 𝑞 (𝑌)𝑈 − 𝑝 (𝑌)𝑉 + 𝜃𝐴1𝑌,

𝑔 (𝐴𝛼𝑊,𝑌) = −

𝑝

∑
𝛽=2

𝑠1𝛽 (𝑌) 𝑃3𝛽𝛼, 𝛼 = 2, . . . , 𝑝.

(31)



4 International Journal of Mathematics and Mathematical Sciences

Finally the equation of Gauss is given as follows (cf. [21]):

𝑔 (𝑅 (𝑋, 𝑌)𝑍,𝑊)

= 𝑔 (𝑅 (𝑋, 𝑌)𝑍,𝑊)

+∑
𝛼

{𝑔 (𝐴𝛼𝑋,𝑍) 𝑔 (𝐴𝛼𝑌,𝑊)

−𝑔 (𝐴𝛼𝑌,𝑍) 𝑔 (𝐴𝛼𝑋,𝑊)} ,

(32)

for 𝑋,𝑌, and 𝑍 tangent to 𝑀, where 𝑅 and 𝑅 denote the
Riemannian curvature tensor of𝑀 and𝑀, respectively.

In the rest of this paper we assume that the distinguished
normal vector field 𝑁1 := 𝑁 is parallel with respect to the
normal connection ∇⊥. Then it follows from (27) that 𝑠1𝛽 = 0,
and consequently, (30)-(31) imply

𝐴𝛼𝑈 = 0, 𝐴𝛼𝑉 = 0, 𝐴𝛼𝑊 = 0, 𝛼 = 2, . . . , 𝑝.

(33)

On the other hand, since the curvature tensor 𝑅 of
QP(𝑛+𝑝)/4 is of the form

𝑅 (𝑋, 𝑌)𝑍 = 𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋,𝑍)𝑌

+ 𝑔 (𝐹𝑌, 𝑍) 𝐹𝑋 − 𝑔 (𝐹𝑋,𝑍)𝐹𝑌

− 2𝑔 (𝐹𝑋, 𝑌) 𝐹𝑍 + 𝑔 (𝐺𝑌,𝑍)𝐺𝑋

− 𝑔 (𝐺𝑋,𝑍)𝐺𝑌 − 2𝑔 (𝐺𝑋, 𝑌)𝐺𝑍

+ 𝑔 (𝐻𝑌,𝑍)𝐻𝑋 − 𝑔 (𝐻𝑋,𝑍)𝐻𝑌

− 2𝑔 (𝐻𝑋,𝑌)𝐻𝑍

(34)

for𝑋,𝑌, and 𝑍 tangent to QP(𝑛+𝑝)/4, (32) reduces to

𝑅 (𝑋, 𝑌)𝑍 = 𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌

+ 𝑔 (𝜙𝑌, 𝑍) 𝜙𝑋 − 𝑔 (𝜙𝑋,𝑍) 𝜙𝑌

− 2𝑔 (𝜙𝑋, 𝑌) 𝜙𝑍 + 𝑔 (𝜓𝑌, 𝑍)𝜓𝑋

− 𝑔 (𝜓𝑋,𝑍)𝜓𝑌 − 2𝑔 (𝜓𝑋, 𝑌)𝜓𝑍

+ 𝑔 (𝜃𝑌, 𝑍) 𝜃𝑋 − 𝑔 (𝜃𝑋, 𝑍) 𝜃𝑌

− 2𝑔 (𝜃𝑋, 𝑌) 𝜃𝑍

+∑
𝛼

{𝑔 (𝐴𝛼𝑌,𝑍)𝐴𝛼𝑋 − 𝑔 (𝐴𝛼𝑋,𝑍)𝐴𝛼𝑌} .

(35)

3. Fibrations and Immersions

Fromnowon 𝑛-dimensionalQR-submanifolds of (𝑝−1) QR-
dimension isometrically immersed in QP(𝑛+𝑝)/4 only will be
considered. Moreover, we will use the assumption and the
notations as in Section 2.

Let 𝑆𝑛+𝑝+3(𝑎) be the hypersphere of radius 𝑎 (>0) in
𝑄(𝑛+𝑝+4)/4 the quaternionic space of quaternionic dimension

(𝑛 + 𝑝 + 4)/4, which is identified with the Euclidean (𝑛 +

𝑝 + 4)-spaceR𝑛+𝑝+4. The unit sphere 𝑆𝑛+𝑝+3(1) will be briefly
denoted by 𝑆𝑛+𝑝+3. Let 𝜋̃ : 𝑆𝑛+𝑝+3 → QP(𝑛+𝑝)/4 be the
natural projection of 𝑆𝑛+𝑝+3 onto QP(𝑛+𝑝)/4 defined by the
Hopf fibration 𝑆3 → 𝑆

𝑛+𝑝+3
→ QP(𝑛+𝑝)/4. As is well known

(cf. [10, 11, 20]), 𝑆𝑛+𝑝+3 admits a Sasakian 3-structure whereby
𝜉, 𝜂, and 𝜁 are mutually orthogonal unit Killing vector fields.
Thus it follows that

∇̃
𝜉
𝜉 = 0, ∇̃𝜂𝜂 = 0, ∇̃

𝜁
𝜁 = 0,

∇̃
𝜁
𝜂 = −∇̃𝜂𝜁 = 𝜉, ∇̃

𝜉
𝜁 = −∇̃

𝜁
𝜉 = 𝜂,

∇̃𝜂𝜉 = −∇̃𝜉𝜂 = 𝜁,

(36)

where ∇̃ denotes the Riemannian connection with respect to
the canonical metric 𝑔 on 𝑆𝑛+𝑝+3 (cf. [6, 9–13]). Moreover,
each fibre 𝜋̃−1(𝑥) of 𝑥 in QP(𝑛+𝑝)/4 is a maximal integral
submanifold of the distribution spanned by 𝜉, 𝜂, and 𝜁. Thus
the base space QP(𝑛+𝑝)/4 admits the induced quaternionic
Kähler structure of constant 𝑄-sectional curvature 4 (cf.
[10, 11]). We have especially a fibration 𝜋 : 𝜋

−1(𝑀) →

𝑀 which is compatible with the Hopf fibration 𝜋̃. More
precisely speaking, 𝜋 : 𝜋

−1(𝑀) → 𝑀 is a fibration with
totally geodesic fibers such that the following diagram is
commutative:

𝜋
−1
(M) S

n+p+3

M QP(n+p)/4
i

i
󳰀

𝜋̃𝜋 (37)

where 𝑖󸀠 : 𝜋−1(𝑀) → 𝑆𝑛+𝑝+3 and 𝑖 : 𝑀 → QP(𝑛+𝑝)/4 are
isometric immersions.

Now, let 𝜉, 𝜂, and 𝜁 be the unit vector fields tangent to the
fibers of 𝜋−1(𝑀) such that 𝑖󸀠∗𝜉 = 𝜉, 𝑖󸀠∗𝜂 = 𝜂, and 𝑖󸀠∗𝜁 = 𝜁.
(In what follows, we will again delete the 𝑖󸀠 and 𝑖󸀠∗ in our
notation.) Furthermore, we denote by 𝑋∗ the horizontal lift
of a vector field 𝑋 tangent to 𝑀. Then, the horizontal lifts
𝑁
∗
𝛼 (𝛼 = 1, . . . , 𝑝) of the normal vectors 𝑁𝛼 to 𝑀 form an

orthonormal basis of normal vectors to 𝜋−1(𝑀) in 𝑆𝑛+𝑝+3. Let
𝐴󸀠𝛼 and 𝑠

󸀠
𝛼𝛽 be the corresponding shape operators and normal

connection forms, respectively. Then, as shown in [3, 9, 22],
the fundamental equations for the submersion 𝜋 are given by

󸀠
∇𝑋∗𝑌

∗
= (∇𝑋𝑌)

∗
+ 𝑔
󸀠
((𝜙𝑋)

∗
, 𝑌
∗
) 𝜉 + 𝑔

󸀠
((𝜓𝑋)

∗
, 𝑌
∗
) 𝜂

+ 𝑔
󸀠
((𝜃𝑋)

∗
, 𝑌
∗
) 𝜁,

(38)
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[𝑋
∗
, 𝑌
∗
] = [𝑋, 𝑌]

∗
+ 2𝑔
󸀠
((𝜙𝑋)

∗
, 𝑌
∗
) 𝜉

+ 2𝑔
󸀠
((𝜓𝑋)

∗
, 𝑌
∗
) 𝜂 + 2𝑔

󸀠
((𝜃𝑋)

∗
, 𝑌
∗
) 𝜁,

(39)

󸀠
∇𝑋∗𝜉 =

󸀠
∇𝜉𝑋
∗
= −(𝜙𝑋)

∗
,

󸀠
∇𝑋∗𝜂 =

󸀠
∇𝜂𝑋
∗
= −(𝜓𝑋)

∗
,

󸀠
∇𝑋∗𝜁 =

󸀠
∇𝜁𝑋
∗
= −(𝜃𝑋)

∗
,

(40)

[𝑋
∗
, 𝜉] = 0, [𝑋

∗
, 𝜂] = 0, [𝑋

∗
, 𝜁] = 0, (41)

where 𝑔󸀠 denotes the Riemannian metric of 𝜋−1(𝑀) induced
from 𝑔 in 𝑆𝑛+𝑝+3 and 󸀠∇ the Levi-Civita connection with
respect to𝑔󸀠.The same equations are valid for the submersion
𝜋̃ by replacing 𝜙, 𝜓, and 𝜃 (resp., 𝜉, 𝜂, and 𝜁) with 𝐹,𝐺, and𝐻
(resp., 𝜉, 𝜂, and 𝜁), respectively.We denote by 󸀠∇

⊥ the normal
connection of 𝜋−1(𝑀) induced from ∇̃. Since the diagram is
commutative, ∇̃𝑋∗𝑁

∗
𝛼 implies

󸀠
∇
⊥

𝑋∗
𝑁
∗

𝛼 − 𝐴
󸀠

𝛼𝑋
∗
= (∇𝑋𝑁𝛼)

∗
+ 𝑔 ((𝐹𝑋)

∗
, 𝑁
∗

𝛼 ) 𝜉

+ 𝑔 ((𝐺𝑋)
∗
, 𝑁
∗

𝛼 ) 𝜂 + 𝑔 ((𝐻𝑋)
∗
, 𝑁
∗

𝛼 ) 𝜁

= − (𝐴𝛼𝑋)
∗
+ 𝑔(𝑈𝛼, 𝑋)

∗
𝜉 + 𝑔(𝑉𝛼, 𝑋)

∗
𝜂

+ 𝑔(𝑊𝛼, 𝑋)
∗
𝜁 + (∇

⊥

𝑋𝑁𝛼)
∗

(42)

because of (10), (26), and (38), from which, comparing the
tangential part, we have

𝐴
󸀠

𝛼𝑋
∗
= (𝐴𝛼𝑋)

∗
− 𝑔(𝑈𝛼, 𝑋)

∗
𝜉

− 𝑔(𝑉𝛼, 𝑋)
∗
𝜂 − 𝑔(𝑊𝛼, 𝑋)

∗
𝜁.

(43)

Next, calculating ∇̃𝜉𝑁
∗
𝛼 and using (10), (26), and (40), we have

󸀠
∇
⊥

𝜉
𝑁
∗

𝛼 − 𝐴
󸀠

𝛼𝜉 = −(𝐹𝑁𝛼)
∗
= 𝑈
∗

𝛼 − (𝑃1𝑁𝛼)
∗
, (44)

which yields

𝐴
󸀠

𝛼𝜉 = −𝑈
∗

𝛼
(45)

and similarly

𝐴
󸀠

𝛼𝜉 = −𝑈
∗

𝛼 , 𝐴
󸀠

𝛼𝜂 = −𝑉
∗

𝛼 , 𝐴
󸀠

𝛼𝜁 = −𝑊
∗

𝛼 . (46)

Hence, (43) and (46) with 𝛼 = 1 imply

𝐴
󸀠

1𝑋
∗
= (𝐴1𝑋)

∗
− 𝑔(𝑈,𝑋)

∗
𝜉 − 𝑔(𝑉,𝑋)

∗
𝜂 − 𝑔(𝑊,𝑋)

∗
𝜁,

𝐴
󸀠

1𝜉 = −𝑈
∗
, 𝐴

󸀠

1𝜂 = −𝑉
∗
, 𝐴

󸀠

1𝜁 = −𝑊
∗
.

(47)

4. Co-Gauss Equations for the Submersion
𝜋:𝜋
−1
(𝑀) → 𝑀

In this section, we derive the co-Gauss and co-Codazzi
equations of the submersion 𝜋 : 𝜋−1(𝑀) → 𝑀 for later use.

Differentiating (38) with𝑌 = 𝑈 covariantly along𝜋−1(𝑀)

and using (24), (38), and (39), we have

󸀠
∇𝑌∗
󸀠
∇𝑋∗𝑈

∗

= (∇𝑌∇𝑋𝑈)
∗
+ {V (𝑋) 𝜃𝑌 − 𝑤 (𝑋)𝜓𝑌}

∗

+ 𝑔(𝜙𝑌, ∇𝑋𝑈)
∗
𝜉

+ {𝑔 (𝜓𝑌, ∇𝑋𝑈) + 𝑔 (∇𝑌𝑋,𝑊) + 𝑔 (𝑋, ∇𝑌𝑊)}
∗
𝜂

+ {𝑔 (𝜃𝑌, ∇𝑋𝑈) − 𝑔 (∇𝑌𝑋,𝑉) − 𝑔 (𝑋, ∇𝑌𝑉)}
∗
𝜁.

(48)

Similarly (38) with 𝑌 = 𝑉 and (38) with 𝑌 = 𝑊 give

󸀠
∇𝑌∗
󸀠
∇𝑋∗𝑉

∗

= (∇𝑌∇𝑋𝑉)
∗
+ {𝑤 (𝑋) 𝜙𝑌 − 𝑢 (𝑋) 𝜃𝑌}

∗

+ {𝑔 (𝜙𝑌, ∇𝑋𝑉) − 𝑔 (∇𝑌𝑋,𝑊) − 𝑔 (𝑋, ∇𝑌𝑊)}
∗
𝜉

+ 𝑔(𝜓𝑌, ∇𝑋𝑉)
∗
𝜂

+ {𝑔 (𝜃𝑌, ∇𝑋𝑉) + 𝑔 (∇𝑌𝑋,𝑈) + 𝑔 (𝑋, ∇𝑌𝑈)}
∗
𝜁,

(49)
󸀠
∇𝑌∗
󸀠
∇𝑋∗𝑊

∗

= (∇𝑌∇𝑋𝑊)
∗

− {V (𝑋) 𝜙𝑌 − 𝑢 (𝑋)𝜓𝑌}
∗

+ {𝑔 (𝜙𝑌, ∇𝑋𝑊) + 𝑔 (∇𝑌𝑋,𝑉) + 𝑔 (𝑋, ∇𝑌𝑉)}
∗
𝜉

+ {𝑔 (𝜓𝑌, ∇𝑋𝑊) − 𝑔 (∇𝑌𝑋,𝑈) − 𝑔 (𝑋, ∇𝑌𝑈)}
∗
𝜂

+ 𝑔(𝜃𝑌, ∇𝑋𝑊)
∗
𝜁,

(50)

respectively. On the other hand, it follows from (19), (24),
(38), and (39) that

󸀠
∇[𝑌∗ ,𝑋∗]𝑈

∗
= (∇[𝑌,𝑋]𝑈)

∗
+ 2𝑔(𝜓𝑌,𝑋)

∗
𝑊
∗

− 2𝑔(𝜃𝑌,𝑋)
∗
𝑉
∗
+ 𝑔([𝑌,𝑋],𝑊)

∗
𝜂

− 𝑔([𝑌,𝑋], 𝑉)
∗
𝜁,

(51)
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󸀠
∇[𝑌∗,𝑋∗]𝑉

∗
= (∇[𝑌,𝑋]𝑉)

∗
− 2𝑔(𝜙𝑌,𝑋)

∗
𝑊
∗

+ 2𝑔(𝜃𝑌,𝑋)
∗
𝑈
∗
− 𝑔([𝑌,𝑋] ,𝑊)

∗
𝜉

+ 𝑔([𝑌,𝑋] , 𝑈)
∗
𝜁,

(52)

󸀠
∇[𝑌∗,𝑋∗]𝑊

∗
= (∇[𝑌,𝑋]𝑊)

∗
+ 2𝑔(𝜙𝑌,𝑋)

∗
𝑉
∗

− 2𝑔(𝜓𝑌,𝑋)
∗
𝑈
∗
+ 𝑔([𝑌,𝑋] , 𝑉)

∗
𝜉

− 𝑔([𝑌,𝑋] , 𝑈)
∗
𝜂.

(53)

By means of (48) and (51), we have

󸀠
𝑅 (𝑌
∗
, 𝑋
∗
) 𝑈
∗
= {𝑅 (𝑌,𝑋)𝑈}

∗

+ {𝑤 (𝑌) 𝜓𝑋 − 𝑤 (𝑋)𝜓𝑌 − V (𝑌) 𝜃𝑋

+ V (𝑋) 𝜃𝑌 + 2𝑔 (𝜃𝑌,𝑋)𝑉

− 2𝑔 (𝜓𝑌,𝑋)𝑊}
∗

+ {𝑔 (𝜙𝑌, ∇𝑋𝑈) − 𝑔 (𝜙𝑋, ∇𝑌𝑈)}
∗
𝜉

+ {𝑔 (𝜓𝑌, ∇𝑋𝑈) − 𝑔 (𝜓𝑋, ∇𝑌𝑈)

+𝑔 (𝑋, ∇𝑌𝑊) − 𝑔 (𝑌, ∇𝑋𝑊)}
∗
𝜂

+ {𝑔 (𝜃𝑌, ∇𝑋𝑈) − 𝑔 (𝜃𝑋, ∇𝑌𝑈)

−𝑔(𝑋, ∇𝑌𝑉) + 𝑔(𝑌, ∇𝑋𝑉)}
∗
𝜁,

(54)

where 󸀠𝑅 denotes the curvature tensor of 𝜋−1(𝑀) with
respect to the connection 󸀠∇. Using (30), (31), (33), and (35),
we can easily see that

󸀠
𝑅 (𝑌
∗
, 𝑋
∗
) 𝑈
∗
= {𝑢 (𝑋)𝑌 − 𝑢 (𝑌)𝑋

+ 𝑢 (𝐴1𝑋)𝐴1𝑌 − 𝑢 (𝐴1𝑌)𝐴1𝑋}
∗

+ {𝑟 (𝑌)𝑤 (𝑋) − 𝑟 (𝑋)𝑤 (𝑌)

+ 𝑞 (𝑌) V (𝑋) − 𝑞 (𝑋) V (𝑌)

+ 𝑢 (𝑋) 𝑢 (𝐴1𝑌) − 𝑢 (𝑌) 𝑢 (𝐴1𝑋)}
∗
𝜉

+ {𝑝 (𝑋) V (𝑌) − 𝑝 (𝑌) V (𝑋)

+ V (𝑋) 𝑢 (𝐴1𝑌) − V (𝑌) 𝑢 (𝐴1𝑋)}
∗
𝜂

+ {𝑝 (𝑋)𝑤 (𝑌) − 𝑝 (𝑌)𝑤 (𝑋)

+ 𝑤(𝑋)𝑢(𝐴1𝑌) − 𝑤(𝑌)𝑢(𝐴1𝑋)}
∗
𝜁.

(55)

By the same method, we can easily verify that (49), (50), (52),
and (53) yield

󸀠
𝑅 (𝑌
∗
, 𝑋
∗
) 𝑉
∗
= {V (𝑋) 𝑌 − V (𝑌)𝑋 + V (𝐴1𝑋)𝐴1𝑌

− V (𝐴1𝑌)𝐴1𝑋}
∗

+ {𝑞 (𝑋) 𝑢 (𝑌) − 𝑞 (𝑌) 𝑢 (𝑋)

− 𝑢 (𝑌) V (𝐴1𝑋) + 𝑢 (𝑋) V (𝐴1𝑌)}
∗
𝜉

+ {𝑟 (𝑌)𝑤 (𝑋) − 𝑟 (𝑋)𝑤 (𝑌)

+ 𝑝 (𝑌) 𝑢 (𝑋) − 𝑝 (𝑋) 𝑢 (𝑌)

+ V (𝑋) V (𝐴1𝑌) − V (𝑌) V (𝐴1𝑋)}
∗
𝜂

+ {𝑞 (𝑋)𝑤 (𝑌) − 𝑞 (𝑌)𝑤 (𝑋)

− 𝑤 (𝑌) V (𝐴1𝑋) + 𝑤 (𝑋) V (𝐴1𝑌)}
∗
𝜁,

󸀠
𝑅 (𝑌
∗
, 𝑋
∗
)𝑊
∗
= {𝑤 (𝑋)𝑌 − 𝑤 (𝑌)𝑋 + 𝑤 (𝐴1𝑋)𝐴1𝑌

− 𝑤 (𝐴1𝑌)𝐴1𝑋}
∗

+ {𝑟 (𝑋) 𝑢 (𝑌) − 𝑟 (𝑌) 𝑢 (𝑋)

− 𝑢 (𝑌)𝑤 (𝐴1𝑋) + 𝑢 (𝑋)𝑤 (𝐴1𝑌)}
∗
𝜉

+ {𝑟 (𝑋) V (𝑌) − 𝑟 (𝑌) V (𝑋)

− V (𝑌)𝑤 (𝐴1𝑋) + V (𝑋)𝑤 (𝐴1𝑌)}
∗
𝜂

+ {𝑞 (𝑌) V (𝑋) − 𝑞 (𝑋) V (𝑌)

+ 𝑝 (𝑌) 𝑢 (𝑋) − 𝑝 (𝑋) 𝑢 (𝑌)

+ 𝑤(𝑋)𝑤(𝐴1𝑌) − 𝑤(𝑌)𝑤(𝐴1𝑋)}
∗
𝜁.

(56)

Differentiating (38)with𝑋 = 𝑈 covariantly along𝜋−1(𝑀)

and using (24), we have

󸀠
∇𝑌∗
󸀠
∇𝑈∗𝑋

∗

= (∇𝑌∇𝑈𝑋)
∗
+ {𝑤 (𝑋)𝜓𝑌 − V (𝑋) 𝜃𝑌}

∗

+ 𝑔(𝜙𝑌, ∇𝑈𝑋)
∗
𝜉

+ {𝑔 (𝜓𝑌, ∇𝑈𝑋) − 𝑔 (∇𝑌𝑊,𝑋) − 𝑔 (𝑊,∇𝑌𝑋)}
∗
𝜂

+ {𝑔 (𝜃𝑌, ∇𝑈𝑋) + 𝑔 (∇𝑌𝑉,𝑋) + 𝑔 (𝑉, ∇𝑌𝑋)}
∗
𝜁.

(57)
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Similarly, (38) with𝑋 = 𝑉 and (38) with𝑋 = 𝑊, respectively,
give

󸀠
∇𝑌∗
󸀠
∇𝑉∗𝑋

∗

= (∇𝑌∇𝑉𝑋)
∗
− {𝑤 (𝑋) 𝜙𝑌 − 𝑢 (𝑋) 𝜃𝑌}

∗

+ 𝑔(𝜓𝑌, ∇𝑉𝑋)
∗
𝜂

+ {𝑔(𝜙𝑌, ∇𝑉𝑋) + 𝑔(∇𝑌𝑊,𝑋) + 𝑔(𝑊, ∇𝑌𝑋)}
∗
𝜉

+ {𝑔(𝜃𝑌, ∇𝑉𝑋) − 𝑔(∇𝑌𝑈,𝑋) − 𝑔(𝑈, ∇𝑌𝑋)}
∗
𝜁,

(58)

󸀠
∇𝑌∗
󸀠
∇𝑊∗𝑋

∗

= (∇𝑌∇𝑊𝑋)
∗
+ {V (𝑋) 𝜙𝑌 − 𝑢 (𝑋)𝜓𝑌}

∗

+ 𝑔(𝜃𝑌, ∇𝑊𝑋)
∗
𝜁

+ {𝑔 (𝜙𝑌, ∇𝑊𝑋) − 𝑔 (∇𝑌𝑉,𝑋) − 𝑔 (𝑉, ∇𝑌𝑋)}
∗
𝜉

+ {𝑔 (𝜓𝑌, ∇𝑊𝑋) + 𝑔 (∇𝑌𝑈,𝑋) + 𝑔 (𝑈, ∇𝑌𝑋)}
∗
𝜂.

(59)

Differentiating (38) also covariantly in the direction of𝑈∗ and
using (24), we have

󸀠
∇𝑈∗
󸀠
∇𝑌∗𝑋

∗

= (∇𝑈∇𝑌𝑋)
∗

+ 𝑔(𝜓𝑌,𝑋)
∗
𝑊
∗
− 𝑔(𝜃𝑌,𝑋)

∗
𝑉
∗

+ {𝑔 (∇𝑈 (𝜙𝑌) ,𝑋) + 𝑔 (𝜙𝑌, ∇𝑈𝑋)}
∗
𝜉

+ {𝑔 (∇𝑈 (𝜓𝑌) ,𝑋) + 𝑔 (𝜓𝑌, ∇𝑈𝑋) − 𝑔 (𝑊,∇𝑌𝑋)}
∗
𝜂

+ {𝑔 (∇𝑈 (𝜃𝑌) , 𝑋) + 𝑔 (𝜃𝑌, ∇𝑈𝑋) + 𝑔 (𝑉, ∇𝑌𝑋)}
∗
𝜁.

(60)

Similarly, differentiating (38) covariantly in the direction of
𝑉∗ and𝑊∗, respectively, we have

󸀠
∇𝑉∗
󸀠
∇𝑌∗𝑋

∗

= (∇𝑉∇𝑌𝑋)
∗

− 𝑔(𝜙𝑌,𝑋)
∗
𝑊
∗
− 𝑔(𝜃𝑌,𝑋)

∗
𝑈
∗

+ {𝑔 (∇𝑉 (𝜙𝑌) ,𝑋) + 𝑔 (𝜙𝑌, ∇𝑉𝑋) + 𝑔 (𝑊,∇𝑌𝑋)}
∗
𝜉

+ {𝑔 (∇𝑉 (𝜓𝑌) ,𝑋) + 𝑔 (𝜓𝑌, ∇𝑉𝑋)}
∗
𝜂

+ {𝑔 (∇𝑉 (𝜃𝑌) , 𝑋) + 𝑔 (𝜃𝑌, ∇𝑉𝑋) − 𝑔 (𝑈, ∇𝑌𝑋)}
∗
𝜁,

(61)

󸀠
∇𝑊∗
󸀠
∇𝑌∗𝑋

∗

= (∇𝑊∇𝑌𝑋)
∗

− 𝑔(𝜓𝑌,𝑋)
∗
𝑈
∗
+ 𝑔(𝜙𝑌,𝑋)

∗
𝑉
∗

+ {𝑔 (∇𝑊 (𝜙𝑌) ,𝑋) + 𝑔 (𝜙𝑌, ∇𝑊𝑋) − 𝑔 (𝑉, ∇𝑌𝑋)}
∗
𝜉

+ {𝑔 (∇𝑊 (𝜓𝑌) ,𝑋) + 𝑔 (𝜓𝑌, ∇𝑊𝑋) + 𝑔 (𝑈, ∇𝑌𝑋)}
∗
𝜂

+ {𝑔 (∇𝑊 (𝜃𝑌) , 𝑋) + 𝑔 (𝜃𝑌, ∇𝑊𝑋)}
∗
𝜁.

(62)

On the other hand, (38) and (39) with𝑋 = 𝑈 imply
󸀠
∇[𝑌∗ ,𝑈∗]𝑋

∗
= (∇[𝑌,𝑈]𝑋)

∗
− 2{𝑤 (𝑌) 𝜓𝑋 − V (𝑌) 𝜃𝑋}

∗

+ 𝑔(𝜙 [𝑌, 𝑈] , 𝑋)
∗
𝜉 + 𝑔(𝜓 [𝑌,𝑈] , 𝑋)

∗
𝜂

+ 𝑔(𝜃 [𝑌, 𝑈] , 𝑋)
∗
𝜁.

(63)

Similarly, from (39) with 𝑋 = 𝑉 and (39) with 𝑋 = 𝑊,
respectively, we find that
󸀠
∇[𝑌∗ ,𝑉∗]𝑋

∗
= (∇[𝑌,𝑉]𝑋)

∗
+ 2{𝑤 (𝑌) 𝜙𝑋 − 𝑢 (𝑌) 𝜃𝑋}

∗

+ 𝑔(𝜙 [𝑌, 𝑉] , 𝑋)
∗
𝜉 + 𝑔(𝜓 [𝑌, 𝑉] , 𝑋)

∗
𝜂

+ 𝑔(𝜃 [𝑌, 𝑉] , 𝑋)
∗
𝜁,

(64)
󸀠
∇[𝑌∗ ,𝑊∗]𝑋

∗
= (∇[𝑌,𝑊]𝑋)

∗
− 2{V (𝑌) 𝜙𝑋 − 𝑢 (𝑌) 𝜓𝑋}

∗

+ 𝑔(𝜙 [𝑌,𝑊] ,𝑋)
∗
𝜉 + g(𝜓 [𝑌,𝑊] ,𝑋)

∗
𝜂

+ 𝑔(𝜃 [𝑌,𝑊] ,𝑋)
∗
𝜁.

(65)

Using (28)–(31), it follows from (57), (60), and (63) that
󸀠
𝑅 (𝑌
∗
, 𝑈
∗
)𝑋
∗
= {𝑅 (𝑌, 𝑈)𝑋}

∗

+ {𝑤 (𝑋)𝜓𝑌 − V (𝑋) 𝜃𝑌

− 𝑔 (𝜓𝑌,𝑋)𝑊 + 𝑔 (𝜃𝑌,𝑋)𝑉

+ 2𝑤 (𝑌) 𝜓𝑋 − 2V (𝑌) 𝜃𝑋}
∗

− {𝑟 (𝑈) 𝑔 (𝜓𝑌,𝑋) − 𝑞 (𝑈) 𝑔 (𝜃𝑌,𝑋)

+ 𝑢 (𝑌) 𝑢 (𝐴1𝑋) + 𝑟 (𝑌)𝑤 (𝑋)

+ 𝑞 (𝑌) V (𝑋) − 𝑔 (𝐴1𝑌,𝑋)}
∗
𝜉

− {−𝑝 (𝑌) V (𝑋) − 𝑟 (𝑈) 𝑔 (𝜙𝑌,𝑋)

+ 𝑝 (𝑈) 𝑔 (𝜃𝑌,𝑋) + V (𝑌) 𝑢 (𝐴1𝑋)}
∗
𝜂

− {−𝑝 (𝑌)𝑤 (𝑋) + 𝑞 (𝑈) 𝑔 (𝜙𝑌,𝑋)

− 𝑝(𝑈)𝑔(𝜓𝑌,𝑋) + 𝑤(𝑌)𝑢(𝐴1𝑋)}
∗
𝜁,

(66)
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from which, taking account of (35) and using (24) and (33),
we obtain

󸀠
𝑅 (𝑌
∗
, 𝑈
∗
)𝑋
∗
= {𝑢 (𝑋)𝑌 − 𝑔 (𝑌,𝑋)𝑈

+ 𝑢 (𝐴1𝑋)𝐴1𝑌 − 𝑔 (𝐴1𝑌,𝑋)𝐴1𝑈}
∗

− {𝑟 (𝑈) 𝑔 (𝜓𝑌,𝑋) − 𝑞 (𝑈) 𝑔 (𝜃𝑌,𝑋)

+ 𝑢 (𝑌) 𝑢 (𝐴1𝑋) + 𝑟 (𝑌)𝑤 (𝑋)

+ 𝑞 (𝑌) V (𝑋) − 𝑔 (𝐴1𝑌,𝑋)}
∗
𝜉

− {−𝑝 (𝑌) V (𝑋) − 𝑟 (𝑈) 𝑔 (𝜙𝑌,𝑋)

+ 𝑝 (𝑈) 𝑔 (𝜃𝑌,𝑋) + V (𝑌) 𝑢 (𝐴1𝑋)}
∗
𝜂

− {−𝑝 (𝑌)𝑤 (𝑋) + 𝑞 (𝑈) 𝑔 (𝜙𝑌,𝑋)

− 𝑝(𝑈)𝑔(𝜓𝑌,𝑋) + 𝑤(𝑌)𝑢(𝐴1𝑋)}
∗
𝜁.

(67)

Similarly, by using (58), (59), (61), (62), (64), and (65), we can
easily obtain

󸀠
𝑅 (𝑌
∗
, 𝑉
∗
)𝑋
∗
= {V (𝑋) 𝑌 − 𝑔 (𝑌,𝑋)𝑉

+V (𝐴1𝑋)𝐴1𝑌 − 𝑔 (𝐴1𝑌,𝑋)𝐴1𝑉}
∗

− {−𝑟 (𝑉) 𝑔 (𝜙𝑌,𝑋) + 𝑝 (𝑉) 𝑔 (𝜃𝑌,𝑋)

+ V (𝑌) V (𝐴1𝑋) + 𝑟 (𝑌)𝑤 (𝑋)

+𝑝 (𝑌) 𝑢 (𝑋) − 𝑔 (𝐴1𝑌,𝑋)}
∗
𝜂

+ {𝑞 (𝑌) 𝑢 (𝑋) − 𝑟 (𝑉) 𝑔 (𝜓𝑌,𝑋)

+𝑞 (𝑉) 𝑔 (𝜃𝑌,𝑋) − 𝑢 (𝑌) V (𝐴1𝑋)}
∗
𝜉

− {−𝑞 (𝑌)𝑤 (𝑋) + 𝑞 (𝑉) 𝑔 (𝜙𝑌,𝑋)

−𝑝(𝑉)𝑔(𝜓𝑌,𝑋) + 𝑤(𝑌)V(𝐴1𝑋)}
∗
𝜁,

󸀠
𝑅 (𝑌
∗
,𝑊
∗
)𝑋
∗
= {𝑤 (𝑋)𝑌 − 𝑔 (𝑌,𝑋)𝑊

+𝑤 (𝐴1𝑋)𝐴1𝑌 − 𝑔 (𝐴1𝑌,𝑋)𝐴1𝑊}
∗

− {𝑞 (𝑊) 𝑔 (𝜙𝑌,𝑋) − 𝑝 (𝑊) 𝑔 (𝜓𝑌,𝑋)

+ 𝑤 (𝑌)𝑤 (𝐴1𝑋) + 𝑞 (𝑌) V (𝑋)

+𝑝 (𝑌) 𝑢 (𝑋) − 𝑔 (𝐴1𝑌,𝑋)}
∗
𝜁

− {−𝑟 (𝑌) 𝑢 (𝑋) + 𝑟 (𝑊) 𝑔 (𝜓𝑌,𝑋)

−𝑞 (𝑊) 𝑔 (𝜃𝑌,𝑋) + 𝑢 (𝑌)𝑤 (𝐴1𝑋)}
∗
𝜉

+ {𝑟 (𝑌) V (𝑋) + 𝑟 (𝑊) 𝑔 (𝜙𝑌,𝑋)

−𝑝(𝑊)𝑔(𝜃𝑌,𝑋) − V(𝑌)𝑤(𝐴1𝑋)}
∗
𝜂.

(68)

5. Main Results

It is well known [3] that if 𝜋−1(𝑀) is locally symmetric then
󸀠
∇𝐴1 = 0 which implies identities (2) in Theorem K-P. In
this point of view, we consider the following assumptions in
(69) which are weaker conditions than the locally symmetry
of 𝜋−1(𝑀).

In order to obtain our main results, let 𝑀 be 𝑛-
dimensional QR-submanifolds of (𝑝 − 1) QR-dimension in
QP(𝑛+𝑝)/4 with the assumptions

(
󸀠
∇𝜉
󸀠
𝑅) (𝑌

∗
, 𝑋
∗
) 𝑈
∗
= 0, (

󸀠
∇𝜂
󸀠
𝑅) (𝑌

∗
, 𝑋
∗
) 𝑉
∗
= 0,

(
󸀠
∇𝜁
󸀠
𝑅) (𝑌

∗
, 𝑋
∗
)𝑊
∗
= 0,

(
󸀠
∇𝜉
󸀠
𝑅) (𝑌

∗
, 𝑈
∗
)𝑋
∗
= 0, (

󸀠
∇𝜂
󸀠
𝑅) (𝑌

∗
, 𝑉
∗
)𝑋
∗
= 0,

(
󸀠
∇𝜁
󸀠
𝑅) (𝑌

∗
,𝑊
∗
)𝑋
∗
= 0.

(69)

Wenotice here that the above curvature conditions in (69)
are different from those in [18] due to Pak and Sohn.

We first consider the assumption

(
󸀠
∇𝜉
󸀠
𝑅) (𝑌

∗
, 𝑋
∗
) 𝑈
∗
= 0. (70)

Differentiating (55) covariantly in the direction of
𝜉 and using (19), (36), and (40), and the assumption
(
󸀠
∇𝜉
󸀠
𝑅) (𝑌

∗, 𝑋∗)𝑈∗ = 0, we have

−
󸀠
𝑅 ((𝜙𝑌)

∗
, 𝑋
∗
)𝑈
∗
−
󸀠
𝑅 (𝑌
∗
, (𝜙𝑋)

∗
)𝑈
∗

= {−𝑢 (𝑋) 𝜙𝑌 + 𝑢 (𝑌) 𝜙𝑋

−𝑢 (𝐴1𝑋)𝜙𝐴1𝑌 + 𝑢 (𝐴1𝑌) 𝜙𝐴1𝑋}
∗

+ {𝑝 (𝑋)𝑤 (𝑌) − 𝑝 (𝑌)𝑤 (𝑋)

+ 𝑤 (𝑋) 𝑢 (𝐴1𝑌) − 𝑤 (𝑌) 𝑢 (𝐴1𝑋)}
∗
𝜂

− {𝑝 (𝑋) V (𝑌) − 𝑝 (𝑌) V (𝑋)

+ V(𝑋)𝑢(𝐴1𝑌) − V(𝑌)𝑢(𝐴1𝑋)}
∗
𝜁,

(71)

from which, taking the vertical component of 𝜉, 𝜂, and 𝜁,
respectively, and using (22)–(24) and (55) itself, we can get

𝑟 (𝑋) V (𝑌) − 𝑟 (𝑌) V (𝑋) − 𝑞 (𝑋)𝑤 (𝑌)

+ 𝑞 (𝑌)𝑤 (𝑋) − 𝑟 (𝜙𝑌)𝑤 (𝑋) + 𝑟 (𝜙𝑋)𝑤 (𝑌)

− 𝑞 (𝜙𝑌) V (𝑋) + 𝑞 (𝜙𝑋) V (𝑌)

− 𝑢 (𝑋) 𝑢 (𝐴1𝜙𝑌) + 𝑢 (𝑌) 𝑢 (𝐴1𝜙𝑋) = 0,

(72)

− 𝑢 (𝐴1𝜙𝑌) V (𝑋) + 𝑢 (𝐴1𝜙𝑋) V (𝑌) + 𝑝 (𝜙𝑌) V (𝑋)

− 𝑝 (𝜙𝑋) V (𝑌) = 0,
(73)

− 𝑢 (𝐴1𝜙𝑌)𝑤 (𝑋) + 𝑢 (𝐴1𝜙𝑋)𝑤 (𝑌) + 𝑝 (𝜙𝑌)𝑤 (𝑋)

− 𝑝 (𝜙𝑋)𝑤 (𝑌) = 0.
(74)
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Putting 𝑌 = 𝑈 in (72) and using (19) and (24), we have
𝜙𝐴1𝑈 + 𝑟 (𝑈)𝑉 − 𝑞 (𝑈)𝑊 = 0, (75)

and consequently,

𝑟 (𝑈) = 𝑤 (𝐴1𝑈) = 𝑢 (𝐴1𝑊) ,

𝑞 (𝑈) = V (𝐴1𝑈) = 𝑢 (𝐴1𝑉) .
(76)

Putting 𝑌 = 𝑊 and 𝑋 = 𝑉 in (73) and using (15) and (24)
yield

𝑝 (𝑉) = V (𝐴1𝑈) = 𝑢 (𝐴1𝑉) . (77)
Also, putting 𝑌 = 𝑉 and 𝑋 = 𝑊 in (74) and using (15) and
(24), we have

𝑝 (𝑊) = 𝑤 (𝐴1𝑈) = 𝑢 (𝐴1𝑊) . (78)
Summing up, we have

𝐴1𝑈 = 𝑢 (𝐴1𝑈)𝑈 + 𝑝 (𝑉)𝑉 + 𝑝 (𝑊)𝑊,

𝑝 (𝑉) = V (𝐴1𝑈) = 𝑢 (𝐴1𝑉) = 𝑞 (𝑈) ,

𝑝 (𝑊) = 𝑤 (𝐴1𝑈) = 𝑢 (𝐴1𝑊) = 𝑟 (𝑈) .

(79)

Thus we get the following lemma.

Lemma 1. Let𝑀 be an 𝑛-dimensional QR-submanifold of (𝑝−
1) QR-dimension in a quaternionic projective space QP(𝑛+𝑝)/4,
and let the normal vector field 𝑁1 be parallel with respect to
the normal connection. If the equalities in (69) are established,
then

𝐴1𝑈 = 𝑢 (𝐴1𝑈)𝑈 + 𝑝 (𝑉)𝑉 + 𝑝 (𝑊)𝑊,

𝐴1𝑉 = 𝑞 (𝑈)𝑈 + V (𝐴1𝑉)𝑉 + 𝑞 (𝑊)𝑊,

𝐴1𝑊 = 𝑟 (𝑈)𝑈 + 𝑟 (𝑉)𝑉 + 𝑤 (𝐴1𝑊)𝑊,

𝑝 (𝑉) = V (𝐴1𝑈) = 𝑢 (𝐴1𝑉) = 𝑞 (𝑈) ,

𝑝 (𝑊) = 𝑤 (𝐴1𝑈) = 𝑢 (𝐴1𝑊) = 𝑟 (𝑈) ,

𝑞 (𝑊) = 𝑤 (𝐴1𝑉) = V (𝐴1𝑊) = 𝑟 (𝑉) .

(80)

Next, we assume the additional condition
(
󸀠
∇𝜉
󸀠
𝑅) (𝑌

∗
, 𝑈
∗
)𝑋
∗
= 0. (81)

Differentiating (67) covariantly in the direction of 𝜉 and
using (36), (40) and the assumption ( 󸀠∇𝜉

󸀠
𝑅) (𝑌

∗, 𝑈∗)𝑋∗ =

0, we have

−
󸀠
𝑅 ((𝜙𝑌)

∗
, 𝑈
∗
)𝑋
∗
−
󸀠
𝑅 (𝑌
∗
, 𝑈
∗
) (𝜙𝑋)

∗

= {−𝑢 (𝑋) 𝜙𝑌 − 𝑢 (𝐴1𝑋)𝜙𝐴1𝑌

+𝑔(𝐴1𝑌,𝑋)𝜙𝐴1𝑈}
∗

− {−𝑝 (𝑌)𝑤 (𝑋) + 𝑞 (𝑈) 𝑔 (𝜙𝑌,𝑋)

−𝑝 (𝑈) 𝑔 (𝜓𝑌,𝑋) + 𝑤 (𝑌) 𝑢 (𝐴1𝑋)}
∗
𝜂

+ {−𝑝 (𝑌) V (𝑋) − 𝑟 (𝑈) 𝑔 (𝜙𝑌,𝑋)

+𝑝(𝑈)𝑔(𝜃𝑌,𝑋) + V(𝑌)𝑢(𝐴1𝑋)}
∗
𝜁,

(82)

from which, taking the vertical component of 𝜉, 𝜂, and 𝜁,
respectively, and using (22)–(24) and (67) itself, we can find

𝑟 (𝑈) {−2𝑔 (𝜃𝑌,𝑋) + 𝑢 (𝑌) V (𝑋) − V (𝑌) 𝑢 (𝑋)}

− 𝑞 (𝑈) {2𝑔 (𝜓𝑌,𝑋) + 𝑢 (𝑌)𝑤 (𝑋) − 𝑤 (𝑌) 𝑢 (𝑋)}

+ 𝑢 (𝑌) 𝑢 (𝐴1𝜙𝑋) + 𝑟 (𝜙𝑌)𝑤 (𝑋) + 𝑟 (𝑌) V (𝑋)

+ 𝑞 (𝜙𝑌) V (𝑋) − 𝑞 (𝑌)𝑤 (𝑋)

+ 𝑔 (𝜙𝐴1𝑌 − 𝐴1𝜙𝑌,𝑋) = 0,

(83)

− 𝑞 (𝑈) 𝑔 (𝜙𝑌,𝑋) + 𝑝 (𝜙𝑌) V (𝑋) − V (𝑌) 𝑢 (𝐴1𝜙𝑋)

− 𝑝 (𝑈) {𝑔 (𝜓𝑌,𝑋) + 𝑢 (𝑌)𝑤 (𝑋)

−𝑤 (𝑌) 𝑢 (𝑋)} = 0,

(84)

− 𝑟 (𝑈) 𝑔 (𝜙𝑌,𝑋) + 𝑝 (𝜙𝑌)𝑤 (𝑋) − 𝑤 (𝑌) 𝑢 (𝐴1𝜙𝑋)

− 𝑝 (𝑈) {𝑔 (𝜃𝑌,𝑋) + V (𝑌) 𝑢 (𝑋) − 𝑢 (𝑌) V (𝑋)} = 0.

(85)

Taking the skew-symmetric part of (83) with respect to𝑋
and 𝑌, we have

2𝑟 (𝑈) {−2𝑔 (𝜃𝑌,𝑋) + 𝑢 (𝑌) V (𝑋) − V (𝑌) 𝑢 (𝑋)}

− 2𝑞 (𝑈) {2𝑔 (𝜓𝑌,𝑋) + 𝑢 (𝑌)𝑤 (𝑋) − 𝑤 (𝑌) 𝑢 (𝑋)}

+ 𝑢 (𝑌) 𝑢 (𝐴1𝜙𝑋) − 𝑢 (𝑋) 𝑢 (𝐴1𝜙𝑌) + 𝑟 (𝜙𝑌)𝑤 (𝑋)

− 𝑟 (𝜙𝑋)𝑤 (𝑌) + 𝑟 (𝑌) V (𝑋) − 𝑟 (𝑋) V (𝑌)

+ 𝑞 (𝜙𝑌) V (𝑋) − 𝑞 (𝜙𝑋) V (𝑌)

− 𝑞 (𝑌)𝑤 (𝑋) + 𝑞 (𝑋)𝑤 (𝑌) = 0.

(86)

Replacing 𝑌 with 𝜃𝑌 in (86) and using (19) and (22)–(24), we
have

𝑟 (𝑈) {4𝑔 (𝑌,𝑋) − 3𝑤 (𝑌)𝑤 (𝑋)

−2𝑢 (𝑌) 𝑢 (𝑋) − 2V (𝑌) V (𝑋)}

− 𝑞 (𝑈) {4𝑔 (𝜙𝑌,𝑋) + 3𝑤 (𝑌) V (𝑋) − 2𝑤 (𝑋) V (𝑌)}

− 𝑞 (𝜃𝑌)𝑤 (𝑋) − 𝑞 (𝜓𝑌) V (𝑋) − 𝑞 (𝜙𝑋) 𝑢 (𝑌)

+ 𝑟 (𝜃𝑌) V (𝑋) − 𝑟 (𝑋) 𝑢 (𝑌) − 𝑟 (𝜓𝑌)𝑤 (𝑋)

− V (𝑌) 𝑢 (𝐴1𝜙𝑋) + 𝑢 (𝑋) 𝑢 (𝐴1𝜓𝑌)

− 𝑢 (𝐴1𝑈) 𝑢 (𝑋)𝑤 (𝑌) = 0.

(87)

Now we consider the following orthonormal basis:

{𝑈, 𝑉,𝑊, 𝑒1, . . . , 𝑒𝑚, 𝜙 (𝑒1) , . . . , 𝜙 (𝑒𝑚) ,

𝜓 (𝑒1) , . . . , 𝜓 (𝑒𝑚) , 𝜃 (𝑒1) , . . . , 𝜃 (𝑒𝑚)} ,
(88)
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which will be called 𝑄-basis, where 4𝑚 + 3 = dim𝑀. Taking
the trace of the above equation with respect to the 𝑄-basis
and using (76), we can easily see 4𝑚𝑟(𝑈) = 0; that is,

𝑟 (𝑈) = 0. (89)

Replacing also𝑌with𝜓𝑌 in (86) and using (19) and (22)–
(24), we have

𝑞 (𝑈) = 0. (90)

Substituting (89) and (90) into (75), we have 𝜙𝐴1𝑈 = 0 and
hence

𝐴1𝑈 = 𝑢 (𝐴1𝑈)𝑈. (91)

On the other hand, replacing𝑌with𝜓𝑌 in (84) and using
(19), (22), (23), and (90), we obtain

𝑝 (𝑈) {𝑔 (𝑌,𝑋) − 𝑢 (𝑌) 𝑢 (𝑋) − 𝑤 (𝑌)𝑤 (𝑋)}

+ 𝑝 (𝜃𝑌) V (𝑋) = 0,
(92)

from which, taking the trace with respect to the 𝑄-basis and
using (15) and (24), we find 4𝑚𝑝(𝑈) = 0; that is,

𝑝 (𝑈) = 0 (93)

which together with (84) and (90) implies

𝑝 (𝜙𝑌) = 0. (94)

Replacing𝑌with 𝜙𝑌 in the above equation and using (17) and
(93), we can easily see that

𝑝 (𝑌) = 0 (95)

for any vector 𝑌 tangent to𝑀.
Summing up, we have the following lemma.

Lemma 2. Let𝑀 be as in Lemma 1, and let the normal vector
field𝑁1 be parallel with respect to the normal connection. If the
equalities in (69) and (5.2) are established, then

𝐴1𝑈 = 𝑢 (𝐴1𝑈)𝑈, 𝐴1𝑉 = V (𝐴1𝑉)𝑉,

𝐴1𝑊 = 𝑤(𝐴1𝑊)𝑊, 𝑝 = 𝑞 = 𝑟 = 0.
(96)

Finally, we will prove our main theorem.

Theorem 3. Let 𝑀 be an 𝑛-dimensional 𝑄𝑅-submanifold
of (𝑝 − 1) 𝑄𝑅-dimension in a quaternionic projective space
𝑄𝑃(𝑛+𝑝)/4, and let the normal vector field 𝑁1 be parallel with
respect to the normal connection. If the equalities in (69) and
(5.2) are established, then 𝜋−1(𝑀) is locally a product of𝑀1 ×
𝑀2 where𝑀1 and𝑀2 belong to some (4𝑛1 +3)- and (4𝑛2 +3)-
dimensional spheres (𝜋 is the Hopf fibration 𝑆𝑛+𝑝+3(1) →

𝑄𝑃(𝑛+𝑝)/4).

Proof. By means of (96), it follows easily from (83) that

𝜙𝐴1 = 𝐴1𝜙. (97)

By the quite same method, we can obtain

𝜓𝐴1 = 𝐴1𝜓, 𝜃𝐴1 = 𝐴1𝜃. (98)

Combining with those equalities and Theorem K-P, we
complete the proof.

Corollary 4. Let 𝑀 be an 𝑛-dimensional 𝑄𝑅-submanifold
of (𝑝 − 1) 𝑄𝑅-dimension in a quaternionic projective space
𝑄𝑃(𝑛+𝑝)/4, and let the normal vector field 𝑁1 be parallel with
respect to the normal connection. If the following equalities:

󸀠
∇𝜉
󸀠
𝑅 = 0,

󸀠
∇𝜂
󸀠
𝑅 = 0,

󸀠
∇𝜁
󸀠
𝑅 = 0 (99)

are established, then 𝜋−1(𝑀) is locally a product of 𝑀1 × 𝑀2
where 𝑀1 and 𝑀2 belong to some (4𝑛1 + 3)- and (4𝑛2 + 3)-
dimensional spheres.
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