
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2013, Article ID 918905, 5 pages
http://dx.doi.org/10.1155/2013/918905

Research Article
Further Results on Colombeau Product of Distributions

Biljana Jolevska-Tuneska1 and Tatjana Atanasova-Pacemska2

1 Faculty of Electrical Engineering and Informational Technologies, Saints Cyril and Methodius University of Skopje,
Karpos II bb, 1000 Skopje, Macedonia
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Results on Colombeau product of distributions 𝑥−𝑟−1/2
+

and 𝑥−𝑟−1/2
−

are derived.They are obtained in Colombeau differential algebra
G(R) of generalized functions that contains the spaceD󸀠(R) of Schwartz distributions as a subspace and has a notion of “association”
that is a faithful generalization of the weak equality inD󸀠(R).

1. Introduction

In quantum physics one finds the need to evaluate 𝛿2, when
calculating the transition rates of certain particle interactions;
see [1]. The problem of defining products of distributions is
also closely connected with the problem of renormalization
in quantum field theory. Due to the large use of distributions
in the natural sciences and other mathematical fields, the
problem of the product of distributions [2] is an objective
of many research studies. Starting with the historically first
construction of distributional multiplication by König [3],
and the sequential approach developed in [4] by Antosik
et al., there have been numerous attempts to define products
of distributions, see [5–7], or rather to enlarge the number of
existing products.

Having a look at the theory of distributions [8, 9] we
realize that there are two complementary points of view.

(1) A distribution 𝑓 ∈ D󸀠(R𝑛) is a continuous functional
on the space D(R𝑛) of space functions (compactly
supported smooth functions). Here we have a linear
action

𝜑 󳨀→ ⟨𝑓, 𝜑⟩ (1)

of 𝑓 on a test function 𝜙.

(2) Letting {𝜑
𝑛

} be a sequence of smooth functions
converging to the Dirac measure, a family of regular-
ization {𝑓

𝑛

} can be produced by convolution,

𝑓
𝑛

(𝑥) = 𝑓 ∗ 𝜑
𝑛

= ⟨𝑓 (𝑦) , 𝜑
𝑛

(𝑥 − 𝑦)⟩ , (2)

which converges weakly to the original distribution
𝑓 ∈ D󸀠(R𝑛). Identifying two sequences {𝜑

𝑛

} and {𝜑}
𝑛

if they have the same limit, we obtain a sequential
representation of the space of distributions. Other
authors use the equivalence classes of nets of regular-
ization. The delta-net {𝜑

𝜀

}
𝜀>0

is defined by

𝜑
𝜀

(𝑥) = 𝜀
−𝑛

𝜑(

𝑥

𝜀

) . (3)

When we work with regularization the nonlinear struc-
ture is lost by identifying sequences (nets)with the same limit.
So we have to get nonlinear theory of generalized functions
that will work with regularization, but identify less. The
actual construction of such algebras enjoying these optimal
properties is due to Colombeau [10]. His theory of algebras
of generalized functions offers the possibility of applying
large classes of nonlinear operations to distributional objects.
Some of them are used on solving differential equations with
nonstandard coefficients [11]. The “association process” in
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Colombeau algebra providing a faithful generalization of the
equality of distributions inD(R𝑛) enables us to obtain results
in terms of distributions, the so-called Colombeau products.
In fact, we evaluate particular product of distributions with
coinciding singularities, as embedded in Colombeau algebra,
in terms of associated distributions; see [12–14]. Therefore,
the results obtained can be reformulated as regularizedmodel
products in the classical distribution theory.

In 1966, Mikusinski published his famous result [15]:

𝑥
−1

⋅ 𝑥
−1

− 𝜋
2

𝛿 (𝑥) 𝛿 (𝑥) = 𝑥
−2

, (4)

where neither of the products on the left-hand side here
exists, but their difference still has a correct meaning in dis-
tribution spaceD󸀠(R). Formula including balanced products
of distributions with coinciding singularities can be found in
mathematical and physical literature. In this paper results on
product of distributions 𝑥−𝑟−1/2

+

and 𝑥
−𝑟−1/2

−

are derived.

2. Colombeau Algebra

The basic idea underlying Colombeau’s theory in its simplest
form is that of embedding the space of distributions into a
factor algebra of C∞(R𝑛)𝐼, 𝐼 = (0, 1) with regularization by
convolution with a fixed “mollifier” 𝜑.

The space of test function is

A
0

(R𝑛) = {𝜑 ∈ D (R𝑛) : ∫ 𝜑 (𝑥) 𝑑𝑥 = 1} . (5)

Functional act on test functions and points is

𝑢 : A
0

(R𝑛) × R𝑛 󳨀→ C,

(𝜑, 𝑥) 󳨀→ 𝑢 (𝜑, 𝑥) ,

(6)

where 𝑢(𝜑, 𝑥) is required to belong to C∞(R𝑛) with respect
to the second variable 𝑥 ∈ R𝑛. Now let 𝜑

𝜀

(𝑥) =

𝜀
−𝑛

𝜑(𝑥/𝜀) for 𝜑 ∈ A
0

(R𝑛). The sequence (𝑢 ∗ 𝜑
𝜀

)
𝜀∈𝐼

con-
verges to𝑢 inD󸀠(R𝑛). Taking this sequence as a representative
of 𝑢 we obtain an embedding of D󸀠(R𝑛) into the algebra
C∞(R𝑛). However, embedding C∞(R𝑛) ⊂ D󸀠(R𝑛) into this
algebra via convolution as above will not yield a subalgebra
since of course (𝑓 ∗ 𝜑

𝜀

)(𝑔 ∗ 𝜑
𝜀

) ̸= (𝑓𝑔) ∗ 𝜑
𝜀

in general. The
idea, therefore, is to factor out an ideal N(R𝑛) such that
this difference vanishes in the resulting quotient. In order
to construct N(R𝑛) it is obviously sufficient to find an ideal
containing all differences (𝑓 ∗ 𝜑

𝜀

) − (𝑓)
𝜀∈𝐼

. Taylor expansion
of (𝑓∗𝜑

𝜀

)−𝑓 shows that this termwill vanish faster than any
power of 𝜀, uniformly on compact sets, in all derivatives. We
use the following space:

A
𝑞

(R𝑛)

= {𝜑 ∈ A
0

(R𝑛) : ∫ 𝑥
𝛼

𝜑 (𝑥) 𝑑𝑥 = 0 for 1 ≤ |𝛼| ≤ 𝑞} ;

(7)

moderate functionals, denoted byE
𝑀

(R𝑛), are defined by the
property:

∀𝐾 ⊂⊂ R𝑛 ∀𝛼 ∈ N𝑛
0

∃𝑝 ≥ 0 such that ∀𝜑 ∈ A
𝑞

(R𝑛) ,

sup
𝑥∈𝐾

󵄨
󵄨
󵄨
󵄨
𝜕
𝛼

𝑢 (𝜑
𝜀

, 𝑥)
󵄨
󵄨
󵄨
󵄨
= O (𝜀

−𝑝

) as 𝜀 󳨀→ 0.

(8)

Null functionals, denoted by N(R𝑛), are defined by the
property:

∀𝐾 ⊂⊂ R𝑛 ∀𝛼 ∈ N𝑛
0

∃𝑝 ≥ 0

such that ∀𝑞 ≥ 𝑝, ∀𝜑 ∈ A
𝑞

(R𝑛) ,

sup
𝑥∈𝐾

󵄨
󵄨
󵄨
󵄨
𝜕
𝛼

𝑢 (𝜑
𝜀

, 𝑥)
󵄨
󵄨
󵄨
󵄨
= O (𝜀

𝑞−𝑝

) as 𝜀 󳨀→ 0.

(9)

In otherwords,moderate functionals satisfy a locally uniform
polynomial estimate as 𝜀 → 0 when acting on 𝜑

𝜀

, together
with all derivatives, while null functionals vanish faster than
any power of 𝜀 in the same situation. The null functionals
form a differential ideal in the collection of moderate func-
tionals.

We define space of functions 𝑢 : A
0

→ C and denote
by E
0

(R𝑛). It is a subalgebra in E(R𝑛) in sense of natural
identification.

Moderate functionals, denoted by E
0𝑀

(R𝑛), are defined
by the property:

∃𝑝 ≥ 0 such that ∀𝜑 ∈ A
𝑝

(R𝑛) ,
󵄨
󵄨
󵄨
󵄨
𝑢 (𝜑
𝜀

)
󵄨
󵄨
󵄨
󵄨
= O (𝜀

−𝑝

) as 𝜀 󳨀→ 0.

(10)

Null functionals, denoted by N
0

(R𝑛), are defined by the
property:

∃𝑝 ≥ 0 such that ∀𝑞 ≥ 𝑝, ∀𝜑 ∈ A
𝑞

(R𝑛) ,
󵄨
󵄨
󵄨
󵄨
𝑢 (𝜑
𝜀

)
󵄨
󵄨
󵄨
󵄨
= O (𝜀

𝑞−𝑝

) as 𝜀 󳨀→ 0.

(11)

Definition 1. Space of generalized functions G(R𝑛), general-
ized complex numbers, and generalized real numbers is the
factor algebra defined as

G (R𝑛) =
E
𝑀

(R𝑛)
N (R𝑛)

, C =

E
0𝑀

(C)
N
0

(C)
, R =

E
0𝑀

(R)
N
0

(R)
.

(12)

The space of distributions is imbedded by convolution:

𝑖 : D
󸀠

(R𝑛) 󳨀→ G (R𝑛) ,

𝑖 (𝑢) = class of [(𝜑, 𝑥) 󳨀→ 𝑢 ∗ 𝜑 (𝑥)] .

(13)

Equivalence classes of sequences (𝑢
𝜀

)
𝜀∈𝐼

in G(R𝑛) will be
denoted by 𝑈 = class [(𝑢

𝜀

)
𝜀∈𝐼

]. If 𝐺 is a generalized function
with compact support𝐾 ⊂⊂ R𝑛 and 𝐺

𝜀

(𝑥) is a representative
of 𝐺, then its integral is defined by

∫𝐺𝑑𝑥 = class [∫𝜑 (𝑥)𝐺
𝜀

(𝑥) 𝑑𝑥] . (14)

Let 𝐹, 𝐺 ∈ G(R𝑛). Then
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(i) they are equal in the distribution sense, 𝐺=
D󸀠
𝐹 if

∫ (𝐺 − 𝐹) 𝜑 𝑑𝑥 = 0 ∈ C,

for any 𝜑 ∈ D (R𝑛) ;
(15)

(ii) they are associated 𝐺 ≈ 𝐹 if there exist a representa-
tive 𝐺

𝜀

and 𝐹
𝜀

of 𝐺 and 𝐹, respectively, such that

lim
𝜀→0

∫ (𝐺
𝜀

(𝑥) − 𝐹
𝜀

(𝑥)) 𝜑 (𝑥) 𝑑𝑥 = 0,

for any 𝜑 ∈ D (R𝑛) .
(16)

3. Results on Some Products of Distributions

It was proved in [12] that for any 𝑎 ∈ R/Z the product of the
generalized functions𝑥𝑎

+

and ̃
𝑥
−𝑎−1

−

inG(R) admits associated
distributions and it holds

𝑥
𝑎

+

⋅
̃
𝑥
−𝑎−1

−

=
̃
𝑥
−𝑎−1

−

⋅ 𝑥
𝑎

+

≈

Γ (1 + 𝑎) Γ (−𝑎)

2

𝛿 (𝑥)

= −

𝜋

2

csc (𝜋𝑎) 𝛿 (𝑥) ,
(17)

with the particular cases

̃
𝑥
−𝑟−1/2

+

⋅
̃
𝑥
𝑟−1/2

−

=

(−1)
𝑟

𝜋

2

𝛿 (𝑥) , (18)

for 𝑟 = 0, ±1, ±2, . . . and

̃
𝑥
−1/2

+

⋅
̃
𝑥
−1/2

−

=

𝜋

2

𝛿 (𝑥) . (19)

Here we will make a generalization of (19). In order to prove
the main theorem we need the following lemmas, easily
proved by induction.

Lemma 2. For 𝑝 < 𝑟 one has

∫

𝑑

𝑡

𝑠
𝑝

𝜑
(𝑟)

(𝑠) 𝑑𝑠 =

𝑝

∑

𝑘=0

(−1)
𝑘

𝑝!

(𝑝 − 𝑘)!

𝑡
𝑝−𝑘

𝜑
(𝑟−𝑘−1)

× (𝑡) 𝑑𝑡, for p < r.

(20)

Lemma 3. For 𝑝 = 𝑟 one has

∫

𝑑

𝑡

𝑠
𝑟

𝜑
(𝑟)

(𝑠) 𝑑𝑠 =

𝑟

∑

𝑘=0

(−1)
𝑘

𝑟!

(𝑟 − 𝑘)!

𝑡
𝑟−𝑘

𝜑
(𝑟−𝑘−1)

(𝑡) 𝑑𝑡, (21)

and 𝜑(−1)(𝑡) stands for ∫𝑑
𝑡

𝜑(𝑠)𝑑𝑠.

Theorem 4. The product of the generalized functions ̃
𝑥
−𝑟−1/2

+

and ̃
𝑥
−𝑟−1/2

−

for 𝑟 = 0, 1, 2, . . . in G(R) admits associated
distributions and it holds

̃
𝑥
−𝑟−1/2

+

⋅
̃
𝑥
−𝑟−1/2

−

≈

𝜋

2 (2𝑟)!

𝛿
(2𝑟)

(𝑥) . (22)

Proof. For given 𝜑 ∈ 𝐴
0

(R) we suppose that supp𝜑(𝑥) ⊆

[𝑐, 𝑑], without loss of generality. Then using the embedding
rule and the substitution 𝑡 = (𝑦 − 𝑥)/𝜀 we have the
representatives of the distribution 𝑥

−𝑟−1/2

+

in Colombeau
algebra:

̃
𝑥
−𝑟−1/2

+

(𝜑
𝜀

, 𝑥) = (−1)
𝑟

2
𝑟

(2𝑟 − 1)!!

1

𝜀

𝜕
𝑟

𝜕𝑥

∫

∞

0

𝑦
−1/2

𝜑(

𝑦 − 𝑥

𝜀

) 𝑑𝑦

=

2
𝑟

(2𝑟 − 1)!!

1

𝜀
𝑟+1

∫

∞

0

𝑦
−1/2

𝜑
(𝑟)

(

𝑦 − 𝑥

𝜀

) 𝑑𝑦

=

2
𝑟

(2𝑟 − 1)!!

1

𝜀
𝑟

∫

𝑑

−𝑥/𝜀

(𝑥 + 𝜀𝑡)
−1/2

𝜑
(𝑟)

(𝑡) 𝑑𝑡.

(23)

Similar, using the embedding rule and the substitution
𝑠 = (𝑦 − 𝑥)/𝜀 we have the representatives of the distribution
𝑥
−𝑟−1/2

−

in Colombeau algebra:

̃
𝑥
−𝑟−1/2

−

(𝜑
𝜀

, 𝑥) = (−1)
𝑟

2
𝑟

(2𝑟 − 1)!!

1

𝜀

𝜕
𝑟

𝜕𝑥

× ∫

0

−∞

(−𝑦)
−1/2

𝜑(

𝑦 − 𝑥

𝜀

) 𝑑𝑦

=

2
𝑟

(2𝑟 − 1)!!

1

𝜀
𝑟+1

× ∫

0

−∞

(−𝑦)
−1/2

𝜑
(𝑟)

(

𝑦 − 𝑥

𝜀

) 𝑑𝑦

=

2
𝑟

(2𝑟 − 1)!!

1

𝜀
𝑟

∫

−𝑥/𝜀

𝑐

(−𝑥 − 𝜀𝑠)
−1/2

𝜑
(𝑟)

(𝑠) 𝑑𝑠.

(24)

Then, for any 𝜓(𝑥) ∈ D(R) we have

⟨
̃
𝑥
−𝑟−1/2

+

(𝜑
𝜀

, 𝑥) ⋅
̃
𝑥
−𝑟−1/2

−

(𝜑
𝜀

, 𝑥) , 𝜓 (𝑥)⟩

= ∫

∞

−∞

̃
𝑥
−𝑟−1/2

+

(𝜑
𝜀

, 𝑥)
̃
𝑥
−𝑟−1/2

−

(𝜑
𝜀

, 𝑥) 𝜓 (𝑥) 𝑑𝑥

=

2
2𝑟

((2𝑟 − 1)!!)
2

1

𝜀
2𝑟

∫

𝑐𝜀

−𝑑𝜀

𝜓 (𝑥)∫

𝑑

−𝑥/𝜀

𝜑
(𝑟)

(𝑡)

× ∫

−𝑥/𝜀

𝑐

(𝑥 + 𝜀𝑡)
−1/2

(−𝑥 − 𝜀𝑠)
−1/2

𝜑
(𝑟)

(𝑠) 𝑑𝑠 𝑑𝑡 𝑑𝑥

=

2
2𝑟

((2𝑟 − 1)!!)
2

1

𝜀
2𝑟

∫

𝑑

𝑐

𝜓 (−𝜀𝜔)∫

𝑑

𝜔

𝜑
(𝑟)

(𝑡)

× ∫

𝜔

𝑐

(𝑡 − 𝜔)
−1/2

(𝜔 − 𝑠)
−1/2

𝜑
(𝑟)

(𝑠) 𝑑𝑠 𝑑𝑡 𝑑𝜔,

(25)

using the substitution 𝜔 = −𝑥/𝜀.
By the Taylor theorem we have that

𝜓 (−𝜀𝜔) =

2𝑟

∑

𝑘=0

𝜓
(𝑘)

(0)

𝑘!

(−𝜀𝜔)
𝑘

+

𝜓
(2𝑟+1)

(𝜂𝜔)

(2𝑟 + 1)!

(−𝜀𝜂)
2𝑟+1

, (26)
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for 𝜂 ∈ (0, 1). Using this for (25) we have

⟨
̃
𝑥
−𝑟−1/2

+

(𝜑
𝜀

, 𝑥) ⋅
̃
𝑥
−𝑟−1/2

−

(𝜑
𝜀

, 𝑥) , 𝜓 (𝑥)⟩

=

2
2𝑟

((2𝑟 − 1)!!)
2

2𝑟

∑

𝑘=0

(−1)
𝑘

𝜓
(𝑘)

(0)

𝑘!𝜀
2𝑟−𝑘

𝐼
𝑘

+ 𝑂 (𝜀) ,

(27)

where

𝐼
𝑘

=∫

𝑑

𝑐

𝜑
(𝑟)

(𝑡) ∫

𝑑

𝑡

𝜑
(𝑟)

(𝑠)

× ∫

𝑡

𝑠

(𝑡 − 𝜔)
−1/2

(𝜔 − 𝑠)
−1/2

𝜔
𝑘

𝑑𝜔𝑑𝑠 𝑑𝑡,

(28)

for 𝑘 = 0, 1, . . . , 2𝑟 and we have changed the order of
integration.

Putting 𝜔 − 𝑠 = (𝑡 − 𝑠)𝑣 we have

∫

𝑡

𝑠

(𝑡 − 𝜔)
−1/2

(𝜔 − 𝑠)
−1/2

𝜔
𝑘

𝑑𝜔

= ∫

1

0

𝑣
−1/2

(1 − 𝑣)
−1/2

[𝑠𝑣 + (1 − 𝑣)𝑡]
𝑘

𝑑𝑣

=

𝑘

∑

𝑝=0

𝑘!

𝑝! (𝑘 − 𝑝)!

∫

1

0

𝑣
𝑝−1/2

(1 − 𝑣)
𝑘−𝑝−1/2

𝑠
𝑝

𝑡
𝑘−𝑝

𝑑𝑣

=

𝑘

∑

𝑝=0

𝑘!

𝑝! (𝑘 − 𝑝)!

𝐵 (𝑝 +

1

2

, 𝑘 − 𝑝 +

1

2

) 𝑠
𝑝

𝑡
𝑘−𝑝

.

(29)

Thus

𝐼
𝑘

=

𝑘

∑

𝑝=0

𝑘!

𝑝! (𝑘 − 𝑝)!

𝐵 (𝑝 +

1

2

, 𝑘 − 𝑝 +

1

2

)

× ∫

𝑑

𝑐

𝑡
𝑘−𝑝

𝜑
(𝑟)

(𝑡) ∫

𝑑

𝑡

𝑠
𝑝

𝜑
(𝑟)

(𝑠) 𝑑𝑠 𝑑𝑡

=

𝑘

∑

𝑝=0

𝑘!

𝑝! (𝑘 − 𝑝)!

𝐵 (𝑝 +

1

2

, 𝑘 − 𝑝 +

1

2

) 𝐽
𝑘,𝑝

.

(30)

Next, suppose that 𝑘 is even, less than 2𝑟 and that 𝑝 is
less than 𝑟. It follows from Lemma 2 that ∫𝑑

𝑡

𝑠
𝑝

𝜑
(𝑟)

(𝑠)𝑑𝑠 is an
even or odd function accordingly as 𝑟 + 𝑝 is odd or even.
We thus have that 𝑡𝑘−𝑝𝜑(𝑟)(𝑡) ∫𝑑

𝑡

𝑠
𝑝

𝜑
(𝑟)

(𝑠)𝑑𝑠 is an odd function
and 𝐽
𝑘,𝑝

= 0. If 𝑝 ≥ 𝑟 then 𝑘−𝑝 < 𝑟 and by changing the order
of integration we can prove that again 𝐽

𝑘,𝑝

= 0. If we suppose
that 𝑘 is odd and less than 2𝑟we can prove in a similarmanner
that 𝐽
𝑘,𝑝

= 0.

For the case 𝑘 = 2𝑟 if 𝑝 ̸= 𝑟 again we have 𝐽
𝑘,𝑝

= 0. For
𝑘 = 2𝑟 and 𝑝 = 𝑟 using Lemma 3 and changing the order of
integration we have

𝐽
2𝑟,𝑟

= ∫

𝑑

𝑐

𝑡
𝑟

𝜑
(𝑟)

(𝑡) ∫

𝑑

𝑡

𝑠
𝑟

𝜑
(𝑟)

(𝑠) 𝑑𝑠 𝑑𝑡

=

𝑟

∑

𝑖=0

(−1)
𝑖

𝑟!

(𝑟 − 𝑖)!

∫

𝑑

𝑐

𝑡
2𝑟−𝑖

𝜑
(𝑟)

(𝑡) 𝜑
(𝑟−𝑖−1)

(𝑡) 𝑑𝑡

= (−1)
𝑟

𝑟! ∫

𝑑

𝑐

𝑡
𝑟

𝜑
(𝑟)

(𝑡) ∫

𝑑

𝑡

𝜑 (𝑠) 𝑑𝑠 𝑑𝑡

= (−1)
𝑟

𝑟! ∫

𝑑

𝑐

𝜑 (𝑠) ∫

𝑠

𝑐

𝑡
𝑟

𝜑
(𝑟)

(𝑡) 𝑑𝑡 𝑑𝑠

= (−1)
𝑟

𝑟!

𝑟

∑

𝑖=0

(−1)
𝑖

𝑟!

(𝑟 − 𝑖)!

∫

𝑑

𝑐

𝑠
𝑟−𝑖

𝜑
(𝑟−𝑖−1)

(𝑠) 𝜑 (𝑠) 𝑑𝑠

= (𝑟!)
2

∫

𝑑

𝑐

𝜑 (𝑠) (∫

𝑠

𝑐

𝜑 (𝑡) 𝑑𝑡) 𝑑𝑠.

(31)

Further,

∫

𝑑

𝑐

𝜑 (𝑠) (∫

𝑠

𝑐

𝜑 (𝑡) 𝑑𝑡) 𝑑𝑠 = ∫

𝑑

𝑐

(∫

𝑠

𝑐

𝜑 (𝑡) 𝑑𝑡) 𝑑(∫

𝑠

𝑐

𝜑 (𝑡) 𝑑𝑡)

=

1

2

(∫

𝑠

𝑐

𝜑 (𝑡) 𝑑𝑡)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑐

=

1

2

,

(32)

and 𝐽
2𝑟,𝑟

= (𝑟!)
2

/2. So, 𝐼
𝑘

= 0 for 𝑘 = 0, 1, . . . , 2𝑟 − 1 and

𝐼
2𝑟

=

(2𝑟)!

2

𝐵 (𝑟 +

1

2

, 𝑟 +

1

2

) =

((2𝑟 − 1)!!)
2

𝜋

2
2𝑟+1

. (33)

Finally we have

⟨
̃
𝑥
−𝑟−1/2

+

(𝜑
𝜀

, 𝑥) ⋅
̃
𝑥
−𝑟−1/2

−

(𝜑
𝜀

, 𝑥) , 𝜓 (𝑥)⟩

=

𝜋

2

𝜓
(2𝑟)

(0)

(2𝑟)!

+ 𝑂 (𝜀)

=

𝜋

2 (2𝑟)!

⟨𝛿
(2𝑟)

(𝑥) , 𝜓 (𝑥)⟩ + 𝑂 (𝜀) .

(34)

Therefore passing to the limit, as 𝜀 → 0, we obtain (22)
proving the theorem.
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