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We give a set of axioms to establish a perpendicularity relation in anAbelian group and then study the existence of perpendicularities
in (Z
𝑛
, +) and (Q

+
, ⋅) and in certain other groups. Our approach provides a justification for the use of the symbol⊥ denoting relative

primeness in number theory and extends the domain of this convention to some degree. Related to that, we also consider parallelism
from an axiomatic perspective.

1. Introduction

In [1, page 115], Graham et al. made the following suggestion:
When gcd(𝑚, 𝑛) = 1, the integers𝑚 and 𝑛 have no prime

factors in common and we say that they are relatively prime.
This concept is so important in practice, we ought to

have a special notation for it; but alas, number theorists have
not agreed on a very good one yet. Therefore we cry: hear
us, o mathematicians of the world! let us not wait
any longer! we can make many formulas clearer by
adopting a new notation now! let us agree to write
“𝑚 ⊥ 𝑛”, and to say “𝑚 is prime to 𝑛,” if 𝑚 and 𝑛 are
relatively prime. Like perpendicular lines do not have
a common direction, perpendicular numbers do not have
common factors.

In fact, this cry had been answered even before it was
made. Namely, in studying 𝑙-groups (i.e., groups with a lattice
structure), Birkhoff [2, page 295] defines that two positive
elements 𝑎 and 𝑏 of an 𝑙-group are disjoint if 𝑎 ∧ 𝑏 = 0
and uses the notation 𝑎 ⊥ 𝑏 for disjoint elements. He also
remarks that disjointness specializes to relative primeness in
the 𝑙-group of positive integers.

A motivation for the present paper is to study how
justified ultimately it is to use the symbol of perpendicularity
to denote relative primeness. Does this practice rely only
on the analogy between having no common direction and
having no common factor or is there a deeper linkage to
entitle this convention? This question leads us to ask which

properties essentially establish the notion of perpendicularity
in the algebraic context and what the most suitable algebraic
context for the axiomatization of perpendicularity actually is;
we have recently studied the axioms of perpendicularity from
an elementary geometric point of view [3].

In an inner product space, perpendicularity obviously
traces back to the inner product being zero. However, certain
features of this perpendicularity can be shifted down to
simpler algebraic structures. We will define perpendicularity
in an Abelian group and examine it in Section 2. In Section 3,
wewill focus onperpendicularity in (Z

𝑛
, +). Davis [4] defined

perpendicularity in anAbelian group differently. In Section 4,
we will introduce his approach and compare it with ours.
Thereafter, we will consider divisibility in (Q

+
, ⋅) in Section 5

and parallelism in an Abelian group in Section 6. We will
conclude our paper with a brief discussion and a supplement
to the suggestion cited previously.

2. Axioms and Properties of Perpendicularity

Throughout this paper, 𝐺 = (𝐺, +) is an Abelian group so
that 𝐺 ̸= {0}. Unless otherwise stated, ⊥ is a binary relation in
𝐺 satisfying

(A1) ∀𝑎 ∈ 𝐺 : ∃𝑏 ∈ 𝐺 : 𝑎 ⊥ 𝑏,
(A2) ∀𝑎 ∈ 𝐺 \ {0} : 𝑎�⊥ 𝑎,
(A3) ∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 ⊥ 𝑏 ⇒ 𝑏 ⊥ 𝑎,
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(A4) ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 : 𝑎 ⊥ 𝑏 ∧ 𝑎 ⊥ 𝑐 ⇒ 𝑎 ⊥ (𝑏 + 𝑐),
(A5) ∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 ⊥ 𝑏 ⇒ 𝑎 ⊥ −𝑏.

We call ⊥ a perpendicularity in 𝐺. This concept can be
defined also in weaker structures by changing these axioms
appropriately. For example, if 𝐺 is an Abelian monoid, then
we simply omit (A5). Since the trivial perpendicularity

𝑥 ⊥ 𝑦 ⇐⇒ 𝑥 = 0 ∨ 𝑦 = 0 (1)

always exists, we are mainly interested in nontrivial perpen-
dicularities.

We call ⊥ maximal if it is not a subrelation of any
other perpendicularity in 𝐺. There always exists a maximal
perpendicularity. This is obvious if 𝐺 is finite and, otherwise,
it follows from Zorn’s lemma.

Proposition 1 records some elementary properties of per-
pendicularity; we leave the proof for the reader.

Proposition 1. Perpendicularity ⊥ has the following proper-
ties:

(a) ∀𝑎 ∈ 𝐺 : 𝑎 ⊥ 0,
(b) ∀𝑎 ∈ 𝐺 \ {0} : 𝑎�⊥ − 𝑎,
(c) ∀𝑎, 𝑏

1
, . . . , 𝑏

𝑘
∈ 𝐺, 𝛾

1
, . . . , 𝛾

𝑘
∈ Z : 𝑎 ⊥ 𝑏

1
, . . . , 𝑏

𝑘
⇒

𝑎 ⊥ (𝛾
1
𝑏
1
+ ⋅ ⋅ ⋅ + 𝛾

𝑘
𝑏
𝑘
),

(d) ∀𝑎, 𝑏 ∈ 𝐺, 𝜇, ] ∈ Z : 𝑎 ⊥ 𝑏 ⇒ 𝜇𝑎 ⊥ ]𝑏.

The following characterization is useful in proving that a
given relation is perpendicularity.

Proposition 2. A binary relation ⊥ in 𝐺 is perpendicularity if
and only if it satisfies (A1) and (A2) and

(A6) ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 : 𝑎 ⊥ 𝑏 ∧ 𝑎 ⊥ 𝑐 ⇒ (𝑏 − 𝑐) ⊥ 𝑎.

Proof. The “only if ”-part is trivial. To prove the “if ”-part, we
first show that our assumptions imply Proposition 1(a). Let
𝑎 ∈ 𝐺. By (A1), there is 𝑏 ∈ 𝐺 such that 𝑎 ⊥ 𝑏. Putting 𝑐 := 𝑏
in (A6) implies 0 ⊥ 𝑎; in particular 0 ⊥ 0. Further, (A6) with
𝑎 := 0, 𝑏 := 𝑎 and 𝑐 := 0 gives (𝑎 − 0) ⊥ 0, that is, 𝑎 ⊥ 0. Now
we can verify the remaining axioms.

(A3) Assume 𝑎 ⊥ 𝑏. Apply (A6) with 𝑐 := 0; then 𝑏 ⊥ 𝑎.
(A5) Assume 𝑎 ⊥ 𝑏. Apply (A6) with 𝑏 := 0 and 𝑐 := 𝑏.

Then (−𝑏) ⊥ 𝑎, and so, by (A3), 𝑎 ⊥ −𝑏.
(A4) Assume 𝑎 ⊥ 𝑏 and 𝑎 ⊥ 𝑐; then 𝑎 ⊥ −𝑐 by (A5). Now

(A6) with 𝑐 := −𝑐 implies (𝑏 − (−𝑐)) ⊥ 𝑎, that is,
(𝑏 + 𝑐) ⊥ 𝑎. Hence, by (A3), 𝑎 ⊥ (𝑏 + 𝑐).

Is there a simple condition underwhich (A5) follows from
(A1)–(A4)? The answer is positive.

Proposition 3. If all elements of 𝐺 have finite order and if ⊥
satisfies (A1)–(A4), then it satisfies (A5). If 𝐺 has at least one
element of infinite order, then there exists a relation ⊥ which
satisfies (A1)–(A4) but not (A5).

Proof. For the first part, assume that 𝑎, 𝑏 ∈ 𝐺 satisfy 𝑎 ⊥ 𝑏,
and let the order of 𝑏 be 𝑛. Then 𝑎 ⊥ (𝑛 − 1)𝑏 by (A4). But
(𝑛 − 1)𝑏 = −𝑏 and (A5) follows. For the second part, let 𝑎 ∈
𝐺 have infinite order. Then the subgroup {0, ±𝑎, ±2𝑎, . . .} is
isomorphic to Z. The relation ⊥ defined by

𝑥 ⊥ 𝑦 ⇐⇒ (∃𝜇, ] ∈ Z : 𝑥 = 𝜇𝑎 ∧ 𝑦 = ]𝑎 ∧ 𝜇] < 0)

∨ 𝑥 = 0 ∨ 𝑦 = 0
(2)

satisfies (A1)–(A4) but not (A5).

If 0 ̸=𝐴 ⊆ 𝐺, we define the perpendicular complement or
⊥-complement of 𝐴 as follows:

𝐴
⊥

= {𝑦 ∈ 𝐺 | 𝑦 ⊥ 𝐴} = ⋃
𝐺⊇𝐵⊥𝐴

𝐵. (3)

Here 𝑦 ⊥ 𝐴 means that 𝑦 ⊥ 𝑥 for all 𝑥 ∈ 𝐴, and 𝐵 ⊥ 𝐴
means that 𝑦 ⊥ 𝐴 for all 𝑦 ∈ 𝐵. Thus 𝐴⊥ is the maximal set
perpendicular to𝐴. In particular,𝐺⊥ = {0} and {0}⊥ = 𝐺. We
also define 0⊥ = 𝐺.

Proposition 4. If 𝐴 ⊆ 𝐺, then 𝐴⊥ is a subgroup of 𝐺. If 𝐺 is
cyclic, then 𝐴⊥ is cyclic.

Proof. Thefirst part follows by applying the subgroup test and
Proposition 2. The second part follows from the fact that any
subgroup of a cyclic group is cyclic.

The next theorem tells when 𝐺 has a nontrivial perpen-
dicularity.

Theorem 5. The following conditions are equivalent:

(a) 𝐺 has a nontrivial perpendicularity ⊥,
(b) 𝐺 has nontrivial cyclic subgroups 𝐻 and 𝐾 satisfying
𝐻 ∩ 𝐾 = {0},

(c) 𝐺 has nontrivial subgroups 𝐻 and 𝐾 satisfying 𝐻 ∩

𝐾 = {0}.

Proof. (a)⇒(b). Since⊥ is nontrivial, there exist 𝑥, 𝑦 ∈ 𝐺\{0}
such that 𝑥 ⊥ 𝑦. Then𝐻 = ⟨𝑥⟩ and 𝐾 = ⟨𝑦⟩ apply. Here ⟨𝑎⟩
stands for the cyclic group generated by 𝑎.

(b)⇒(c). Trivial.
(c)⇒(a). Define ⊥ by

𝑥 ⊥ 𝑦 ⇐⇒ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐾) ∨ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐻)

∨ 𝑥 = 0 ∨ 𝑦 = 0.
(4)

Next we consider the maximal perpendicularity in some
examples of groups. In Examples 6–9, the group operation is
addition.

Example 6. Let 𝐺 = Z
6
. By Lagrange’s theorem [5, page

130, Theorem 2], the smallest 𝑛 such that Z
𝑛
has a nontrivial

perpendicularity is 6 = 2 ⋅ 3 because 𝑛must have at least two
different prime factors. The nontrivial subgroups of Z

6
are

𝐻 = ⟨3⟩ = {0, 3} and 𝐾 = ⟨2⟩ = {0, 2, 4}. Since 𝐺 = 𝐻 ⊕ 𝐾,
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it has exactly one nontrivial perpendicularity, defined by 0 ⊥
0, 1, 2, 3, 4, 5 and 3 ⊥ 2, 4 and vice versa. Consequently, this
perpendicularity is maximal.

Example 7. Let 𝐺 = Z
2
× Z
2
, the Klein four group. Denote

0 = (0, 0), 𝑎 = (0, 1), 𝑏 = (1, 0), 𝑐 = (1, 1). The
nontrivial subgroups are 𝐴 = {0, 𝑎}, 𝐵 = {0, 𝑏}, 𝐶 = {0, 𝑐}.
So, there are three nontrivial perpendicularities obtained
as follows: Choose two elements of 𝑎, 𝑏, and 𝑐. Define
that they are perpendicular to each other and to 0. Define
that the remaining element is perpendicular to 0 only. All
perpendicularities arising in this way are clearlymaximal.We
also note that 𝐺 = 𝐴 ⊕ 𝐵 = 𝐵 ⊕ 𝐶 = 𝐶 ⊕ 𝐴.

Example 8. Let 𝐺 = Z. For each 𝑛 ≥ 2, the subgroup ⟨𝑛⟩ =
𝑛Z is nontrivial and there are no other nontrivial subgroups
than those found in this way. Because𝑚𝑛 ∈ ⟨𝑚⟩∩⟨𝑛⟩, there is
no pair of nontrivial subgroups with intersection {0}. Hence
𝐺 has only the trivial perpendicularity.

Example 9. Let 𝐺 = R. Since R has infinitely many pairs
of nontrivial subgroups with intersection {0}, it has infinitely
many nontrivial perpendicularities. For example, let 𝐻 = Q

and 𝐾 = {𝑥√2 | 𝑥 ∈ Q} and define ⊥ by (4). To see that this
perpendicularity is notmaximal, let𝐻

1
= {𝑥√3 | 𝑥 ∈ Q} and

𝐾
1
= {𝑥√5 | 𝑥 ∈ Q} and define ⊥󸀠 by

𝑥⊥
󸀠

𝑦 ⇐⇒ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐾) ∨ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐻)

∨ (𝑥 ∈ 𝐻
1
∧ 𝑦 ∈ 𝐾

1
) ∨ (𝑥 ∈ 𝐾

1
∧ 𝑦 ∈ 𝐻

1
)

∨ 𝑥 = 0 ∨ 𝑦 = 0.

(5)

Then 𝑥 ⊥ 𝑦 ⇒ 𝑥⊥󸀠 𝑦.

Example 10. Let 𝐺 = (Q
+
, ⋅), where Q

+
denotes the set of

positive rational numbers.
Every 𝑐 ∈ Q

+
can be uniquely expressed as

𝑐 = ∏
𝑝∈P

𝑝
]𝑝(𝑐), (6)

where ]
𝑝
(𝑐) ∈ Z for each 𝑝 ∈ P and only a finite number of

them are nonzero. The symbol P stands for the set of primes.
For example, if 𝑐 = 8/25, then ]

2
(𝑐) = 3, ]

3
(𝑐) = 0, ]

5
(𝑐) = −2,

]
7
(𝑐) = ]

11
(𝑐) = ⋅ ⋅ ⋅ = 0.

Assign now

𝑎 ⊥ 𝑏 ⇐⇒ ∀𝑝 ∈ P : ]
𝑝
(𝑎) = 0 ∨ ]

𝑝
(𝑏) = 0. (7)

In other words, if

𝑎 =
𝑚

𝑢
, 𝑏 =

𝑛

V
, 𝑚, 𝑢, 𝑛, V ∈ Z

+
,

gcd (𝑚, 𝑢) = gcd (𝑛, V) = 1,
(8)

then

𝑎 ⊥ 𝑏 ⇐⇒ gcd (𝑚𝑢, 𝑛V) = 1. (9)

Hence, for example, 8/9 ⊥ 7/5. In particular, for 𝑚, 𝑛 ∈ Z
+
,

applying (9) to𝑚/1 and 𝑛/1 yields that

𝑚 ⊥ 𝑛 ⇐⇒ gcd (𝑚, 𝑛) = 1. (10)

So, it seems that Graham et al. were prophetically quite
right with their suggestion—and not forgetting Birkhoff
either! We will discuss the perpendicularity of positive
rational numbers in more detail in Section 5.

3. Perpendicularity in Z
𝑛

Studying perpendicularities requires that we know the struc-
ture of 𝐺. Next we take a more thorough look at perpen-
dicularity in Z

𝑛
. To that end, we begin by introducing a

suitable notation to discuss the structure of Z
𝑛
and record

two lemmas which are useful in the search for the maximal
perpendicularity. We will also use the notations introduced
inTheorem 11 and the following lemmas throughout the next
sections.

Theorem 11. If

𝑛 = 𝑝
𝛼1

1
⋅ ⋅ ⋅ 𝑝
𝛼𝑟

𝑟
, (11)

where 𝑝
1
, . . . , 𝑝

𝑟
∈ P are distinct and 𝛼

1
, . . . , 𝛼

𝑟
> 0, then

Z
𝑛
= 𝐻
1
⊕ ⋅ ⋅ ⋅ ⊕ 𝐻

𝑟
, (12)

where

𝐻
𝑖
= ⟨𝑒
𝑖
⟩, 𝑒
𝑖
=
𝑛

𝑝
𝛼𝑖

𝑖

, 𝑖 = 1, . . . , 𝑟. (13)

Thedecomposition (12) is unique (up to the order of subgroups).

Proof. The claim (12) follows from [5, page 399, Corollary 1]
and from the facts that Z

𝑝
𝛼𝑖
𝑖

≅ 𝐻
𝑖
and 𝐻

𝑖
∩ 𝐻
𝑗
= {0} for

all 𝑖, 𝑗 = 1, . . . , 𝑟, 𝑖 ̸= 𝑗. Uniqueness follows from [5, page 399,
Corollary 2].

Although we consider Z
𝑛
mainly as an Abelian group, it

is now useful to work with Z
𝑛
as a ring.

Lemma 12. For all 𝑖, 𝑗 = 1, . . . , 𝑟, 𝑖 ̸= 𝑗,

𝑒
2

𝑖
̸= 0, 𝑒

𝑖
𝑒
𝑗
= 0. (14)

Proof. It is enough to consider 𝑖 = 1, 𝑗 = 2. Regarding 𝑒
1
and

𝑒
2
as integers, we have

𝑒
2

1
=
𝑛2

𝑝
2𝛼1

1

= 𝑝
2𝛼2

2
⋅ ⋅ ⋅ 𝑝
2𝛼𝑟

𝑟
̸≡ 0 (mod 𝑛) ,

𝑒
1
𝑒
2
=
𝑛

𝑝
𝛼1

1

𝑛

𝑝
𝛼2

2

= 𝑝
𝛼2

2
⋅ ⋅ ⋅ 𝑝
𝛼𝑟

𝑟
𝑝
𝛼1

1
𝑝
𝛼3

3
⋅ ⋅ ⋅ 𝑝
𝛼𝑟

𝑟

= 𝑝
𝛼3

3
⋅ ⋅ ⋅ 𝑝
𝛼𝑟

𝑟
𝑛 ≡ 0 (mod 𝑛) ,

(15)

and (14) follows.
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Lemma 13. Let ⊥ be a perpendicularity in Z
𝑛
. Then

∀𝑎, 𝑏, 𝑐, 𝑑 ∈ Z
𝑛
: 𝑎 ⊥ 𝑏 󳨐⇒ 𝑐𝑎 ⊥ 𝑑𝑏. (16)

Proof. Let 𝑐 = 𝛾1, 𝑑 = 𝛿1, where 𝛾 and 𝛿 are integers with
0 ≤ 𝛾, 𝛿 < 𝑛. Since 𝑐𝑎 = (𝛾1)𝑎 = 𝛾(1𝑎) = 𝛾𝑎 and, similarly,
𝑑𝑏 = 𝛿𝑏, Proposition 1(d) implies (16).

Now we are ready to introduce a perpendicularity which
turns out to be maximal in Z

𝑛
. Let

𝑥 = 𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
, 𝑦 = 𝑦

1
+ ⋅ ⋅ ⋅ + 𝑦

𝑟
∈ Z
𝑛
, (17)

where 𝑥
𝑖
, 𝑦
𝑖
∈ 𝐻
𝑖
, 𝑖 = 1, . . . , 𝑟. The relation ⊥

0
, defined in Z

𝑛

by

𝑥⊥
0
𝑦 ⇐⇒ ∀𝑖 ∈ {1, . . . , 𝑟} : 𝑥

𝑖
= 0 ∨ 𝑦

𝑖
= 0, (18)

is clearly a perpendicularity.

Theorem 14. The perpendicularity ⊥
0
is maximal and every

other perpendicularity in Z
𝑛
is contained in it.

Proof. Let ⊥ be another perpendicularity in Z
𝑛
. Our claim is

that 𝑥 ⊥ 𝑦 ⇒ 𝑥⊥
0
𝑦. By (12), we can express

𝑥 = 𝜉
1
𝑒
1
+ ⋅ ⋅ ⋅ + 𝜉

𝑟
𝑒
𝑟
, 𝑦 = 𝜂

1
𝑒
1
+ ⋅ ⋅ ⋅ + 𝜂

𝑟
𝑒
𝑟
, (19)

where the integers 𝜉
𝑖
, 𝜂
𝑖
∈ {0, . . . , 𝑝

𝛼𝑖

𝑖
−1} and the residue class

𝑒
𝑖
= 𝑛/𝑝

𝛼𝑖

𝑖
, 𝑖 = 1, . . . , 𝑟.

Suppose against the claim of theorem that there exist
𝑥, 𝑦 ∈ Z

𝑛
such that 𝑥 ⊥ 𝑦 but 𝑥�⊥0 𝑦. Then 𝜉

𝑖
, 𝜂
𝑖
̸= 0 for some

𝑖. Reordering the indices so that 𝑖 = 1 and applying (16), we
have 𝑥𝑒

1
⊥ 𝑦𝑒
1
which implies that

𝜉
1
𝑒
2

1
⊥ 𝜂
1
𝑒
2

1
(20)

by (14). Hence, by Proposition 1(d),

𝜂
1

gcd (𝜉
1
, 𝜂
1
)
𝜉
1
𝑒
2

1
⊥

𝜉
1

gcd (𝜉
1
, 𝜂
1
)
𝜂
1
𝑒
2

1
, (21)

that is,

lcm (𝜉
1
, 𝜂
1
) 𝑒
2

1
⊥ lcm (𝜉

1
, 𝜂
1
) 𝑒
2

1
. (22)

Consequently, lcm (𝜉
1
, 𝜂
1
) 𝑒2
1
= 0 by (A2). In other words,

regarding also 𝑒
1
as an integer,

lcm (𝜉
1
, 𝜂
1
) 𝑒
2

1
= lcm (𝜉

1
, 𝜂
1
)
𝑛2

𝑝
2𝛼1

1

= lcm (𝜉
1
, 𝜂
1
) 𝑝
2𝛼2

2
⋅ ⋅ ⋅ 𝑝
2𝛼𝑟

𝑟

≡ 0 (mod 𝑛) ,

(23)

and 𝑝𝛼1
1
divides lcm(𝜉

1
, 𝜂
1
). However, since it divides neither

𝜉
1
nor 𝜂
1
, this is a contradiction. Hence, 𝑥⊥

0
𝑦.

Considering the direct sum (12) external, we can identify
𝑥 and 𝑦 in (17) with vectors (𝑥

1
, . . . , 𝑥

𝑟
) and (𝑦

1
, . . . , 𝑦

𝑟
),

respectively. So, it is natural to define their “inner product”
by

⟨𝑥, 𝑦⟩ = 𝑥
1
𝑦
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑟
𝑦
𝑟
. (24)

Proposition 15 shows that this operation coincides with the
ordinary multiplication in Z

𝑛
.

Proposition 15. Given 𝑥, 𝑦 ∈ Z
𝑛
,

⟨𝑥, 𝑦⟩ = 𝑥𝑦. (25)

Proof. We have

𝑥𝑦 = (

𝑟

∑
𝑖=1

𝑥
𝑖
)(

𝑟

∑
𝑖=1

𝑦
𝑖
) =

𝑟

∑
𝑖=1

𝑥
𝑖
𝑦
𝑖
+

𝑟

∑
𝑖,𝑗=1

𝑖 ̸= 𝑗

𝑥
𝑖
𝑦
𝑗
. (26)

But, recalling (19) and (14),
𝑟

∑
𝑖,𝑗=1

𝑖 ̸= 𝑗

𝑥
𝑖
𝑦
𝑗
=

𝑟

∑
𝑖,𝑗=1

𝑖 ̸= 𝑗

𝜉
𝑖
𝜂
𝑗
𝑒
𝑖
𝑒
𝑗
= 0. (27)

The claim follows.

Theorem 16. Let ⊥ be a perpendicularity in Z
𝑛
. Then

∀𝑥, 𝑦 ∈ Z
𝑛
: 𝑥 ⊥ 𝑦 󳨐⇒ 𝑥𝑦 = 0. (28)

Proof. If 𝑥 ⊥ 𝑦, then 𝑥⊥
0
𝑦 byTheorem 14. So, 𝑥𝑦 = 0 by (18)

and (25).

Does the converse of Theorem 16 hold if ⊥= ⊥
0
? And,

related to Proposition 15, is ⟨𝑥, 𝑦⟩ = 𝑥𝑦 a proper inner
product? Namely, an inner product in a real vector space is
symmetric and bilinear and it satisfies ⟨𝑥, 𝑥⟩ = 0 ⇒ 𝑥 = 0.
The operation ⟨𝑥, 𝑦⟩ = 𝑥𝑦 in Z

𝑛
has clearly the first and

second properties but what about the third one?The answers
to both questions are contained inTheorem 17.

Theorem 17. The following conditions are equivalent:

(a) 𝛼
1
= ⋅ ⋅ ⋅ = 𝛼

𝑟
= 1,

(b) ∀𝑥, 𝑦 ∈ Z
𝑛
: 𝑥𝑦 = 0 ⇒ 𝑥⊥

0
𝑦,

(c) ∀𝑥 ∈ Z
𝑛
: 𝑥2 = 0 ⇒ 𝑥 = 0.

Proof. (a)⇒(b). Assume that 𝑥�⊥0 𝑦. Express 𝑥 and 𝑦 as in
(19). We can rearrange the indices so that, for some 𝑠 ∈
{1, . . . , 𝑟},

𝜉
𝑖
, 𝜂
𝑖
̸= 0, 𝑖 = 1, . . . , 𝑠,

𝜉
𝑖
= 0 ∨ 𝜂

𝑖
= 0, 𝑖 = 𝑠 + 1, . . . , 𝑟.

(29)

By (25),

𝑥𝑦 = 𝜉
1
𝜂
1
𝑒
2

1
+ ⋅ ⋅ ⋅ + 𝜉

𝑠
𝜂
𝑠
𝑒
2

𝑠
. (30)

If 𝜉
1
𝜂
1
𝑒2
1
+⋅ ⋅ ⋅+𝜉

𝑠
𝜂
𝑠
𝑒2
𝑠
= 0, then the integer 𝜉

1
𝜂
1
𝑒2
1
+⋅ ⋅ ⋅+𝜉

𝑠
𝜂
𝑠
𝑒2
𝑠
≡

0 (mod 𝑛), that is,

𝜉
1
𝜂
1

𝑛2

𝑝2
1

+ ⋅ ⋅ ⋅ + 𝜉
𝑠
𝜂
𝑠

𝑛2

𝑝2
𝑠

≡ 0 (mod 𝑛 = 𝑝
1
⋅ ⋅ ⋅ 𝑝
𝑟
) . (31)
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However, this is impossible because none of𝑝
1
, . . . , 𝑝

𝑠
divides

the left-hand side. (Namely, 𝑝
𝑖
divides every other summand

except the 𝑖th one.) Therefore, 𝑥𝑦 ̸= 0 and our claim follows
by contradiction.

(b)⇒(c). If 𝑥2 = 0, then 𝑥⊥
0
𝑥 by (b) and 𝑥 = 0 by (A2).

(c)⇒(a). Suppose that (a) does not hold.Then, say,𝛼
1
> 1.

Let 𝑥 = 𝑛/𝑝
1
. Since the integer

𝑥
2

=
𝑛2

𝑝2
1

=
𝑝
2𝛼1

1
⋅ ⋅ ⋅ 𝑝2𝛼𝑟
𝑟

𝑝2
1

= 𝑝
2𝛼1−2

1
𝑝
2𝛼2

2
⋅ ⋅ ⋅ 𝑝
2𝛼𝑟

𝑟
≡ 0 (mod 𝑛) ,

(32)

the residue class𝑥2 = 0. But𝑥 ̸= 0 and hence (c) does not hold.
Again, our claim follows now by contradiction.

Corollary 18. If and only if the conditions of Theorem 17 are
satisfied, then

∀𝑥, 𝑦 ∈ Z
𝑛
: 𝑥 ⊥
0
𝑦 ⇐⇒ 𝑛 | (𝑥𝑦) , (33)

where 𝑥𝑦 is the product of integers 𝑥 and 𝑦.

Example 19. Let 𝐺 = Z
30
. Since 30 = 2 ⋅ 3 ⋅ 5, the decomposi-

tion (12) is

Z
30
= ⟨

30

2
⟩ ⊕ ⟨

30

3
⟩ ⊕ ⟨

30

5
⟩

= {0, 15} ⊕ {0, 10, 20} ⊕ {0, 6, 12, 18, 24} .

(34)

For example, since 2 = 0 ⋅ 15+2 ⋅ 10+2 ⋅ 6 and 15 = 1 ⋅ 15+0 ⋅
10 + 0 ⋅ 6, we have 2⊥

0
15. Generally, (33) implies that 𝑥⊥

0
𝑦

if and only if the corresponding integers satisfy 30 | (𝑥𝑦).

Example 20. Let 𝐺 = Z
360

. Since 360 = 23 ⋅ 32 ⋅ 5, we have

Z
360
= ⟨

360

23
⟩ ⊕ ⟨

360

32
⟩ ⊕ ⟨

360

5
⟩

= {45, 90, . . . , 315} ⊕ {40, 80, . . . , 320}

⊕ {72, 144, . . . , 288} .

(35)

For example, 5⊥
0
72 because 5 = 1 ⋅ 45 + 8 ⋅ 40 + 0 ⋅ 72 and

72 = 0 ⋅ 45 + 0 ⋅ 40 + 1 ⋅ 72. Now (33) is only necessary for ⊥
0

but not sufficient. For example, 10�⊥0 36 due to the fact that
10 = 2 ⋅ 45 + 7 ⋅ 40 + 0 ⋅ 72 and 36 = 4 ⋅ 45 + 0 ⋅ 40 + 3 ⋅ 72.
However, 360 | (10 ⋅ 36).

4. Another Definition of Perpendicularity

Davis [4] defined perpendicularity as a binary relation⊥ in𝐺
satisfying

(D1) ∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 ⊥ 𝑏 ⇒ 𝑏 ⊥ 𝑎,
(D2) ∀𝑎 ∈ 𝐺 : 0 ⊥ 𝑎,
(D3) ∀𝑎 ∈ 𝐺 : 𝑎 ⊥ 𝑎 ⇒ 𝑎 = 0,
(D4) ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 : 𝑏 ⊥ 𝑎 ∧ 𝑐 ⊥ 𝑎 ⇒ (𝑏 + 𝑐) ⊥ 𝑎,
(D5) ∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 ⊥ 𝑏 ⇔ {𝑎}⊥⊥ ∩ {𝑏}⊥⊥ = {0}.

He assumes that 𝐺 is an Abelian group, but the definition
applies more generally to an Abelianmonoid, too. It is easy to
see that (D1)–(D4) are equivalent to (A1)–(A4). Axiom (D5)
arises from introducing the concept of “disjointness” on a
vector lattice; see [2, page 295], [6]. In fact,⇔ can be replaced
with⇐ in (D5) due to the following observation.

Proposition 21. Assume that ⊥ satisfies (D1)–(D3) (or, equiv-
alently, (A1)–(A3)). Then

∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 ⊥ 𝑏 ⇒ {𝑎}
⊥⊥

∩ {𝑏}
⊥⊥

= {0} . (36)

Proof. We show first that if 0 ̸=𝐴 ⊆ 𝐺, then

𝐴 ∩ 𝐴
⊥

= {0} . (37)

If 𝑥 ∈ 𝐴 ∩ 𝐴⊥, then 𝑥 ⊥ 𝑦 for all 𝑦 ∈ 𝐴. In particular, 𝑥 ⊥ 𝑥,
and hence 𝑥 = 0 by (D3) and (37) follows.

Assume next that 𝑎 ⊥ 𝑏 and let 𝑥 ∈ {𝑎}⊥⊥ ∩ {𝑏}⊥⊥. Since
𝑥 ⊥ {𝑏}

⊥ and 𝑎 ∈ {𝑏}⊥, we have 𝑥 ⊥ 𝑎 implying that 𝑥 ∈ {𝑎}⊥.
Thus 𝑥 ∈ {𝑎}⊥ ∩ {𝑎}⊥⊥. But (37) applied to 𝐴 = {𝑎}⊥ implies
that {𝑎}⊥ ∩ {𝑎}⊥⊥ = {0} and 𝑥 = 0 follows.

How are these two perpendicularities related? We give a
partial answer. Let us denote by 𝐴 and 𝐷 the axioms (A1)–
(A5) and (D1)–(D5), respectively.

Proposition 22. If all elements of 𝐺 have finite order, then
𝐷 ⇒ 𝐴. If 𝐺 has at least one element of infinite order, then
there exists a relation ⊥ satisfying 𝐷 but not 𝐴.

Proof. Thefirst claim follows fromProposition 3. Concerning
the second one, ⊥ defined by (2) establishes a relation
satisfying𝐷 but not (A5).

Proposition 23. Assume that 𝐺 has elements 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
̸= 0

such that ⟨𝑎
𝑖
⟩ ∩ ⟨𝑎

𝑗
⟩ = {0} whenever 𝑖 ̸= 𝑗. Then there exists a

relation ⊥ satisfying 𝐴 but not𝐷.

Proof. The relation⊥ defined by (5) with𝐻 = ⟨𝑎
1
⟩,𝐾 = ⟨𝑎

2
⟩,

𝐻
1
= ⟨𝑎
3
⟩, and𝐾

1
= ⟨𝑎
4
⟩ satisfies 𝐴. Since {𝑎

1
}
⊥⊥

∩ {𝑎
3
}
⊥⊥

=

⟨𝑎
1
⟩ ∩ ⟨𝑎

3
⟩ = {0} and 𝑎

1�⊥ 𝑎3, it does not satisfy (D5).

5. Divisibility in Q
+

It will turn out that perpendicularity has got something to do
also with divisibility inQ

+
. To that end, we begin by noticing

that every 𝑏 ∈ Q
+
can be said to be a rational divisor of every

𝑎 ∈ Q
+
because 𝑎 = 𝑐𝑏 for some 𝑐 ∈ Q

+
. So, this divisibility is

trivial. In order to be able to discuss nontrivial divisibilities in
Q
+
, we have to consider which properties essentially establish

this relation. The following three ones seem quite obvious.
Let | be a relation inQ

+
satisfying

(i) ∀𝑎 ∈ Q
+
: 𝑎 | 𝑎,

(ii) ∀𝑎, 𝑏, 𝑐 ∈ Q
+
: 𝑐 | 𝑎 ∧ 𝑐 | 𝑏 ⇒ 𝑐 | (𝑎𝑏),

(iii) ∀𝑎, 𝑏, 𝑐 ∈ Q
+
: 𝑐 | 𝑏 ∧ 𝑏 | 𝑎 ⇒ 𝑐 | 𝑎.

We call | a divisibility in Q
+
. In other words, divisibility is a

reflexive and transitive relation (i.e., a preorder) satisfying (ii).
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If 𝑏 | 𝑎, then we say that 𝑏 is a divisor of 𝑎 and that 𝑎 is divisible
by 𝑏. If 𝑑 | 𝑎, 𝑑 | 𝑏 and 𝑐 | 𝑎∧ 𝑐 | 𝑏 ⇒ 𝑐 | 𝑑, then 𝑑 is a greatest
common divisor of 𝑎 and 𝑏, denoted by gcd

|
(𝑎, 𝑏). All these

notions are meaningful also in any Abelian monoid.
Let us recall that every 𝑐 ∈ Q

+
can be expressed as

𝑐 = ∏
𝑝∈P

𝑝
]𝑝(𝑐), (38)

where ]
𝑝
(𝑐) ∈ Z for each 𝑝 ∈ P, and only a finite number of

them are nonzero. If ]
𝑝
(𝑐) ̸= 0, then 𝑝 is a prime factor of 𝑐.

Consider the set 𝑆 of all sequences (𝑛
2
, 𝑛
3
, . . . , 𝑛

𝑝
, . . .),

where the index runs through P, each 𝑛
𝑝
∈ Z, and only a

finite number of them are nonzero. The mapping

𝑓(𝑐) = (]
2
(𝑐) , ]
3
(𝑐) , . . . , ]

𝑝
(𝑐) , . . .) (39)

is an isomorphism from (Q
+
, ⋅) onto (𝑆, +) where addition is

defined termwise. For example,

𝑓(45) + 𝑓(
8

25
) = (0, 2, 1, 0, 0, . . .) + (3, 0, −2, 0, 0, . . .)

= (3, 2, −1, 0, 0, . . .) ,

𝑓 (45 ⋅
8

25
) = 𝑓(

72

5
) = 𝑓 (2

3

⋅ 3
2

⋅ 5
−1

)

= (3, 2, −1, 0, 0, . . .) .

(40)

Given 𝑎, 𝑏 ∈ Q
+
, we define their “inner product” being

the Euclidean inner product of the vectors 𝑓(𝑎) and 𝑓(𝑏):

⟨𝑎, 𝑏⟩ = ⟨𝑓(𝑎) , 𝑓(𝑏)⟩ = ∑
𝑝∈P

]
𝑝
(𝑎) ]
𝑝
(𝑏) . (41)

Since only a finite number of summands are nonzero, this
sum is finite. For example,

⟨45,
8

25
⟩ = 0 ⋅ 3 + 2 ⋅ 0 + 1 ⋅ (−2) + 0 + 0 + ⋅ ⋅ ⋅ = −2. (42)

Next we define |𝑐| by setting ]
𝑝
(|𝑐|) = |]

𝑝
(𝑐)| for all 𝑝 ∈

P or, equivalently, |𝑐| = 𝑓−1((]
2
(|𝑐|), ]

3
(|𝑐|), ]

5
(|𝑐|), . . .)). For

example, if 𝑐 = 40/63 = 23 ⋅ 3−2 ⋅ 51 ⋅ 7−1, then |𝑐| = 23 ⋅
32 ⋅ 51 ⋅ 71 = 2520. Letting ⊥

1
be the same relation as the one

defined by (7), it can be characterized now by

𝑎⊥
1
𝑏 ⇐⇒ ⟨|𝑎| , |𝑏|⟩ = 0. (43)

Also the relation ⊥
2
inQ
+
, defined by

𝑎⊥
2
𝑏 ⇐⇒ ⟨𝑎, 𝑏⟩ = 0, (44)

is a perpendicularity.
We will introduce one more nontrivial perpendicularity

using divisibility. For that purpose, we first notice that the
relation 𝛿 defined by

𝑏𝛿𝑎 ⇐⇒ ∀𝑝 ∈ P : ]
𝑝
(𝑏) ≤ ]

𝑝
(𝑎) (45)

is a divisibility, gcd
𝛿
(𝑎, 𝑏) exists and is unique for all 𝑎, 𝑏 ∈ Q

+
,

and

gcd
𝛿
(𝑎, 𝑏) = ∏

𝑝∈P

𝑝
min(]𝑝(𝑎),]𝑝(𝑏)). (46)

Assume now that 𝑚, 𝑛, 𝑢, V ∈ Z
+
so that gcd(𝑚, 𝑢) =

gcd(𝑛, V) = 1. An alternative expression for (45) is
𝑛

V
𝛿
𝑚

𝑢
⇐⇒ 𝑛 | 𝑚 ∧ 𝑢 | V, (47)

and that for (46) is

gcd
𝛿
(
𝑚

𝑢
,
𝑛

V
) =

gcd (𝑚, 𝑛)
lcm (𝑢, V)

. (48)

For example, if 𝑎 = 45/14 = 2−1 ⋅ 32 ⋅ 51 ⋅ 7−1 and 𝑏 = 33/100 =
2−2 ⋅ 31 ⋅ 5−2 ⋅ 111, then gcd

𝛿
(𝑎, 𝑏) = 2−2 ⋅ 31 ⋅ 5−2 ⋅ 7−1 = 3/700.

Alternatively,

gcd
𝛿
(𝑎, 𝑏) =

gcd (45, 33)
lcm (14, 100)

=
3

700
. (49)

Since gcd
𝛿
(|𝑚/𝑢|, |𝑛/V|) = gcd(𝑚𝑢, 𝑛V), we have by (9)

𝑎⊥
1
𝑏 ⇐⇒ gcd

𝛿
(|𝑎| , |𝑏|) = 1. (50)

This relation generalizes (10) and answers the cry of Graham
et al. in a slightly wider context than what they, perhaps, had
thought.

Eugeni and Rizzi [7, Section 2] defined divisibility in Q
+

by setting the relation 𝛾 so that
𝑛

V
𝛾
𝑚

𝑢
⇐⇒ 𝑛 | 𝑚 ∧ V | 𝑢. (51)

Then gcd
𝛾
(𝑎, 𝑏) always exists and is unique, and

gcd
𝛾
(
𝑚

𝑢
,
𝑛

V
) =

gcd (𝑚, 𝑛)
gcd (𝑢, V)

. (52)

For example,

gcd
𝛾
(
45

14
,
33

100
) =

gcd (45, 33)
gcd (14, 100)

=
3

2
. (53)

We define now the corresponding perpendicularity by writ-
ing

𝑎⊥ER 𝑏 ⇐⇒ gcd
𝛾
(𝑎, 𝑏) = 1

⇐⇒ gcd (𝑚, 𝑛) = gcd (𝑢, V) = 1.
(54)

Summing up, we have at least three nontrivial perpendic-
ularities inQ

+
. Let us see how they relate to one another.

⊥
1
versus ⊥

2
. Clearly ⊥

1
⇒ ⊥
2
(i.e., 𝑥⊥

1
𝑦 ⇒ 𝑥⊥

2
𝑦). The

converse does not hold. For example, 6⊥
2
2/3 but 6�⊥1 2/3.

⊥
1
versus ⊥ER. Clearly ⊥1 ⇒ ⊥ER. The converse does not

hold. For example, 2/3⊥ER3/2 but 2/3�⊥1 3/2.
⊥
2
versus ⊥ER. These perpendicularities are independent.

For example, 6⊥
2
2/3 but 6�⊥ER 2/3. On the other hand,

2/3⊥ER3/2 but 2/3�⊥2 3/2.
However, regarding (Z

+
, ⋅) as a submonoid of (Q

+
, ⋅), it is

obvious that ⊥
1
= ⊥
2
= ⊥ER in Z

+
. Moreover, in Z

+
, they

yield the very perpendicularity proposed by Graham et al.
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6. Parallelism

Parallelism is closely related to perpendicularity. Considering
different geometric contexts we notice soon that, in general,
parallelism does not have any other properties except those
of equivalence. However, any equivalence relation cannot be
said to stand for parallelism in any reasonable way.This leads
us to ask whether it is possible or not to define parallelism
in Abelian groups having a perpendicularity so that it makes
sense.

Let 𝐺 have a perpendicularity ⊥ and let 𝑎, 𝑏 ∈ 𝐺. We
say that 𝑎 and 𝑏 are parallel and write 𝑎 ‖ 𝑏 if {𝑎}⊥ = {𝑏}⊥.
The relation ‖ is clearly an equivalence. If 𝑎 ̸= 0, then 𝑎 ∦ 0,
since {0}⊥ = 𝐺 by Proposition 1(a) but {𝑎}⊥ ̸= 𝐺 by (A2). All
nonzero elements are parallel if and only if ⊥ is trivial.

If 𝐺 = Z
𝑛
and ⊥= ⊥

0
, then, recalling (19),

𝑥‖ 𝑦 ⇐⇒ (∀𝑖 ∈ {1, . . . , 𝑟} : 𝜉
𝑖
= 0 ⇐⇒ 𝜂

𝑖
= 0)

⇐⇒ {𝑥}
⊥

= {𝑦}
⊥

= 𝐻
𝑖𝑖
⊕ ⋅ ⋅ ⋅ ⊕ 𝐻

𝑖𝑡
,

(55)

where 𝜉
𝑖
= 𝜂
𝑖
= 0 ⇔ 𝑖 ∈ {𝑖

1
, . . . , 𝑖

𝑡
}. For example, consider

Z
30

(see Example 19). Since 2 = 0 ⋅ 15 + 2 ⋅ 10 + 2 ⋅ 6 and
16 = 0 ⋅ 15 + 1 ⋅ 10 + 1 ⋅ 6, we have {2}⊥ = {16}⊥ = {0, 15}, and
so 2 ‖ 16.

Now, let 𝐺 = Q
+
and let ⊥

1
, ⊥
2
, and ⊥ER be as before.

Denote the corresponding parallelisms by ‖
1
, ‖
2
, and ‖ER,

respectively. Then 𝑎‖
1
𝑏 if and only if 𝑎 and 𝑏 have the same

prime factors. Further,𝑚/𝑢‖ER𝑛/V if and only if𝑚 and 𝑛 have
the same prime factors and 𝑢 and V have the same prime
factors.

Let us study how these parallelisms relate to one another.
‖
1
versus ‖

2
. We show that ‖

2
⇒ ‖

1
. Assume first

that 𝑎‖
2
𝑏. If 𝑎∦

1
𝑏, then there exists 𝑝

0
∈ P such that, say,

]
𝑝0
(𝑎) = 0 and ]

𝑝0
(𝑏) ̸= 0. But now 𝑝

0
⊥
2
𝑎 and 𝑝

0�⊥2 𝑏, and
so {𝑎}⊥2 ̸= {𝑏}⊥2 contradicting the assumption. The converse
does not hold. For example, let 𝑎 = 6 and 𝑏 = 12; then 𝑎‖

1
𝑏.

If 𝑥 = 2/3, then 𝑥⊥
2
𝑎 but 𝑥�⊥2 𝑏, and hence {𝑎}

⊥2 ̸= {𝑏}
⊥2 . In

other words, 𝑎∦
2
𝑏.

‖
1
versus ‖ER. Clearly ‖ER ⇒ ‖

1
. The converse does not

hold. For example, 2/3‖
1
3/2 but 2/3∦ER3/2.

‖
2
versus ‖ER.We show that ‖

2
⇒ ‖ER. Given𝑝1, . . . , 𝑝𝑡 ∈

P, denote by 𝑁(𝑝
1
, . . . , 𝑝

𝑡
) the set of such positive integers

that are not divisible by any𝑝
𝑖
, 𝑖 = 1, . . . , 𝑡. Let 𝑎 = 𝑚/𝑢 ∈ Q

+
,

gcd(𝑚, 𝑢) = 1. Factorize

𝑚 = 𝑝
𝛼1

1
⋅ ⋅ ⋅ 𝑝
𝛼ℎ

ℎ
, 𝑢 = 𝑞

𝛽1

1
⋅ ⋅ ⋅ 𝑞
𝛽𝑘

𝑘
, (56)

where 𝑝
1
, . . . , 𝑝

ℎ
, 𝑞
1
, . . . , 𝑞

𝑘
∈ P are distinct and 𝛼

1
, . . . ,

𝛼
ℎ
, 𝛽
1
, . . .,𝛽

𝑘
> 0. (If𝑚 = 1 or 𝑢 = 1, then the corresponding

“empty product” is one.) Now

{𝑎}
⊥2 ={

𝑝
𝜉1

1
⋅ ⋅ ⋅ 𝑝
𝜉ℎ

ℎ

𝑞
𝜂1

1
⋅ ⋅ ⋅ 𝑞
𝜂𝑘

𝑘

𝑥

𝑦
| 𝛼
1
𝜉
1
+ ⋅ ⋅ ⋅ + 𝛼

ℎ
𝜉
ℎ
+ 𝛽
1
𝜂
1

+ ⋅ ⋅ ⋅ + 𝛽
𝑘
𝜂
𝑘
= 0,

𝑥, 𝑦 ∈ 𝑁 (𝑝
1
, . . . , 𝑝

ℎ
, 𝑞
1
, . . . , 𝑞

𝑘
) } .

(57)

(The “empty sum” is zero.) Assume that 𝑏 = 𝑛/V ∈ Q
+
,

gcd(𝑛, V) = 1, satisfies 𝑎‖
2
𝑏, that is, {𝑎}⊥2 = {𝑏}⊥2 . Then, by

(57), necessarily

𝑛 = 𝑝
𝜌1

1
⋅ ⋅ ⋅ 𝑝
𝜌ℎ

ℎ
, V = 𝑞

𝜎1

1
⋅ ⋅ ⋅ 𝑞
𝜎𝑘

𝑘
, (58)

where 𝜌
1
, . . . , 𝜌

ℎ
, 𝜎
1
, . . . , 𝜎

𝑘
> 0. Hence 𝑎‖ER𝑏, and the claim

follows.The converse is not valid. For example, 2/3‖ER4/3 but
2/3∦
2
4/3.

7. Discussion

This paper began with a citation by three established mathe-
maticians and computer scientists who showed a remarkable
intuition by promoting the use of the symbol of perpendicu-
larity in number theory. Indeed, we have previously seen how
this notion settles comfortably in this setting and gains new
meanings at a more general level in the context of Abelian
group theory. We conclude this paper with the following
supplement to their proposal.

Let perpendicularity and parallelism mean here ⊥
1
and

‖
1
, respectively. Consider the “direction vector” of 𝑐 ∈ Q

+

by (𝑐(2), 𝑐(3), . . . , 𝑐(𝑝), . . .), where 𝑐(𝑝) = 0 if ]
𝑝
(𝑐) = 0 and

𝑐(𝑝) = 1 otherwise. For example, the direction vectors of
45, 1, and 8/25 are, respectively (0, 1, 1, 0, 0, . . .), (0, 0, . . .), and
(1, 0, 1, 0, 0, . . .).

Now, like the directions of perpendicular lines are as
different as possible, the prime factors of perpendicular
(positive rational) numbers are as different as possible; that
is, such numbers do not have common prime factors. In
other words, the direction vectors of perpendicular numbers
are as different as possible in the sense that they have no
common element of value one. Like parallel lines have the
samedirection, parallel numbers have the sameprime factors.
In other words, their direction vectors are equal.

Finally, we note that perpendicularity can be axiomatized
in a natural way also in many other algebraic structures.
Davis [8] did that in a ring. In a vector space, perpendic-
ularity is customarily defined based on an inner product.
Another possible approach is to supplement (A1)–(A5) with
suitable axioms concerning the multiplication of a vector
by a scalar. It might be interesting to study under which
additional conditions there exists an inner product inducing
this perpendicularity.
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