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WITH INDEFINITE WEIGHT FUNCTIONS

G. A. AFROUZI

Received 24 June 2001

We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunc-
tions) for the boundary value problem: −∆u(x) = λg(x)u(x), x ∈ D; (∂u/∂n)(x) +
αu(x) = 0, x ∈ ∂D, where ∆ is the standard Laplace operator, D is a bounded domain
with smooth boundary, g : D → R is a smooth function which changes sign on D and
α∈R. We discuss the relation between α and the principal eigenvalues.
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1. Introduction. We investigate the property of principal eigenvalues for the bound-

ary value problem

−∆u(x)= λg(x)u(x), x ∈D,
∂u
∂n
(x)+αu(x)= 0, x ∈ ∂D,

(1.1)

where D is a bounded region in RN with smooth boundary, g : D → R is a smooth

function which changes sign on D and α∈R.

Such problems have been studied in recent years since Fleming [4] studied the fol-

lowing associated nonlinear problems arising in the study of population genetics:

ut(x,t)=∆u+λg(x)f(u), x ∈D, (1.2)

where f is some function of class C1 such that f(0)= 0= f(1).
Fleming’s results suggested that nontrivial steady-state solutions were bifurcating

the trivial solutions u ≡ 0 and u ≡ 1. In order to investigate these bifurcation phe-

nomena, it was necessary to understand the eigenvalues and eigenfunctions of the

corresponding linearized problem

−∆u(x)= λg(x)u(x), x ∈D. (1.3)

The study of the linear ordinary differential equation case, however, goes back to

Bocher [3]. Attention has been confined mainly to the cases of Dirichlet (α =∞) and

Neumann boundary conditions.

In the case of Dirichlet boundary conditions, it is well known (see [5]) that there

exists a double sequence of eigenvalues for (1.1)

···< λ−2 < λ+1 < 0< λ+1 < λ
+
2 < ··· , (1.4)
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λ+1 (λ
−
1 ) being the unique positive (negative) principal eigenvalue, that is, (1.1) has

solution u(v) which is positive in D. It is also well known that the case where 0<α<
∞ is similar to the Dirichlet case.

In the case of Neumann boundary conditions, 0 is clearly a principal eigenvalue

and there is a positive (negative) principal eigenvalue if and only if
∫
D g(x)dx < 0

(> 0); in the case where
∫
D g(x)dx = 0 there are no positive and no negative principal

eigenvalues.

We show that the set of λ’s such that λ is a principal eigenvalue of (1.1) is a bounded

set and its bounds are independent of α, and also the positive principal eigenvalue λ
of (1.1) is strictly an increasing function of α.

Our analysis is based on a method used by Hess and Kato [5]. Consider, for fixed λ,

the eigenvalue problem

−∆u(x)−λg(x)u(x)= µu(x), x ∈D,
∂u
∂n
(x)+αu(x)= 0, x ∈ ∂D.

(1.5)

We denote the lowest eigenvalue of (1.5) by µ(α,λ). Let

Aα,λ =
{∫

D
|∇φ|2dx+α

∫
∂D
φ2dsx−λ

∫
D
gφ2dx :φ∈W 1,2(D),

∫
D
φ2dx = 1

}
(1.6)

whenα≥ 0, it is clear thatAα,λ is bounded below. It is shown in [6], by using variational

arguments, that µ(α,λ)= infAα,λ and that an eigenfunction corresponding to µ(α,λ)
does not change sign on D. Thus, clearly, λ is a principal eigenvalue of (1.1) if and

only if µ(α,λ)= 0.

When α< 0, the boundedness below of Aα,λ is no longer obvious a priori, and it is

shown by Afrouzi and Brown [2].

2. Boundedness and monotonicity of principal eigenvalues. The following theo-

rem is proved in [1, Theorem 1.8].

Theorem 2.1. If

λ1 = inf
{∫

D

[
|∇φ|2+qφ2

]
dx+α

∫
∂D
φ2dsx :φ∈W 1,2(D),

∫
D
φ2dx = 1

}
, (2.1)

where q ∈ L∞(D), then there exists φ1 ∈W 1,2(D),
∫
Dφ

2
1dx = 1, such that

λ1 =
∫
D

[∣∣∇φ1

∣∣2+qφ2
1

]
dx+α

∫
∂D
φ2

1dsx. (2.2)

Moreover, λ1 is the principal eigenvalue and φ1 > 0 is a principal eigenfunction of

−∆u(x)+q(x)u(x)= λu(x), x ∈D,
∂u
∂n
(x)+αu(x)= 0, x ∈ ∂D.

(2.3)
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It is obvious that λ1 is the principal eigenvalue of (1.1) if and only if 0 is the principal

eigenvalue of

−∆u(x)−λ1g(x)u(x)= µu(x), x ∈D,
∂u
∂n
(x)+αu(x)= 0, x ∈ ∂D.

(2.4)

Here we are ready to prove one of the main results of this section about the uni-

formly boundedness of principal eigenvalues of (1.1) with respect to α.

Theorem 2.2. There exist m< 0 and M > 0 such that if λ is a principal eigenvalue

of (1.1), then λ∈ [m,M] and also m, M are independent of α.

Proof. Suppose that λ1 is a principal eigenvalue of (1.1). Then 0 is a principal

eigenvalue of (2.4) and so by Theorem 2.1, we have

0= inf
{∫

D
|∇φ|2+α

∫
∂D
φ2dsx−λ1

∫
D
gφ2dx :φ∈W 1,2(D),

∫
D
φ2dx = 1

}
. (2.5)

Now, by considering test functions φ1,φ2 ∈ C∞0 (D) such that
∫
Dφ

2
1dx = 1 and∫

D gφ
2
1dx > 0 also

∫
Dφ

2
2dx = 1 and

∫
D gφ

2
2dx < 0 we have

0≤
∫
D

∣∣∇φ1

∣∣2+α
∫
∂D
φ2

1dsx−λ1

∫
D
gφ2

1dx (2.6)

and also

0≤
∫
D

∣∣∇φ2

∣∣2+α
∫
∂D
φ2

2dsx−λ1

∫
D
gφ2

2dx. (2.7)

Hence from (2.6) and (2.7) we obtain, respectively,

λ1 ≤
∫
D
∣∣∇φ1

∣∣2dx∫
D gφ

2
1dx

,
∫
D
∣∣∇φ2

∣∣2dx∫
D gφ

2
2dx

≤ λ1. (2.8)

So by assuming M = ∫D |∇φ1|2dx/
∫
D gφ

2
1dx and m = ∫D |∇φ2|2dx/

∫
D gφ

2
2dx, we

have obtained λ∈ [m,M], and also we see that m, M are independent of α.

In the case 0 < α < ∞, it is known [1, Lemmas 1.18 and 1.19] that problem (1.1)

has the unique positive (negative) principal eigenvalue, that is, λ+1 (λ
−
1 ), such that if

u and v are being eigenfunctions corresponding to λ+1 and λ−1 , respectively, then∫
D gu2dx > 0 and

∫
D gv2dx < 0. Also in the case α < 0, the following theorem [2,

Theorem 5] is proved.

Theorem 2.3. There exists α0 ≤ 0 such that

(i) if α<α0, then (1.1) does not have a principal eigenvalue;

(ii) if α = α0, then (1.1) has a unique principal eigenvalue with the corresponding

eigenfunction u0 such that
∫
D g(x)u

2
0(x)dx = 0;

(iii) if α > α0, then (1.1) has exactly two principal eigenvalues λ and µ,λ < µ;

if u0 and v0 are eigenfunctions corresponding to λ < µ, respectively, then∫
D g(x)u

2
0(x)dx < 0 and

∫
D g(x)v

2
0 (x)dx > 0;
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(iv) α0 = 0 if and only if
∫
D g(x)dx = 0.

Now we prove the monotonicity of principal eigenvalues of (1.1) with respect to α.

Theorem 2.4. Suppose that λ1 is a principal eigenvalue of

−∆u(x)= λg(x)u(x), x ∈D,
∂u
∂n
(x)+α1u(x)= 0, x ∈ ∂D

(2.9)

such that the corresponding principal eigenvalue, say u1, satisfies
∫
D gu

2
1dx > 0. If

α2 >α1 and λ2, u2 are, respectively, principal eigenvalue and eigenfunction of

−∆u(x)= λg(x)u(x), x ∈D,
∂u
∂n
(x)+α2u(x)= 0, x ∈ ∂D

(2.10)

such that
∫
D gu

2
2dx > 0, then λ2 < λ1.

Proof. Since λ1 is a principal eigenvalue of (2.9), so 0 is a principal eigenvalue of

−∆u(x)−λ1g(x)u(x)= µu(x), x ∈D,
∂u
∂n
(x)+α1u(x)= 0, x ∈ ∂D,

(2.11)

and so we have

0=
∫
D

∣∣∇u1

∣∣2dx+α1

∫
∂D
u2

1dsx−λ1

∫
D
gu2

1dx (2.12)

and also

0= inf
{∫

D
|∇u|2dx+α2

∫
∂D
u2dsx−λ2

∫
D
gu2dx :u∈W 1,2(D),

∫
D
u2dx = 1

}
.

(2.13)

If λ2 ≥ λ1, then

0=
∫
D

∣∣∇u1

∣∣2dx+α1

∫
∂D
u2

1dsx−λ1

∫
D
gu2

1dx

>
∫
D

∣∣∇u1

∣∣2dx+α2

∫
∂D
u2

1dsx−λ2

∫
D
gu2

1dx

≥ 0

(2.14)

which is impossible. Hence λ2 < λ1 and the proof is complete.
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