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The concept of a terminal continuum introduced in 1973 by G. R. Gordh Jr., for hereditarily
unicoherent continua is extended to arbitrary continua. Mapping properties of these two
concepts are investigated. Especially the invariance of terminality under mappings satisfy-
ing some special conditions is studied. In particular, we conclude that the invariance holds
for atomic mappings.
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Various kinds of nonseparating subcontinua were studied by a number of authors,

see, for example, the expository paper [2], where a large amount of information on

this subject is given. In the topological literature, or in continuum theory (to be more

precise), the term “terminal,” when applied either to subcontinua of a given continuum

or to points, and the same name “terminal” was assigned to several concepts defined

in quite different ways, see, for example, definitions of terminal points or terminal

subcontinua of a given continuum in [2, Definition 1.1, page 7], [10, page 461], [12,

page 458], [14, page 17], [15, page 190], and [16, Definition 1.54, page 107]. See [2,

page 35] for a discussion on relations to some other concepts for which the name

“terminal” (or a similar one) is used.

In the present paper we deal with terminal continua as defined by Gordh Jr. in [12].

To avoid any confusion or misunderstanding in the terminology, we have to use an-

other name for the considered concept. Since Gordh restricts his considerations to

subcontinua of hereditarily unicoherent continua only, we rename this concept, fol-

lowing [5, Section 3, page 380], as HU-terminal. To formulate the concept and to prove

its properties, we have to recall some needed definitions and auxiliary results.

A continuum means a compact, connected Hausdorff space. A subcontinuum I of a

continuum X is said to be irreducible about a subset S ⊂X provided that S ⊂ I and no

proper subcontinuum of I contains S. A continuum I is said to be irreducible provided

that there are two points a and b in I such that I is irreducible about {a,b}. Then I is

said to be irreducible between a andb or froma tob. Each continuum, containing some

two points, contains a continuum which is irreducible between them. A continuum is

said to be hereditarily unicoherent provided that the intersection of any two of its

subcontinua is connected. A continuum X is hereditarily unicoherent if and only if

for each subset S of X there is in X exactly one subcontinuum I(S) irreducible about

S (this was shown in [4, T1, page 187] for metric continua only, but the proof works

in the nonmetric case as well; compare [12, Remark, page 458]).

Definition 1. A subcontinuum K of a hereditarily unicoherent continuum X is

called an HU-terminal continuum of X if
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(1.1) K is contained in an irreducible subcontinuum of X,

(1.2) for each irreducible subcontinuum I of X containing K, there is a point x ∈ X
such that I is irreducible about the union K∪{x}.

For example, each subcontinuum K of the limit segment of the sin1/x-curve is an

HU-terminal continuum of X. Note that if a continuum X is irreducible, and heredi-

tarily unicoherent, then it is an HU-terminal subcontinuum of itself.

Some structural properties of HU-terminal continua, in particular their relations

to other similarly defined concepts, can be found in [2, 12]. The present paper is

devoted to their mapping properties. A leading problem is to find mappings between

hereditarily unicoherent continua which map HU-terminal continua of the domain

onto HU-terminal continua of the range, see [5, Question 22, page 382]. Thus the

paper can be considered as a continuation of studies from [5], where some mapping

properties of other nonseparating subcontinua were examined. However, as it was

said in [5, page 381], if we are looking for a suitable class of mappings which preserve

the concept of HU-terminality, then no condition expressed in terms of confluence

is good enough for this goal. The reader is referred to [5, page 381] for examples

of spaces and mappings justifying this statement. Therefore some other conditions

concerning the mappings have to be considered.

Investigating conditions (1.1) and (1.2) of Definition 1, one can see that the condi-

tions can be studied independently of the hereditary unicoherence of the continuum

X in which the continuum K is located. This leads to the following concept.

Definition 2. A subcontinuum K of a continuum X is called a G-terminal contin-

uum of X if conditions (1.1) and (1.2) are satisfied.

Clearly, the concepts of G-terminal and HU-terminal are the same for hereditarily

unicoherent continua. IfX is irreducible, then it is aG-terminal subcontinuum of itself.

We begin our study of mapping properties of terminal continua with the following

result.

Theorem 3. Let a subcontinuum K of a continuum X be G-terminal, and let a sur-

jective mapping f :X → Y satisfy the following two conditions:

(3.1) for each subcontinuum I of X which is irreducible from a point p ∈ K to some

other point of X and which contains K, its image f(I) is irreducible from f(p)
to some point of Y ;

(3.2) for each irreducible subcontinuum J of Y such that f(K)⊂ J, the inverse image

f−1(J) is an irreducible subcontinuum of X.

Then f(K) is a G-terminal subcontinuum of Y .

Proof. Since K is a G-terminal subcontinuum of X, there is, according to (1.1), an

irreducible subcontinuum I0 of X with K ⊂ I0. Thus f(K) ⊂ f(I0). By (1.2) there is a

point x0 ∈X such that I0 is irreducible about K∪{x0}, that is,

I0 = I
(
K∪{x0

})
. (1)

Consider two cases. If x0 ∈K, then I0 = I(K)=K, thus K is irreducible, and therefore

by (3.1) its image f(K) is an irreducible subcontinuum of Y , whence (1.1) holds for
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f(K) and Y . If x0 �∈ K, then x0 is a point of irreducibility of I0. Let P = {q ∈ I0 :

I0 is irreducible from x0 to q}. Then, by (1), P∩K ≠∅, so there is a point q ∈ K such

that I0 is irreducible from x0 to q. Thus the continuum f(I0) is irreducible from f(x0)
to f(q), whence again condition (1.1) holds for f(K) and Y .

To show (1.2) (for f(K) and Y ) let J be an irreducible continuum in Y with

f(K) ⊂ J. By (3.2) its inverse image f−1(J) is an irreducible subcontinuum of X, and

K ⊂ f−1(f (K))⊂ f−1(J). By (1.2) there is a point x ∈X such that f−1(J)= I(K∪{x}).
Therefore f−1(J) is irreducible from a point p ∈K to x. Applying (3.1), we infer that

J = f(f−1(J)) is irreducible from f(p) to f(x). Thus (1.2) holds as needed, and the

proof is complete.

The next two examples show that the assumptions of Theorem 3 are essential.

Example 4. Condition (3.1) is indispensable in Theorem 3.

Proof. In the plane equipped with the polar coordinate system (ρ,ϕ), let Ck =
{(k,ϕ) :ϕ ∈ [0,2π]} for k∈ {1,2} be two concentric circles, and let

S =
{
(ρ,ϕ) : ρ = 2+eϕ

1+eϕ , ϕ ∈ (−∞,+∞)
}

(2)

be the spiral line approximating both C1 and C2. Put X = C1∪S∪C2 and K = C1. Thus

K is a G-terminal subcontinuum of X.

Let f : X → C1 = Y be the central projection determined by f((ρ,ϕ)) = (1,ϕ) for

each (ρ,ϕ)∈X. Then condition (3.1) is not satisfied, because for the irreducible con-

tinuum I =X containing K its image f(I)=Y is not irreducible. However, condition

(3.2) is satisfied vacuously, since there is no irreducible subcontinuum J of Y contain-

ing f(K). And f(K) = Y is not a G-terminal subcontinuum of Y since it is contained

in no irreducible subcontinuum of Y .

Example 5. Condition (3.2) is indispensable in Theorem 3.

Proof. LetX be a simple triod with center v and end points a, b, and c, that is,X =
va∪vb∪vc. Choose a point a′ ∈ av \{a,v} and let K = a′v∪vb. Thus conditions

(1.1) and (1.2) are satisfied, soK isG-terminal, (even HU-terminal), subcontinuum ofX.

Define f :X → f(X)= Y as identification of points b and c only, that is, f(b)= f(c)
and the partial mapping f |(X\{b,c}) is a homeomorphism. Note that each subcontin-

uum I of X which is irreducible from a point p ∈K to some other point of X and which

contains K is an arc xv∪vb where x ∈ aa′, so its image f(I) is an arc f(xv)∪f(vb)
in Y , and thus condition (3.1) is satisfied. Condition (3.2) does not hold, for if J = f(K),
then f−1(J) has two components: K and {c}. Finally, f(K) is not a G-terminal sub-

continuum of Y since condition (1.2) is not satisfied: for a point c′ ∈ vc \{v,c} ⊂ X
the arc f(av)∪f(vb)∪f(cc′) ⊂ Y contains f(K) but it is not irreducible about the

union f(K)∪{y} for any point y ∈ Y .

Since the concepts of G-terminal and HU-terminal are the same for hereditarily

unicoherent continua, we have the following corollary to Theorem 3.
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Corollary 6. Let continua X and Y be hereditarily unicoherent and a subcontin-

uum K of X be HU-terminal. If a surjective mapping f : X → Y satisfy conditions (3.1)

and (3.2), then f(K) is an HU-terminal subcontinuum of Y .

Remark 7. The converse implications to the ones in Theorem 3 and Corollary 6

are not true. Indeed, in the plane with Cartesian coordinate system put

v = (0,0), a= (−1,0), b = (0,1), c = (1,0), (3)

let va, vb, and vc be the straight line segments, and let T = va∪vb∪vc. Define

f : [0,4]→ T as a piecewise linear mapping determined by f(0)= a, f(1)= f(3)= v ,

f(2)= b, and f(4)= c. Then {0} and {4} are degenerate HU-terminal subcontinua of

[0,4], their images {a} and {c} are degenerate HU-terminal subcontinua of T , while

none of conditions (3.1) and (3.2) is satisfied.

As another consequence of Theorem 3 we get the following result.

Corollary 8. Let a surjective mapping f :X → Y between continuaX and Y satisfy

the following two conditions:

(8.1) for each subcontinuum I of X which is irreducible from a point p of a G-terminal

subcontinuum of X to some other point of X, its image f(I) is irreducible from

f(p) to some point of Y ;

(8.2) for each irreducible subcontinuum J of Y containing the image under f of a

G-terminal subcontinuum of X, the inverse image f−1(J) is an irreducible sub-

continuum of X.

Then

(8.3) for each G-terminal subcontinuum of X, its image is a G-terminal subcontinuum

of Y .

Moreover, if the continua X and Y are assumed to be hereditarily unicoherent, then

“G-terminal” can be replaced by “HU-terminal” in (8.1), (8.2), and (8.3).

Since conditions (8.1) and (8.2) are implied by (9.1) and (9.2) below, respectively, we

have the next corollary.

Corollary 9. Let a surjective mapping f :X → Y between continuaX and Y satisfy

the following two conditions:

(9.1) for each subcontinuum I of X which is irreducible from a point p of X to some

other point of X, its image f(I) is irreducible from f(p) to some point of Y ;

(9.2) for each irreducible subcontinuum J of Y , the inverse image f−1(J) is an irre-

ducible subcontinuum of X.

Then

(8.3) for each G-terminal subcontinuum of X its image is a G-terminal subcontinuum

of Y .

Moreover, if continua X and Y are assumed to be hereditarily unicoherent, then

“G-terminal” can be replaced by “HU-terminal” in (8.3).

Now, consequences of Corollary 9 will be presented. We start with some conditions

that imply assumption (9.1), and next we discuss other ones that are related to (9.2).
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Since condition (9.1) is connected with quasi-monotone mappings, some known re-

sults concerning these and other related mappings of continua will be needed. We

recall definitions of these mappings first.

A surjective mapping f :X → Y between continua X and Y is said to be

(i) monotone if for each point y ∈ Y the set f−1(y) is connected;

(ii) quasi-monotone if for each subcontinuum Q of Y with nonempty interior, the

inverse image f−1(Q) has finitely many components, each of which is mapped

by f onto Q;

(iii) confluent if for each subcontinuum Q of Y each component of f−1(Q) is

mapped by f onto Q;

(iv) hereditarily monotone (hereditarily confluent ) if for each subcontinuum C of X
the partial mapping f |C : C → f(C) is monotone (confluent, resp.);

(v) a local homeomorphism if for each point of X there exists an open neighbor-

hood U of this point such that f(U) is open in Y and f |U : U → f(U) is a

homeomorphism.

Obviously, each monotone mapping of a continuum is quasi-monotone. It is known

that each local homeomorphism of a continuum is quasi-monotone (see [11, Theorems

5 and 7, pages 223 and 224] and [13, Table II, page 28]) and that each hereditarily

confluent mapping is also quasi-monotone, (see [13, Corollary 4.45, page 26]). Thus

we have the following known assertion (cf. [11, page 221]).

Assertion 10. If a surjective mapping of a continuum is either monotone, or

hereditarily confluent, or a local homeomorphism, then it is quasi-monotone.

We need also a result concerning images of irreducible continua under quasi-

monotone mappings. The result is a slightly stronger version of [11, Theorem 3,

page 222] with the same proof (compare also [7, Theorem 4, page 71] and [13, (8.1)

and (8.2), page 71]).

Proposition 11. If a continuum X is irreducible between points a and b, and if a

surjective mapping f : X → Y is quasi-monotone, then Y is irreducible between f(a)
and f(b).

The following theorem is an immediate consequence of Theorem 3 and Proposition

11.

Theorem 12. Assume there are continua X and Y , a G-terminal subcontinuum K
of X, and a surjective mapping f :X → Y that satisfies the following two conditions:

(12.1) for each subcontinuum I of X which is irreducible from a point p ∈ K to some

other point of X and which contains K the partial mapping f |I : I → f(I) is

quasi-monotone;

(3.2) for each irreducible subcontinuum J of Y such that f(K)⊂ J, the inverse image

f−1(J) is an irreducible subcontinuum of X.

Then f(K) is a G-terminal subcontinuum of Y . Moreover, if continua X and Y are

assumed to be hereditarily unicoherent, then “G-terminal” can be replaced by “HU-

terminal” both in the assumption and in the conclusion of the theorem.

The next corollary is a consequence of Theorem 12 as well as Corollary 6 and

Proposition 11.
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Corollary 13. Let a surjective mapping f : X → Y between continua X and Y
satisfy the following two conditions:

(13.1) for each subcontinuum I of X which is irreducible from a point p of a G-terminal

subcontinuum of X to some other point of X, the partial mapping f |I : I → f(I)
is quasi-monotone;

(13.2) for each irreducible subcontinuum J of Y containing the image under f of a

G-terminal subcontinuum of X the inverse image f−1(J) is an irreducible sub-

continuum of X.

Then

(8.3) for each G-terminal subcontinuum of X its image is a G-terminal subcontinuum

of Y .

Moreover,

(13.3) if continua X and Y are assumed to be hereditarily unicoherent then “G-

terminal” can be replaced by “HU-terminal.”

The next corollary is a particular case of the previous one.

Corollary 14. Let a surjective mapping f : X → Y between continua X and Y
satisfy the following two conditions:

(14.1) for each irreducible subcontinuum I of X, the partial mapping f |I : I → f(I) is

quasi-monotone;

(14.2) for each irreducible subcontinuum J of Y , the inverse image f−1(J) is an irre-

ducible subcontinuum of X.

Then implications (8.3) and (13.3) hold.

Corollary 14 and Assertion 10 imply the next corollary.

Corollary 15. Let a surjective mapping f : X → Y between continua X and Y
satisfy condition (14.2) and be such that

(15.1) for each irreducible subcontinuum I of X the partial mapping f |I : I → f(I) is

either monotone, or hereditarily confluent, or a local homeomorphism.

Then implications (8.3) and (13.3) hold.

Note that each hereditarily monotone mapping f : X → Y satisfies condition (15.1)

and that hereditary unicoherence of the domain continuumX implies one of the range

if the mapping is monotone, see [13, (7.6), page 59]. Further, a continuum X is hered-

itarily unicoherent if and only if each monotone mapping defined on X is hereditarily

monotone, see [13, (6.10), page 53]. Thus Corollary 15 implies the next one.

Corollary 16. Let a hereditarily monotone surjective mapping f :X → Y between

continua X and Y satisfy condition (14.2). Then implication (8.3) holds. Moreover, if X
is hereditarily unicoherent, then the assumption of hereditary monotoneity of f can be

relaxed to its monotoneity, the range Y is hereditarily unicoherent, and “G-terminal”

can be replaced by “HU-terminal.”

A continuum X is said to be arc-like if every open cover of X can be refined by a

finite open cover whose nerve is an arc; equivalently, for the metric case, if for each

ε > 0 there is an arc A and a surjective mapping f :X →A such that f is an ε-mapping

(i.e., diamf−1(y) < ε for each y ∈ T ). We mention that a continuum X is arc-like if
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and only if it is the inverse limit of an inverse sequence of arcs with surjective bonding

mappings; see [17, page 24]; for the original definition using ε-chains, see Bing’s paper

[3, page 653]. It is well known that each arc-like continuum is hereditarily unicoherent

and irreducible and that any subcontinuum of an arc-like continuum is arc-like (thus

irreducible). Therefore if a continuum X is arc-like and a surjective mapping f :X → Y
is monotone, then condition (14.2) is satisfied, and thus (8.3) holds with “HU-terminal”

in place of “G-terminal” according to Corollary 16. Hence we have the following result.

Proposition 17. If a surjective mapping of an arc-like continuum is monotone,

then the image of each HU-terminal subcontinuum of the domain is an HU-terminal

subcontinuum of the range.

Recall that a surjective mapping f : X → Y between continua X and Y is said to be

atomic if for each subcontinuum K of X such that the set f(K) is nondegenerate, con-

dition K = f−1(f (K)) holds, see [1]. Any atomic mapping is known to be hereditarily

monotone, see [9, Theorem 1, page 49] and [13, (4.14), page 17]. Further, each atomic

mapping f :X → Y between continua satisfies condition (14.2), see [6, Theorem 2, page

132]. Therefore Corollary 16 implies the following one, which is an extended version

of [8, Theorem 4.21], where a direct proof is presented for hereditarily unicoherent

continua.

Principle Corollary 18. Let a surjective mapping f : X → Y between continua

X and Y be atomic. Then

(8.3) for each G-terminal subcontinuum of X its image is a G-terminal subcontinuum

of Y .

Moreover, if the continuum X is hereditarily unicoherent, then Y is hereditarily uni-

coherent too, and “G-terminal” can be replaced by “HU-terminal.”

Remark 19. The above result cannot be extended from atomic to hereditarily

monotone mappings because by shrinking the arm vb of the triod T of Remark 7

to the point v we have a hereditarily monotone mapping f : T → av∪vc which maps

an HU-terminal point b of the domain to an interior point v = f(b) of the range.
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[13] T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.)
158 (1979), 1–91.
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