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We consider rings admitting a Matlis dualizing module E. We argue that if R admits two
such dualizing modules, then a module is reflexive with respect to one if and only if it
is reflexive with respect to the other. Using this fact we argue that the number (whether
finite or infinite) of distinct dualizing modules equals the number of distinct invertible
(R,R)-bimodules. We show by example that this number can be greater than one.
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1. Notation and preliminaries. Throughout this paper, R is always an associative

ring, RM (resp.,MR) means thatM is a left (right) R-module, and RMR means thatM is

a left-right (R,R)-bimodule. We denote by E(M) the injective envelope of the (left or

right) R-module M .

We recall from [4] the following definition.

Definition 1.1. A ring R has a Matlis dualizing module if there is an (R,R)-
bimodule E such that RE and ER are both injective cogenerators, and such that the

canonical maps R→HomR(RE,RE) and R→HomR(ER,RR) are both bijections.

If such E exists, it will be called a Matlis dualizing module for R.

We note that, each of the maps

R �→HomR
(
RE,RE

)
, R �→HomR

(
ER,RR

)
(1.1)

is a morphism of (R,R)-bimodules. If M is a left (right) module, when there is such a

Matlis dualizing module E, we denote by M∨ the right (left) R-module HomR(M,E). If

the canonical map M →M∨∨ is an isomorphism, M is E-reflexive. If R is a ring having

a Matlis dualizing module, then it is clear that R and E are examples of E-reflexive

modules (both of them as left and right R-modules).

Note that, the duality given by such a Matlis dualizing module is what in [8] and its

reference is called a Morita self-duality.

Several examples of Matlis dualizing modules are given in [4]. With the following

one we give a partial answer to [8, Question 4.16].

Example 1.2. Let R be a left and right Noetherian ring having a Matlis dualizing

module E. Then, by [5, Theorem 1], E[x−1] is an injective cogenerator as left and right

R[[x]]-module. Furthermore, by using [7, Theorem 4.1],

HomR[[x]]
(
E
[
x−1],E[x−1])�HomR(E,E)

[
[x]

]� R[[x]] (1.2)

which shows that E[x−1] is a Matlis dualizing module for R[[x]].
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Lemma 1.3. If R has a Matlis dualizing module E and 0→M′ →M →M′′ → 0 is an

exact sequence of left or right R-modules, then M is E-reflexive if and only if M′ and

M′′ are E-reflexive.

Proof. The lemma follows easily by applying the snake lemma to the commutative

diagram

0 M′ M M′′ 0

0 M′∨∨ M∨∨ M′′∨∨ 0.

(1.3)

If R has a Matlis dualizing module E, then recall from [1] that a left (right) R-module

M is finitely cogenerated by E or simply finitely cogenerated ifM may be embedded in

a finite direct sum of copies of E. An immediate consequence of the foregoing lemma

is that every finitely generated and every finitely cogenerated left or right R-module

is E-reflexive.

Osofsky in [6] showed that, if RES defines a Morita duality, then no infinite direct

sum of nonzero modules is reflexive. The following lemma is a particular case of this

result. We include here a proof for completeness.

Lemma 1.4. Let E be a Matlis dualizing module for R and (Mi)i∈I a family of left

(right) R-modules. Then ⊕i∈IMi is E-reflexive if and only if each Mi is E-reflexive and

Mi = 0 except for a finite number of i.

Proof. If Mi = 0 except for a finite number of i, and each Mi is E-reflexive, then

HomR
(
HomR

(⊕i∈I Mi,E
)
,E
)�⊕i∈IHomR

(
HomR

(
Mi,E

)
,E
)�⊕i∈IMi. (1.4)

Conversely, we show first that no infinite direct sum of nonzero modules is E-reflexive.

So consider ⊕i∈IMi with Mi ≠ 0 for all i∈ I, and the canonical morphism

⊕i∈IMi �→HomR
(
HomR

(⊕i∈I Mi,E
)
,E
)�HomR

(∏
i∈I

HomR
(
Mi,E

)
,E
)
, (1.5)

defined by

(
xi
)
i∈I �→ f ∈HomR

(∏
i∈I

HomR
(
Mi,E

)
,E
)
, (1.6)

where f((Φi)i∈I)=
∑
i∈IΦi(xi). The image of (xi)i∈I is zero in⊕i∈IHomR(Mi,E)which

is contained in
∏
i∈IHomR(Mi,E) if and only if xi = 0 for all i ∈ I, that is, (xi)i∈I =

0. Now since ⊕i∈IHomR(Mi,E) ≠
∏
i∈IHomR(Mi,E) and E is a cogenerator, HomR

(
∏
i∈IHomR(Mi,E)/⊕i∈I HomR(Mi,E),E) ≠ 0, which means that there is a nonzero

f :
∏
i∈IHomR(Mi,E)→ E and such that f |⊕i∈I HomR(Mi,E) = 0. But from the foregoing,

f cannot be the image of (xi)i∈I ∈⊕i∈IMi, and so ⊕i∈IMi is not E-reflexive.

The fact that every Mi is E-reflexive is a consequence of Lemma 1.3.



ON MATLIS DUALIZING MODULES 661

The following result characterizes E-reflexive modules in terms of some submodule.

This result is shown by using Enochs’s argument in [3, Proposition 1.3] to characterize

Matlis reflexive modules over a complete local Noetherian ring.

Proposition 1.5. Let R be a ring having a Matlis dualizing module E. Then a left

(right)R-moduleM is E-reflexive if and only if it contains a finitely generated submodule

N, such that M/N is finitely cogenerated.

Proof. If M contains such a submodule N, then M is E-reflexive by using

Lemma 1.3.

Conversely, if M = 0 there is nothing to prove. If M ≠ 0, then it contains a finitely

generated submodule N1 such that the socle of M/N1, Soc(M/N1), is not zero. If

Soc(M/N1) is not essential in M/S1, let L/N1 ∩ Soc(M/N1) = 0 with N1 ⊂ L, then

there is a finitely generated R-module N2 such that N1 ⊂ N2 ⊂ L, and such that

Soc(L/N2) ≠ 0. Then, Soc(M/N1) → Soc(M/N2) is injective but not surjective. Re-

peating the process we observe that we must stop, since otherwise if T = ∪Nn then

Soc(M/T) is an infinite direct sum, which is not possible sinceM/T is E-reflexive and

then Soc(M/T) would also be E-reflexive, in contradiction with Lemma 1.4. The result

follows from [1, Proposition 10.7].

Remark 1.6. Proposition 1.5 shows that the reflexive property of a module is some-

thing that depends only on the internal structure of such a module.

As a result of the preceding remark, we get the following immediate but important

consequence.

Corollary 1.7. LetR be a ring admitting several Matlis dualizing modules. Suppose

that E1 and E2 are two of these modules and let M be a left (right) R-module. Then M
is E1-reflexive if and only if it is E2-reflexive.

Proposition 1.8. Let (R,�) be a local commutative ring having a Matlis dualizing

module E (not necessarily E(R/�)). Then R is complete.

Proof. We show that the dual of any Artinian left (right) R-moduleM is complete.

IfM is Artinian, then it is embedded in a finite direct product of copies of E. Then, we

have an epimorphism

HomR(E,E)n �→HomR(M,E) (1.7)

for some natural number n, that is, M∨ if finitely generated. But M∨ has also a struc-

ture as R̂-module since E has such a structure. Then it follows immediately thatM∨ is

finitely generated as R̂-module and so it is complete. The result follows now from the

fact that there is a correspondence between submodules of M and quotient modules

of M∨ and therefore, if M is Noetherian, then M∨ is Artinian and this is the case for

R and R∨ � E.

Remark 1.9. Proposition 1.8 shows that if a local commutative ring (R,�) admits

a Matlis dualizing module, then E(R/�) is also Matlis dualizing (since then R is com-

plete). In this case, E is a direct sum of copies of E(R/�), but if the direct sum contains

more than two summands, then HomR(E,E) � R would not be commutative, and so,
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E � E(R/�), both as a left and as a right module, but in general E is not isomorphic

to E(R/�) as an (R,R)-bimodule.

2. Matlis dualizing modules. In Section 1 we mentioned the possibility that a ring

admits different and not necessarily isomorphic Matlis dualizing modules. We start

this section by giving an example of a ring having more than one Matlis dualizing

module.

Example 2.1. Let A be a finite-dimensional algebra over a field k. If we consider

AM , we have the dual M∗ = Homk(M,k). If dimk(M) < ∞ then M is reflexive with

respect to this duality (cf. [2]). From this it may be deduced that AEA =Homk(A,k) is

a Matlis dualizing module for A.

Now, let σ : A→ A be an automorphism and let AE′A be such that AE′ =A E, but if

x ∈ E′ and a∈A, we define xa= xσ(a) (in E). If f : AEA→ AEA is an isomorphism (as

bimodules) then f : AE→ AE′ is an isomorphism, and we know that for f(x)= xc for

some c ∈A. Since f is an isomorphism then such a c is invertible. But f(xa)= f(x)a
which means that (xa)c = xcσ(a) for every x ∈ E. This gives us that σ(a) = c−1ac
for all a∈A. Now if σ is not of this form, we get that E and E′ are not isomorphic as

(A,A)-bimodules.

In any case, A→ HomA(AE′,AE′) = HomA(AE,AE) � A is an isomorphism and A→
HomA(E′A,E

′
A) is a monomorphism. But, since EA is an injective cogenerator, E′A is also

an injective cogenerator and if Soc(E′A)= Soc(EA), we get that E′A � EA. Then

dimk
(
HomA

(
E′A,E

′
A
))= dimk

(
HomA

(
EA,EA

))= dimk(A), (2.1)

so A→HomA(E′A,E
′
A) is also an isomorphism and therefore AE′A is a Matlis dualizing

module for A.

Now, if p is a prime, k = Z/(p), G is a commutative group such that |G| = pn for

some positive integer n, and we consider group algebra A= kG, A is local, so there is

only one simple module over A. Then Soc(E′A)= Soc(EA) is simple since A is commu-

tative and we only have to find an automorphism of A which is not a conjugation by

any unit of A.

So take p = 2, k= Z/(2) and let the group G =H×H where H is the multiplicative

group with two elements H = {1,h}. Take σ : kG→ kG induced by the automorphism

in G given by (
h1,h2

)
�→ (

h2,h1
)
. (2.2)

If {(1,1),(1,h),(h,1),(h,h)} is a basis for kG, we have that, for any element in kG
(in matrix notation), σ((x,y,z,t))= (x,z,y,t), and since kG is commutative, we get

that σ cannot be a conjugation for some unit of A.

Theorem 2.2. Let R be a ring having Matlis dualizing modules, and let E1 and E2

be two of such modules. Denote by P and Q the (R,R)-bimodules HomR(E1R,E2R) and

HomR(E2R,E1R). Then

(i) P⊗RQ� R and Q⊗R P � R;

(ii) P and Q are generators (as left and right R-modules);
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(iii) P and Q are finitely generated projective (as left and right R-modules);

(iv) P �HomR(QR,RR) and Q�HomR(PR,RR).

Proof. Denote by HomR(Ei,Ej) the (R,R)-bimodule HomR(EiR,EjR).
(i) What we want to show is that the morphisms

HomR
(
E1,E2

)⊗RHomR
(
E2,E1

) f
�→HomR

(
E2,E2

)� R,
HomR

(
E2,E1

)⊗RHomR
(
E1,E2

) g
�→HomR

(
E1,E1

)� R, (2.3)

defined by f(σ ⊗ τ) = στ and g(τ ⊗σ) = τσ for every σ ∈ P and every τ ∈ Q,

respectively, are isomorphisms.

Since E1 is an injective cogenerator, f is an isomorphism if and only if when

HomR(−,E1) is applied, the resultant morphism

HomR
(
R,E1

)� E1 �→HomR
(
HomR

(
E1,E2

)⊗RHomR
(
E2,E1

)
,E1

)
(2.4)

is also an isomorphism. But since E1 is E1-reflexive, by Corollary 1.7, E1 is also E2-

reflexive and vice versa, and therefore we get that

HomR
(
HomR

(
E1,E2

)⊗RHomR
(
E2,E1

)
,E1

)
�HomR

(
HomR

(
E1,E2

)
,HomR

(
HomR

(
E2,E1

)
,E1

))
�HomR

(
HomR

(
E1,E2

)
,E2

)� E1

(2.5)

and it follows that f is an isomorphism. For g, the reasoning is analogous.

(ii) Since g is an isomorphism, in particular, g is an epimorphism, and so

1=
∑
i∈I
τiσi (2.6)

with σi ∈ P and τi ∈Q for all i. Now let hi : P → R defined by hi(σ) = τiσ for each

i. Then, we have h : P(I) → R and by (2.6) it follows that P is a generator. Analogous

reasoning is used for Q.

(iii) Let h : P → R(I) � HomR(E1,E1)(I) and let h′ : R(I) → P defined by h(σ) =
(στi)i∈I and h′((ri)i∈I) =

∑
i∈I riσi. It is clear now that (h′h)(σ) = h′((στi)i∈I) =∑

i∈I(στi)σi = σ
∑
i∈I σiτi = σ using (2.6). It follows that P � R(I), and so P is finitely

generated projective. Similarly, we prove that Q is finitely generated projective.

(iv) Let h : P → HomR(QR,RR) defined by h(σ)(τ) = στ for all σ ∈ P and τ ∈ Q.

If h(σ) = 0 then we get that στ = 0 for all τ ∈ Q. But σ = σ1 = σ(∑i∈I τiσi) =∑
i∈I σ(τiσi)=

∑
i∈I(στi)σi = 0, so h is injective.

Let now ϕ ∈HomR(Q,R). Then for all τ ∈Q,

ϕ(τ)=ϕ(1τ)=ϕ
((∑

i∈I
τiσi

)
τ
)
=ϕ

(∑
i∈I

(
τiσi

)
τ
)

=ϕ
(∑
i∈I
τi
(
σiτ

))=∑
i∈I
ϕ
(
τi
)(
σiτ

)

=
∑
i∈I

(
ϕ
(
τi
)
σi
)
τ = h(σ)(τ),

(2.7)
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where σ = ∑
i∈I(ϕ(τi)σi). It follows that P � HomR(Q,R). Similarly, we can prove

that Q�HomR(PR,RR).

Now by analogy with the commutative case, we give the following definition.

Definition 2.3. LetR be a ring and let P be an (R,R)-bimodule. We will say that P is

invertible if it is left and right finitely generated projective and if P⊗RHomR(P,R)� R
and HomR(P,R)⊗R P � R.

Theorem 2.4. Let R be a ring admitting Matlis duality. Then there exists a bijective

correspondence between Matlis dualizing modules and invertible modules.

Proof. Let M be a left (right) R-module and denote M∗ = HomR(M,R). Note first

that, if F is a finitely generated free module, then the natural morphism

F∗⊗RN f
�→HomR(F,N) (2.8)

defined by f(g⊗n)= h∈HomR(F,N)whereh(x)= g(x)n is clearly an isomorphism.

It follows then that P∗⊗RN �HomR(P,N) for P finitely generated projective.

We show now that if P is invertible and E is Matlis dualizing, then P∗ ⊗E is also

Matlis dualizing. First, since P is finitely generated projective, so is P∗. Therefore

P∗ ⊗R E is a direct summand of Rn⊗R E � En for some positive integer n which is

injective, and so P∗⊗R E is also injective.

Now if N is any (left or right) R-module,

HomR
(
N,P∗⊗R E

)�HomR
(
N,HomR(P,E)

)�HomR
(
N⊗R P,E

)
(2.9)

which is not zero since E is a cogenerator, this shows that P∗⊗RE is also a cogenerator.

Moreover,

HomR
(
P∗⊗R E,P∗⊗R E

)�HomR
(
E,HomR

(
P∗,P∗⊗E))

�HomR
(
E,HomR

(
P∗,HomR(P,E)

))
�HomR

(
E,HomR

(
P∗⊗P,E))

�HomR
(
E,HomR(R,E)

)�HomR(E,E)� R

(2.10)

which shows that P∗⊗R E is a Matlis dualizing module.

On the other hand, if Ē is a Matlis dualizing module, then by Theorem 2.2 we have

that HomR(Ē,E) is invertible.

If we denote by � and �, respectively the classes of Matlis dualizing and invertible

modules, the correspondence may be then represented by the following diagram:

�

HomR(−,E)
�

(−)∗⊗RE
. (2.11)
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If Ē is Matlis dualizing, then(
(−)∗⊗R E

)◦(Hom(−,E))(Ē)=HomR
(
HomR

(
Ē,E

)
,R
)⊗R E

�HomR
(
HomR

(
Ē,E

)
,E
)� Ē (2.12)

since HomR(Ē,E) is finitely generated projective and Ē is E-reflexive by Corollary 1.7.

Now, if P is invertible,
(
HomR(−,E)

)◦((−)∗⊗R E)(P)=HomR
(
P∗⊗R E,E

)�HomR
(
HomR(P,E),E

)� P
(2.13)

since P is finitely generated projective and also is E-reflexive.

Remark 2.5. Note that all elements in � are finitely generated projective, and so, by

the proof of Theorem 2.4 (−)∗⊗R E =HomR(−,E), so in other words, if R has a Matlis

dualizing module E, the theorem shows that, in this case, there is a duality between

Matlis dualizing modules and invertible modules, which determines the Picard group

of R.
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