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the complex Monge-Ampère equation on bounded domains, without requiring any smooth-
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1. Introduction. Until recently, to solve the Monge-Ampère equation, it was neces-

sary to consider that equation as a boundary value problem—the Dirichlet problem.

In [2], we were able to solve the Monge-Ampère equation, without considering it as a

boundary value problem, in Lp-Sobolev and Lipschitz spaces on domains with mini-

mally smooth boundaries. There, we had to extend the data from the bounded domain

to the whole space, construct a fundamental solution and convolve with the nth root

of the data, before solving and estimating. Because of the function spaces that we

were dealing with, we could not extend the data by zero outside the bounded domain.

Here, we give continuous and Lp solutions of the complex Monge-Ampère equation on

arbitrary bounded domains in Cn. The solutions which we obtain here, show that the

complex Monge-Ampère equation has viscosity solutions and generalized solutions

in the sense of Aleksandrov [3, page 6], on all bounded domains in Cn.

We consider the complex Monge-Ampère equation in the form

Mc(u) := det

(
∂2u
∂zj∂z̄k

)
= f , (1.1)

where at least f ≥ 0 in Ω—a bounded domain in Cn.

Our results are as follows.

Theorem 1.1. Let f be a nonnegative continuous function in a bounded domain Ω
in Cn, and let f 1/n ∈ L1(Ω). Then, there is a continuous u on Ω such that

Mc(u)= f . (1.2)

Theorem 1.2. Let f be a nonnegative function on Ω such that f 1/n ∈ Lp(Ω), 1 ≤
p ≤∞, where Ω is a bounded domain in Cn, then there is u in W 2,p(Ω) such that

Mc(u)= f , ‖u‖W2,p(Ω) ≤ δ
∥∥f 1/n∥∥

Lp(Ω), (1.3)

where δ is independent of f .
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Recall the definition of the space W 2,p(Ω): if Ω is open in Cn, W 2,p(Ω) is the space

of functions u which together with their distributional derivatives of order through 2

are in Lp(Ω), 1≤ p ≤∞. The norm in W 2,p(Ω) is defined by

‖u‖W2,p(Ω) =


∫
Ω


 ∑
|α|≤2

∣∣Dαu∣∣p

dλ




1/p

, (1.4)

λ being Lebesgue measure, and

‖u‖W2,∞(Ω) =max
|α|≤2

∥∥Dαu∥∥L∞(Ω). (1.5)

2. Continuous solutions of Mc(u) = f . Let e be a fundamental solution of the

Laplacian� in C, that is,�e= δ, where δ is the Dirac delta in C. According to [4, page

64], e can be chosen in such a way that it is at least locally integrable in C. So assume

that e∈ L1
loc(Cn).

Define the distribution Ej in Cn by

Ej(ϕ)= e
(
ϕ(0,0, . . .j . . .0,0)

)
, (2.1)

the action of e being in the jth coordinate; ϕ ∈�(Cn)—a test function.

Let Ω1 �Ω2 �Ω3 � ··· , with
⋃∞
ν=1Ων =Ω, be an exhaustion of Ω. Let {ϕν}∞ν=1 be a

sequence of functions with ϕν ∈ C∞0 (Ων+1), ϕν ≡ 1 on Ων , 0≤ϕν ≤ 1.

Define vν ∈ C0(Cn) by

vν = 1
4

(
E1+E2+···+En

)∗(ϕν ·f 1/n), (2.2)

where ∗ is convolution.

Now, it is clear that Mc(vν) = f in Ων , and {vν} tends locally uniformly to a con-

tinuous function u on Ω such that

Mc(u)= f on Ω. (2.3)

This proves Theorem 1.1.

3. Lp estimates. To prove Theorem 1.2, let f be defined as zero outside Ω and let

Ej , 1≤ j ≤n, be as in (2.2). Define v by

v = 1
4

(
E1+E2+···+En

)∗f 1/n, (3.1)

where, again, ∗ is convolution.

Then

Mc(v)= f , �n(v)=
(
n
4

)
f 1/n on Cn, (3.2)

where �n is the Laplacian in Cn.

Now, let u be the restriction of v to Ω, then (3.1), (3.2), and [1, Theorem 4.2, page

47] prove Theorem 1.2.
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