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ON COMPOSITION OF FORMAL POWER SERIES
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Given a formal power series g(x) = b0+b1x+b2x2+··· and a nonunit f(x) = a1x+
a2x2+··· , it is well known that the composition of g with f , g(f(x)), is a formal power
series. If the formal power series f above is not a nonunit, that is, the constant term
of f is not zero, the existence of the composition g(f(x)) has been an open problem for
many years. The recent development investigated the radius of convergence of a composed
formal power series like f above and obtained some very good results. This note gives a
necessary and sufficient condition for the existence of the composition of some formal
power series. By means of the theorems established in this note, the existence of the
composition of a nonunit formal power series is a special case.

2000 Mathematics Subject Classification: 13F25, 13J05.

1. Introduction and definitions. It is clear that the concepts of power series and

formal power series are related but distinct. So we begin with the definition of formal

power series.

Definition 1.1. Let S be a ring, let l ∈ N be given, a formal power series on S is

defined to be a mapping from Nl to S, where N represents the natural numbers. We

denote the set of all such mappings by X(S), or X.

In this note, we only discuss formal power series fromN to S. A formal power series

f in x from N to S is usually denoted by

f(x)= a0+a1x+···+anxn+··· ,
{
aj
}∞
j=0 ⊂ S. (1.1)

In this case, ak, k ∈ N∪{0} is called the kth coefficient of f . If a0 = 0, f is called a

nonunit.

Let f and g be formal power series in x with f(x) = ∑∞
n=0fnxn and g(x) =∑∞

n=0gnxn, and let r ∈ S, then g+f , rf , and g ·f are defined as

(g+f)(x)= g(x)+f(x)=
∞∑
n=0

(
gn+fn

)
xn,

(rf)(x)= rf(x)=
∞∑
n=0

(
rfn

)
xn,

(f ·g)(x)= g(x)·f(x)=
∞∑
n=0

cnxn, cn =
n∑
j=0

gjfn−j , n= 0,1,2, . . . .

(1.2)

It is clear that all those operations are well defined, that is, g+f , rf , and g ·f are all

in X.
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We define the composition of formal power series as follows.

Definition 1.2. Let S be a ring with a metric and let X be the set of all formal

power series over S. Let g ∈ X be given, say g(x) = ∑∞
k=0bkxk. We define a subset

Xg ⊂ X to be

Xg =
{
f ∈ X | f(x)=

∞∑
k=0

akxk,
∞∑
n=0

bna
(n)
k ∈ S, k= 0,1,2, . . .

}
, (1.3)

where fn(x)=∑∞
k=0a

(n)
k xk, for alln∈N, created by the product rule in Definition 1.1.

We will see that Xg ≠∅ by Proposition 1.6. Then the mapping Tg : Xg → X such that

Tg(f)(x)=
∞∑
k=0

ckxk, (1.4)

where ck =
∑∞
n=0bna

(n)
k , k = 0,1,2, . . . , is well defined. We call Tg(f) the composition

of g and f ; Tg(f) is also denoted by g◦f .

Some progress has been made toward determining sufficient conditions for the

existence of the composition of formal power series. The most recent development

can be found in [1] where Chaumat and Chollet investigated the radius of convergence

of composed formal power series and obtained some very good results.

Consider the following examples before going any further.

Example 1.3. Let S =R. Let g(x)=∑∞
n=0xn and f(x)= 1+x. We cannot calculate

even the first coefficient of the series
∑∞
n=0(f (x))n under Definition 1.2. Thus, the

composition g(f(x)) does not exist.

Example 1.4. Let S = R, g(x) = ∑∞
n=0xn, and f(x) = ∑∞

n=1n!xn. It is clear that

the series
∑∞
n=1n!xn converges nowhere except x = 0. However, one checks that the

composition g(f(x)), not a composition of functions, is a formal power series.

In Example 1.3 note the difference between the composition of formal power se-

ries and the composition of functions such as analytic functions. That is why one

is not surprised to read the concern from Henrici [2]. Example 1.4 shows that many

convergence results in calculus may not be assumed or applied here.

Some progress has been made toward determining sufficient conditions for the

existence of the composition of formal power series.

Definition 1.5. Let f(x) =∑∞
n=0anxn be a formal power series. The order of f

is the least integer n for which an ≠ 0, and denoted by ord(f ). The norm, ‖ ‖, of f
is defined as ‖f‖ = 2−ord(f ), except that the norm of the zero formal power series is

defined to be zero.

Under these definitions, a composition was established as follows.

Proposition 1.6 (see [3]). Let f(x)=∑fnxn be a formal power series in x. If g is

a formal power series, such that

lim
n→∞

∥∥fngn∥∥= 0, (1.5)
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then the sum
∑
fngn converges to a power series. This series is called the composition

of f and g and is denoted by f ◦g.

Clearly, the requirement limn→∞‖fngn‖ = 0 implies that the only candidates for

such g are formal power series with constant term equal to zero unless f is a poly-

nomial.

Is this restriction necessary for the existence of the composition of formal power

series? What classes of the formal power series can be allowed to participate in the

composition? Additionally, is there any sufficient and necessary condition for compo-

sition of formal power series? Some of these questions are answered in this note.

2. Coefficients of fn(x). A formal power series is actually the sequence of its co-

efficients. The composition of formal power series is eventually, or can only be, de-

termined by their coefficients. First, we investigate the coefficients of fn(x) if f(x)
is a formal power series. Of course, mathematical induction or the multinomial coef-

ficients can be used to initiate the investigation of the coefficients of fn(x). We show

that the kth coefficient of fn(x) mainly depends on a0. This property leads to the

main theorem.

Definition 2.1. Let f(x) = a0+a1x+a2x2+···+akxk+··· be a formal power

series. For every n∈N, we write

fn(x)= a(n)0 +a(n)1 x+a(n)2 x2+···+a(n)k xk+··· , (2.1)

and put a(1)k = ak for all k∈N∪{0}; a(n)k is called the kth coefficient of fn.

If am ≠ 0 but aj = 0 for all j > m, we define the degree of f to be the number

deg(f )=m. If there is no such a number m, we say that deg(f )=∞.

Suppose that S is commutative and let n∈N be given. For any k∈N∪{0}, the kth

coefficient a(n)k is determined by the multinomial

(
a0+a1x+a2x2+···+akxk

)n
(2.2)

only, because atxt , t > k, cannot contribute anything to a(n)k . Therefore, by the multi-

nomial theorem

a(n)k =
∑(

n
r0

)(
n−r0

r1

)(
n−r0−r1

r2

)
···

(
n−r0−r1−···−rk−1

rk

)
ar0

0 a
r1
1 ···arkk ,

(2.3)

where the sum is taken for all possible nonnegative integers r0,r1, . . . ,rk, such that

r0+r1+···+rk =n and r1+2r2+3r3+···+krk = k.

For any n∈N and k∈N∪{0}, we denote

R(n)k =
{

r | r= (r0,r1, . . . ,rk
)∈ (N∪{0})k+1,

k∑
j=0

rj =n,
k∑
j=0

jrj = k
}
, (2.4)
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and then define

A(n)r =
(
n
r0

)(
n−r0

r1

)(
n−r0−r1

r2

)
···

(
n−r0−r1−···−rk−1

rk

)
,

∀r= (r0,r1, . . . ,rk
)∈ R(n)k ,

(2.5)

B(n)r =
(
n−r0

r1

)(
n−r0−r1

r2

)
···

(
n−r0−r1−···−rk−1

rk

)
,

∀r= (r0,r1, . . . ,rk
)∈ R(n)k .

(2.6)

Then A(n)r = ( nr0

)
B(n)r , for all r∈ R(n)k and

a(n)k =
∑

r∈R(n)k

A(n)r ar0
0 a

r1
1 a

r2
2 ···arkk

=
∑

r∈R(n)k

(
n
r0

)
Bra

r0
0 a

r1
1 a

r2
2 ···arkk .

(2.7)

For any n∈N and k∈N∪{0}, since
∑k
j=1 jrj =

∑k
j=0 jrj = k for every (r0,r1, . . . ,rk)

∈ R(n)k , the number of selections of the k-tuple (r1,r2, . . . ,rk) is finite, no matter how

large n is. This property, which will be proved in Lemma 2.2, is very important for the

investigation of a(n)k .

Lemma 2.2. Let k,m∈N∪{0} be given. Then

(i) (r0,r1, . . . ,rk)∈ R(k+m)k ⇒ r0 ≥m,

(ii) (r0,r1, . . . ,rk)∈ R(k)k � (r0+m,r1, . . . ,rk)∈ R(k+m)k ,

(iii) |R(k)k | = |R(k+m)k |,
where |V | denotes the cardinal number of the set V .

Proof. (r0,r1, . . . ,rk)∈ R(k+m)k ⇒∑k
j=0 rj = k+m and

∑k
j=0 jrj = k. Then,

r0 = k+m−
k∑
j=1

rj ≥ k+m−
k∑
j=1

j rj =m. (2.8)

This is (i).

Next, (r0,r1, . . . ,rk)∈ R(k)k ⇒∑k
j=0 rj = k and

∑k
j=0 jrj = k⇒ r0+m+

∑k
j=1 rj = k+m

and 0(r0+m)+
∑k
j=1 jrj = k ⇒ (r0+m,r1, . . . ,rk)∈ R(k+m)k . This proves the necessity

of (ii).

Let (r0,r1, . . . ,rk)∈ R(k+m)k be given. Then
∑k
j=0 rj = k+m and

∑k
j=0 jrj = k. Then (i)

yields that r0 ≥m, and then r0−m∈N∪{0}. Then we have

(
r0−m,r1, . . . ,rk

)∈ R(k)k (2.9)

because (r0−m)+
∑k
j=1 rj = k and 0 · (r0−m)+

∑k
j=1 jrj = k. This is the sufficiency

of (ii). Thus we have proved (ii).

By (ii), the mapping (r0,r1, . . . ,rk) → (r0+m,r1, . . . ,rk) from every (r0,r1, . . . ,rk) ∈
R(k)k to (r0+m,r1, . . . ,rk) ∈ R(k+m)k is well defined and the mapping is obviously one-

to-one, which proves (iii).

The proof is completed.
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Lemma 2.2 gives some significant properties of the coefficients of a formal power

series. We use the next corollary to point out these important results.

Corollary 2.3. Let k,m ∈ N∪{0} be given. Let f be a formal power series as in

Definition 1.1 and let S be a commutative ring. Then, by (2.7), in the expressions

a(k)k =
∑

r∈R(k)k

A(k)r ar0
0 a

r1
1 ···arkk ,

a(k+m)k =
∑

q∈R(k+m)k

A(k+m)q aq0
0 a

q1
1 ···aqkk ,

(2.10)

the sums have the same number of summands. The number of summands is determined

by k only. The number of terms in these two sums are the same, the coefficients, A(k)r ’s,

of terms and the power of a0 may be different.

To find the relationship between A(k+m)(r0+m,r1,...,rk) and A(k)(r0,r1,...,rk), like A(k)r and A(k+m)q

in Corollary 2.3 explicitly, for any k,m ∈ N∪{0} and r = (r0,r1, . . . ,rk) ∈ R(k)k , only

apply Lemma 2.2(ii) and (2.7) to the second form in Corollary 2.3. This relationship

can be described in the following corollary.

Corollary 2.4. Let k,m ∈ N∪{0} be given. Let f be a formal power series as in

Definition 1.1. If S is commutative and r= (r0,r1, . . . ,rk)∈ R(k)k , then

A(k+m)(r0+m,r1,...,rk) =
(
k+m
k−r0

)
B(k)(r0,...,rk),

a(k+m)k =
∑

r∈R(k)k

(
k+m
k−r0

)
B(k)r ar0+m

0 ar1
1 ···arkk ,

(2.11)

where B(k)r is defined as in (2.6).

Definition 2.5. Let n ∈ N and k ∈ N∪{0} be given. If r = (r0,r1, . . . ,rk) ∈ R(n)k ,

denote that

R(s)(n)k =
{
r∈ R(n)k

∣∣ r= (r0,0, . . . ,0,rs ,rs+1, . . . ,rk
)}
, ∀1≤ s ≤ k. (2.12)

It is obvious that, R(s)(n)k ⊂ R(n)k .

Lemma 2.6. Let k∈N∪{0} and s ∈N be given and let

r(s)= (ks−k,0, . . . ,0,k,0, . . . ,0)∈ (N∪{0})ks, (2.13)

where the sth coordinate of r(s) is k and the other coordinates of r(s) are zero except

the 0’s. Then

(i) r(s)∈ R(s)(ks)ks ;

(ii) if r= (r0,0, . . . ,0,rs ,rs+1, . . . ,rks)∈ R(s)(ks)ks , then r0 ≥ k(s−1);
(iii) in (ii), r0 = k(s−1)� r= r(s).

Proof. For r(s), k(s−1)+k = ks and k · s = ks imply that r(s) ∈ R(ks)ks . Then (i)

follows from Definition 2.5.
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Next, r= (r0,0, . . . ,0,rs ,rs+1, . . . ,rks)∈ R(s)(ks)ks ⊂ R(ks)ks implies that

r0+rs+rs+1+···+rks = ks,
srs+(s+1)rs+1+···+ksrks = ks. (2.14)

Then, k = rs + ((s+1)/s)rs+1 + ((s+2)/s)rs+2 + ··· + krks . Since rj ≥ 0 for all j, it

follows that

k≥ rs+rs+1+···+rks. (2.15)

Then r0 = ks−
∑ks
j=s rj ≥ ks−k= k(s−1). This is (ii).

Finally, we show (iii). The sufficiency is obvious, we need only show necessity. Sup-

pose that r0 = k(s−1). Then,

rs+rs+1+···+rks = ks−k(s−1)= k,

rs+ s+1
s
rs+1+···+krks = k.

(2.16)

Notice that rj ≥ 0 for all j, s ≤ j ≤ ks. We have

rj = 0, j = s+1,s+2, . . . ,sk. (2.17)

Then rs = ks−r0 = k, and hence r= r(s).
The proof is completed.

3. Composition of formal power series. A formal power series is a mapping from

N to a ring S. If this ring is endowed with a metric, the pointwise convergence of a

mapping from the set of formal power series to itself is well defined. This gives us a

way to define a composition in the set of formal power series over a ring.

Theorem 3.1. Let S be a field with a metric, let X be the set of all formal power

series from N to S, and let f ,g ∈ X be given with the forms

f(x)= a0+a1x+···+anxn+··· ,
g(x)= b0+b1x+···+bnxn ··· , (3.1)

and deg(f )≠ 0. Then, the composition g◦f exists if and only if

∞∑
n=k

(
n
k

)
bnan−k0 ∈ S, ∀k∈N∪{0}. (3.2)

Proof. Suppose that g ◦f exists, that is, ck =
∑∞
n=0bna

(n)
k exists for all k, or, the

series
∑∞
n=0bna

(n)
k converges in S for all k. We show that (3.2) is true by mathematical

induction on k. Since the conclusion is obvious if a0 = 0, assume that a0 ≠ 0.

It is clear that (3.2) is true for k = 0 because the expression in (3.2) is c0. Suppose

that (3.2) holds for all j with 0≤ j ≤ k for some k≥ 0.

Since deg(f ) ≠ 0, we may find s ∈ N such that 1 ≤ s ≤ deg(f ), as ≠ 0 but aj = 0

for all 1 ≤ j < s, that is, as is the first nonzero coefficient of f except the constant

term. Consider a(n)ks+s for any n∈N with n≥ (k+1)s. As in Lemma 2.6, denote r(s)∈
R(s)(ks+s)ks+s by

r(s)= ((k+1)s−(k+1),0, . . . ,0,k+1,0, . . . ,0
)
, (3.3)
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where the sth coordinate of r(s) is k+1 and the other coordinates are zero except the

0’s. By the second formula in (2.11),

a(n)ks+s =
∑

r∈R(ks+s)ks+s

(
n

ks+s−r0

)
B(ks+s)r an+r0−(k+1)s

0 ar1
1 ···arks+sks+s

=
∑

r∈R(s)(ks+s)ks+s

(
n

ks+s−r0

)
B(ks+s)r an+r0−(k+1)s

0 arss a
rs+1
s+1 ···arks+sks+s

(3.4)

because a1 = a2 = ··· = as−1 = 0. By Lemma 2.6 for (k+1)s, we have

a(n)ks+s =
∑

r∈R(s)(ks+s)ks+s ,r≠r(s)

(
n

ks+s−r0

)
B(ks+s)r an+r0−(k+1)s

0 arss ···arks+sks+s

+
(

n
ks+s−(ks+s)+(k+1)

)
B(ks+s)r(s) an+(k+1)s−(k+1)−ks−s

0 ak+1
s

=
∑

r∈R(s)(ks+s)ks+s ,r≠r(s)

(
n

ks+s−r0

)
B(ks+s)r an+r0−(k+1)s

0 arss ···a
r(k+1)s
ks+s

+
(
n
k+1

)
B(ks+s)r(s) an−k−1

0 ak+1
s .

(3.5)

Then,

cks+s =
∞∑
n=0

bna
(n)
ks+s

=
∞∑

n=ks+s
bna

(n)
ks+s+

ks+s−1∑
n=0

bna
(n)
ks+s

=
∞∑

n=ks+s
bn


 ∑

r∈R(s)(ks+s)ks+s ,r≠r(s)

(
n

ks+s−r0

)
B(ks+s)r an+r0−(k+1)s

0 arss ···arks+sks+s




+
∞∑

n=ks+s
bn

(
n
k+1

)
B(ks+s)r(s) an−k−1

0 ak+1
s +

ks+s−1∑
n=0

bna
(n)
ks+s .

(3.6)

We may only consider those r∈ R(s)(ks+s)ks+s for which arss a
rs+1
s+1 ···arks+sks+s ≠ 0 in the above

expression, and we denote them as r′ = (r ′0,0, . . . ,0,r ′s , . . . ,r ′ks+s) ∈ R(s)(ks+s)ks+s . Since S
is a field, we have

cks+s =
∑

r′∈R(s)(ks+s)ks+s ,r′≠r(s)

B(ks+s)r′ ar
′
s
s a

r ′s+1
s+1 ···a

r ′ks+s
ks+s


 ∞∑
n=ks+s

(
n

ks+s−r ′0

)
bna

n+r ′0−(k+1)s
0




+B(ks+s)r(s) ak+1
s

∞∑
n=ks+s

(
n
k+1

)
bnan−k−1

0 +
ks+s−1∑
n=0

bna
(n)
ks+s .

(3.7)

By Lemma 2.6, r′ ≠ r(s) in R(s)(ks+s)ks+s ⇒ r ′0 > (k+1)s−(k+1)⇒ ks+s−r ′0 < k+1.
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Then,
∑∞
n=0

( n
ks+s−r ′0

)
bna

n+r ′0−ks−s
0 converges by the inductive hypothesis. Then,

B(ks+s)r(s) ak+1
s

∞∑
n=ks+s

(
n
k+1

)
bnan−k−1

0

= cks+s−
ks+s−1∑
n=0

bna
(n)
ks+s

−
∑

r′∈R(ks+s)ks+s (s,∗),r′≠s
B(ks+s)r′ ar

′
s
s ···ar

′
ks+s
ks+s


 ∞∑
n=ks+s

(
n

ks+s−r ′0

)
bna

n+r ′0−ks−s
0


,

(3.8)

and the right-hand side converges. Notice that S is a field and as ≠ 0, we have (3.2)

for k+1 and hence we have proved the necessity.

Now suppose that
∑∞
n=k

(n
k
)
bnan−k0 converges for every k∈N∪{0}. Let k∈N∪{0}

be given. Consider

ck =
∞∑
n=0

bna
(n)
k . (3.9)

By (2.11), with n= k+m,

a(n)k =
∑

(r0,...,rk)∈R(k)k

(
n

k−r0

)
B(k)(r0,...,rk)a

n+r0−k
0 ar1

1 ···arkk , (3.10)

and the sum is finite. Then,

ck =
∞∑
n=0

bna
(n)
k =

k−1∑
n=0

bna
(n)
k +

∞∑
n=k

bna
(n)
k

=
k−1∑
n=0

bna
(n)
k +

∞∑
n=k

bn


 ∑
(r0,...,rk)∈R(k)k

(
n

k−r0

)
B(k)(r0,...,rk)a

n+r0−k
0 ar1

1 ···arkk


.

(3.11)

If a0 = 0, then n> k−r0 implies that an+r0−k
0 = 0, and hence the above series is a finite

sum. Then ck exists, and then the conclusion is true. Now we assume that a0 ≠ 0. Since

deg(f ) ≠ 0, we may only consider those r ∈ R(k)k for which ar1
1 a

r2
2 ···arkk ≠ 0 in the

above expression, and denote them as r′ = (r ′0,r ′1, . . . ,r ′k). Then

ck =
k−1∑
n=0

bna
(n)
k +

∞∑
n=k

bn


 ∑
(r ′0,...,r

′
k)∈R

(k)
k

(
n

k−r ′0

)
B(k)(r ′0,...,r ′k)

a
n+r ′0−k
0 a

r ′1
1 ···a

r ′k
k




=
k−1∑
n=0

bna
(n)
k +

∑
r′∈R(k)k

B(k)r′ a
r ′1
1 ···a

r ′k
k


 ∞∑
n=k

bn

(
n

k−r ′0

)
a
n+r ′0−k
0




(3.12)

because S is a field. Thus, ck exists in S by (3.2), and we have completed the proof.

Remark 3.2. If a0 = 0, then f is allowed to be in the composition by Theorem 3.1.

If g is a polynomial, then (3.2) is true clearly. These results show that Proposition 1.6

is just a special case of Theorem 3.1.
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Theorem 3.3. Let X be the set of all formal power series fromN to the set of complex

numbers C. Let f ,g ∈ X be given with the forms

f(x)= a0+a1x+···+anxn+··· , g(x)= b0+b1x+···+bnxn+··· . (3.13)

If the series
∑∞
n=0bnRn converges for some R > |a0|, then g◦f exists.

Proof. If deg(f )= 0, the conclusion is obvious, so assume that deg(f )≠ 0.

Consider the power series
∑∞
n=0bnxn. Since

∑∞
n=0bnRn converges, it follows that

the kth derivative ∞∑
n=k

n(n−1)···(n−k+1)bnxn−k (3.14)

converges for |x|<R for any k∈N∪{0}. Then, for any k∈N∪{0} given,

∞∑
n=k

(
n
k

)
bnxn−k =

∞∑
n=k

n(n−1)···(n−k+1)
k!

bnxn−k

= 1
k!

∞∑
n=k

n(n−1)···(n−k+1)bnxn−k
(3.15)

converges for |x|<R. Then, |a0|<R implies that

∞∑
n=k

(
n
k

)
bnan−k0 (3.16)

converges for all k∈N∪{0}. Then Theorem 3.1 yields the conclusion.

Remark 3.4. Let f(x)= a0+a1x+a2x2+··· ∈ X(R) be given. Define the deriva-

tive of f to be the formal power series

f ′(x)= a1+a2x+a3x2+··· . (3.17)

Then (3.2) is equivalent to

g(k)
(
a0
)∈ S, ∀k∈N∪{0} (3.18)

by the proof of Theorem 3.3. However, Example 1.4 tells us how careful we have to be

when we try to assume any result from calculus.

Corollary 3.5. Let f ,g ∈ X(C) be given by

f(x)= a0+a1x+···+anxn+··· , g(x)= b0+b1x+···+bnxn+··· . (3.19)

Suppose that |a0| < 1 and |bn| ≤M , for all n ∈ N for some positive number M . Then

g◦f is well defined.

Proof. Pick R such that |a0|<R < 1, then
∑∞
n=0bnRn converges because

∣∣bn∣∣≤M, ∀n∈N (3.20)

and
∑∞
n=0Rn converges. Applying Theorem 3.3, g◦f exists.
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Example 3.6. Let S =R,g(x)=∑∞
n=0xn, and f(x)= 0.5+∑∞

n=1n!xn. Corollary 3.5

of Theorem 3.3 yields that g◦f exists.

Theorems 3.1 and 3.3 tell us that the existence of g ◦f strongly depends on the

constant term of f and the coefficients of g. This result directs us to a deeper investi-

gation of the subset of X in which the composition is closed. It is clear that Theorems

3.1 and 3.3 can be applied to ordinary power series.
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