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We present theorems showing when the discrete Abel mean and the Abel summability
method are equivalent for bounded sequences and when two discrete Abel means are
equivalent for bounded sequences.
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1. Introduction and notation. The well-known Abel summability method is a se-

quence-to-function transformation which is defined as follows: for a sequence s :=
{sn} of complex numbers, define

f(x) := (1−x)
∞∑
k=0

skxk, (1.1)

for all x for which the series converges. If f(x) exists for each x ∈ (0,1) and

limx→1− f(x)= L, then the sequence s is Abel summable to L. The discrete Abel mean

is a sequence-to-sequence transformation given by the summability matrix Aλ whose

nkth entry is

Aλ[n,k] := 1
λ(n)

(
1− 1

λ(n)

)k
, n,k= 0,1,2,3, . . . , (1.2)

where λ := {λ(n)} is a strictly increasing sequence of real numbers such that λ(0)≥ 1

and λ(n)→∞. Then the sequence s is Aλ-summable to L provided that

lim
n→∞

(
Aλs

)
n = lim

n→∞
1

λ(n)

∞∑
k=0

sk
(

1− 1
λ(n)

)k
= L. (1.3)

In [1], Armitage and Maddox proved inclusion and Tauberian theorems for the discrete

Abel mean. In this paper, we expand upon the work of these authors by examining

equivalence properties of the Aλ method for bounded sequences.

For a given sequence s, define a sequence a by a0 := s0 and an := sn−sn−1 for n≥ 1.

Then, sn =
∑n
k=0ak and for every n,

(
Aλs

)
n =

1
λ(n)

∞∑
k=0

sk
(

1− 1
λ(n)

)k
=

∞∑
k=0

ak
(

1− 1
λ(n)

)k
. (1.4)

Also, define the sequence t by

tn :=
n∑
k=1

kak. (1.5)
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A straightforward induction argument yields

tn =
n∑
k=0

(
sn−sk

)
. (1.6)

If B andC are two summability methods, thenC includes B, denoted B ⊂ C , provided

that every sequence which is B-summable is also C-summable to the same limit. If

B ⊂ C and C ⊂ B, then B and C are equivalent, denoted B ∼ C .

2. Equivalence results. For any sequence λ, Aλ is clearly a regular (i.e., limit pre-

serving) method. In [1], Armitage and Maddox proved the following inclusion results

for the Aλ method.

Theorem 2.1 (see [1]). Let E(λ) := {λ(n) : n = 0,1,2, . . .} and E(µ) := {µ(n) : n =
0,1,2, . . .}. Then

(1) Aλ ⊂Aµ if and only if E(µ)\E(λ) is a finite set;

(2) Aµ ∼Aλ if and only if the symmetric difference E(λ)�E(µ) is a finite set.

Corollary 2.2 (see [1]). For every λ, Aλ strictly includes the Abel method.

The main result of this section is that Aλ is equivalent to the Abel method for

bounded sequences provided that λ(n+1)/λ(n)→ 1. To show this we need the fol-

lowing two lemmas.

Lemma 2.3 (see [1]). If
∑∞
k=0akxk converges for all x ∈ (0,1), then

∞∑
k=1

akxk =
∞∑
k=1

tk∆
(
xk

k

)
, 0<x < 1, (2.1)

where ∆(xk/k)= xk/k−xk+1/(k+1).

Lemma 2.4. If s is a bounded sequence, then tn =O(n).
Proof. Let s be a bounded sequence. By (1.6),

∣∣tn∣∣=
∣∣∣∣∣

n∑
k=0

(
sn−sk

)∣∣∣∣∣=
∣∣∣∣∣(n+1)sn−

n∑
k=0

sk

∣∣∣∣∣

≤ (n+1)‖s‖∞+
n∑
k=0

∣∣sk∣∣

≤ (n+1)‖s‖∞+(n+1)‖s‖∞
=O(n).

(2.2)

Theorem 2.5. If limn→∞(λ(n+1)/λ(n)) = 1, then Aλ is equivalent to the Abel

method for bounded sequences.
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Proof. By Corollary 2.2, Aλ includes the Abel method. So assume that

lim
n→∞

(
λ(n+1)
λ(n)

)
= 1, (2.3)

let s be a bounded sequence, that is, Aλ-summable to L, and let a be the sequence

such that sn =
∑n
k=0ak. Let xn := 1−1/λ(n). Then, for a given x ∈ (x0,1), there exists

an n such that xn < x ≤ xn+1. By (1.1) and (1.4),

∣∣f(x)−(Aλs)n
∣∣=

∣∣∣∣∣(1−x)
∞∑
k=0

skxk− 1
λ(n)

∞∑
k=0

sk
(

1− 1
λ(n)

)k∣∣∣∣∣

=
∣∣∣∣∣
∞∑
k=0

akxk−
∞∑
k=0

akxnk
∣∣∣∣∣.

(2.4)

By Lemma 2.3, this becomes

∣∣f(x)−(Aλs)n
∣∣=

∣∣∣∣∣
∞∑
k=1

tk∆
(
xk

k

)
−

∞∑
k=1

tk∆
(xkn
k

)∣∣∣∣∣

=
∣∣∣∣∣
∞∑
k=1

tk
∫ x
xn
tk−1(1−t)dt

∣∣∣∣∣

≤
∞∑
k=1

∣∣tk∣∣
∫ xn+1

xn
tk−1(1−t)dt.

(2.5)

By Lemma 2.4, there exists an M > 0 such that |tk| ≤ kM . Hence,

∣∣f(x)−(Aλs)n
∣∣≤M

∞∑
k=1

k
∫ xn+1

xn
tk−1(1−t)dt

=M
∫ xn+1

xn
(1−t)

∞∑
k=1

ktk−1dt

=M
∫ xn+1

xn

1
1−t dt

=−M( log
(
1−xn+1

)− log
(
1−xn

))

=−M
(

log
(

1
λ(n+1)

)
− log

(
1

λ(n)

))

=M log
(
λ(n+1)
λ(n)

)

= o(1).

(2.6)

Since s is Aλ-summable to L, we see that limx→1− f(x)= L. That is, s is Abel summable

to L, and hence, Aλ is equivalent to the Abel method for bounded sequences.

The next theorem presents an equivalence relationship between the discrete Abel

means when λ and µ are asymptotic.
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Theorem 2.6. Let λ and µ be strictly increasing sequences of real numbers such

that λ(0)≥ 1, µ(0)≥ 1, λ(n)→∞, µ(n)→∞, and limn→∞(µ(n)/λ(n))= 1. Then Aλ is

equivalent to Aµ for bounded sequences.

Proof. We proceed as in the proof of Theorem 2.5. Let s be a bounded sequence

and let a be the sequence such that sn =
∑n
k=0ak. Let M(n) := max{λ(n),µ(n)},

m(n) := min{λ(n),µ(n)}, xn := 1−1/m(n), and yn := 1−1/M(n). Then 0 ≤ xn ≤
yn < 1 and for a given n,

∣∣(Aµs)n−(Aλs)n
∣∣=

∣∣∣∣∣
1

µ(n)

∞∑
k=0

sk
(

1− 1
µ(n)

)k
− 1
λ(n)

∞∑
k=0

sk
(

1− 1
λ(n)

)k∣∣∣∣∣

=
∣∣∣∣∣

1
M(n)

∞∑
k=0

sk
(

1− 1
M(n)

)k
− 1
m(n)

∞∑
k=0

sk
(

1− 1
m(n)

)k∣∣∣∣∣

=
∣∣∣∣∣
∞∑
k=0

akynk−
∞∑
k=0

akxnk
∣∣∣∣∣.

(2.7)

By Lemma 2.3,

∣∣(Aµs)n−(Aλs)n
∣∣=

∣∣∣∣∣
∞∑
k=1

tk∆
(ykn
k

)
−

∞∑
k=1

tk∆
(xkn
k

)∣∣∣∣∣

=
∣∣∣∣∣
∞∑
k=1

tk
∫ yn
xn
tk−1(1−t)dt

∣∣∣∣∣

≤
∞∑
k=1

∣∣tk∣∣
∫ yn
xn
tk−1(1−t)dt.

(2.8)

By Lemma 2.4, there exists an M > 0 such that |tk| ≤ kM . Hence,

∣∣(Aµs)n−(Aλs)n
∣∣≤M

∞∑
k=1

k
∫ yn
xn
tk−1(1−t)dt

=M
∫ yn
xn
(1−t)

∞∑
k=1

ktk−1dt

=M
∫ yn
xn

1
1−t dt

=−M( log
(
1−yn

)− log
(
1−xn

))

=−M
(

log
(

1
M(n)

)
− log

(
1

m(n)

))

=M log
(
M(n)
m(n)

)

= o(1),

(2.9)

since limn→∞(M(n)/m(n)) = limn→∞(µ(n)/λ(n)) = 1. Hence, if s is Aλ-summable

to L, then

0≤ ∣∣(Aµs)n−L
∣∣≤ ∣∣(Aµs)n−(Aλs)n

∣∣+∣∣(Aλs)n−L
∣∣= o(1)+o(1)= o(1). (2.10)
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Similarly, if s is Aµ-summable to L, then

0≤ ∣∣(Aλs)n−L
∣∣≤ ∣∣(Aλs)n−(Aµs)n

∣∣+∣∣(Aµs)n−L
∣∣= o(1)+o(1)= o(1). (2.11)

Thus, Aλ and Aµ are equivalent for bounded sequences.

To see that limn→∞(µ(n)/λ(n)) = 1 is not a necessary condition in Theorem 2.6,

simply consider the sequences λ(n) :=n2 and µ(n) :=n3. Then

lim
n→∞

λ(n+1)
λ(n)

= lim
n→∞

µ(n+1)
µ(n)

= 1, (2.12)

and hence, by Theorem 2.5,Aλ,Aµ , and the Abel method are all equivalent for bounded

sequences. However, λ and µ are not asymptotic.
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