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Continuity or even differentiability of a function on a closed interval of a non-Archimedean
field are not sufficient for the function to assume all the intermediate values, a maximum,
a minimum, or a unique primitive function on the interval. These problems are due to
the total disconnectedness of the field in the order topology. In this paper, we show that
differentiability (in the topological sense), together with some additional mild conditions,
is indeed sufficient to guarantee that the function assumes all intermediate values and has
a differentiable inverse function.
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1. Introduction. Let K be a totally ordered non-Archimedean field extension of R.

We introduce the following terminology.

Definition 1.1 (∼,≈,�,H,λ). For x,y ∈ K, x ∼ y if there exist n,m ∈ N such

that n|x|> |y| and m|y|> |x|; for nonnegative x,y ∈K, x is infinitely smaller than

y and write x� y if nx < y for all n ∈ N; and x is infinitely small if x� 1 and x
is finite if x ∼ 1. Finally, x is approximately equal to y and write x ≈ y if x ∼ y and

|x−y|� |x|. We also set λ(x)= [x], the class of x under the equivalence relation ∼.

The set H of equivalence classes under the relation ∼, which we call magnitudes, is

naturally endowed with an addition via [x]+[y]= [x ·y], and an order via [x] < [y]
if |y| � |x| (or |x| � |y|), both of which are readily checked to be well defined. It

follows that (H,+,<) is a totally ordered group, often referred to as the Hahn group

or skeleton group, whose neutral element is the class of 1. The projection λ from K
to H satisfies λ(x ·y)= λ(x)+λ(y) and is a valuation.

The theorem of Hahn [5] provides a complete classification of any non-Archimedean

extensions K of R in terms of their skeleton group H. In fact, invoking the axiom of

choice, it is shown that the elements of K can be written as formal power series over

the group H with real coefficients, and the set of appearing “exponents” forms a well-

ordered subset of H. The coefficient of the qth power in the Hahn representation of

a given x is denoted by x[q], and the number d is defined by d[1] = 1 and d[q] = 0

for q ≠ 1. It is easy to check that 0 < dq � 1 if and only if q > 0, and dq � 1 if and

only if q < 0; moreover, x ≈ x[λ(x)]dλ(x) for all x ≠ 0.

From general properties of formal power series fields [9, 11], it follows that if H is

divisible then K is real-closed. For a general overview of the algebraic properties of

formal power series fields, we refer to the comprehensive overview by Ribenboim [12]
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and Fuchs [4]; and for an overview of the related valuation theory, Krull [6]. A thorough

and complete treatment of ordered structures can also be found in [10].

Throughout, � denotes any totally ordered non-Archimedean field extension of R
that is complete in the order topology and whose skeleton group is Archimedean, that

is, a subgroup of R. The smallest such field is the field of the formal Laurent series

whose skeleton group is Z; and the smallest such field that is also real-closed is the

field �, first introduced by Levi-Civita [7, 8]. In this case H =Q; and for any element

x ∈�, the set of exponents in the Hahn representation of x is a left-finite subset of

Q, that is, below any rational bound r there are only finitely many exponents. For a

detailed study of the Levi-Civita field �, we refer the reader to [1, 2, 3, 13, 14, 15].

In this paper, we derive conditions under which a differentiable function assumes

all intermediate values on a closed interval and has a differentiable inverse function.

Previous versions of the intermediate value theorem were proved for the case of fi-

nite domain and range, and they were based on stronger smoothness criteria, namely

equidifferentiability [3] and double derivative differentiability [1]. For the important

class of locally analytic functions studied in detail in [13], we prove an intermediate

value theorem (as well as a maximum theorem and a mean value theorem) without

any requirements on the magnitude of the first derivative or the restriction of scaling

into finite domains.

2. Review of continuity and differentiability. Like in any other metric space, con-

tinuity and differentiability at a point or on a domain of � are preserved under addi-

tion, multiplication, and composition of functions. We also have the following useful

result.

Proposition 2.1. Let D ⊂� be open, and let f :D→� be differentiable on D and

have a local extremum (maximum or minimum) at x0 ∈D. Then f ′(x0)= 0.

Proof. Suppose not, then |f ′(x0)|> 0. SinceD is open and since f is differentiable

at x0, there exists δ > 0 in � such that (x0−δ,x0+δ) ⊂D and |(f (x)−f(x0))/(x−
x0)−f ′(x0)| < |f ′(x0)| for all x ≠ x0 in (x0−δ,x0+δ); which entails that (f (x)−
f(x0))/(x−x0) has the same sign for all x ≠ x0 in (x0−δ,x0+δ); and this contradicts

the fact that f has a local extremum at x0.

However, contrary to the real case, the following examples show that continuity or

differentiability of a function on a closed interval of � are not always sufficient for

the function to assume all intermediate values, extrema, or even be bounded.

Example 2.2. Let f : [0,1]→� be given by

f(x)=




d−1 if 0≤ x < d,
d−1/λ(x) if d≤ x� 1,

1 if x ∼ 1.

(2.1)

Then f is continuous on [0,1]; but for d≤ x� 1, f(x) grows without bound.
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Example 2.3. Let f : [0,1]→� be given by

f(x)=



1 if x ∼ 1,

0 if 0≤ x� 1.
(2.2)

Then f is differentiable on [0,1], with derivative f ′(x)= 0 for all x. However, f does

not assume the intermediate value d on [0,1]. Moreover, although f ′(x) is identically

null, f is not constant on [0,1].

Example 2.4. Let f : [−1,1]→� be given by f(x)= x−x[0]. Then f is continuous

on [−1,1]. However, f assumes neither a maximum nor a minimum on [−1,1]. The set

f([−1,1]) is bounded above by any positive real number and below by any negative

real number; but it has neither a least upper bound nor a greatest lower bound.

In the following section, we study a large class of differentiable functions and show

that they assume all intermediate values on a closed interval and a differentiable

inverse function.

3. Intermediate value theorem and inverse function theorem. First, we state the

following result which will be used in the proof of Theorem 3.17, and we refer the

reader to [3] for its proof.

Theorem 3.1 (fixed point theorem). Let qM ∈R be given. DefineM ⊂� to be the set

of all elementsx of � such thatλ(x)≥ qM . Let f :M →� satisfy f(M)⊂M . Suppose that

there exists k > 0 in R such that for all x1,x2 ∈M , λ(f(x2)−f(x1)) ≥ k+λ(x2−x1).
Then there exists a unique solution x ∈M of the fixed point equation x = f(x).

Definition 3.2. Let a < b be given in �, and let f : [a,b] → � be differentiable.

Then f is an IVT-function on [a,b] if there exists n∈N such that

f(y)−f(x)
y−x ∼ f(b)−f(a)

b−a , (3.1)

∣∣f(y)−f(x)−f ′(x)(y−x)∣∣
(y−x)2 ≤n·

∣∣f(b)−f(a)−f ′(a)(b−a)∣∣
(b−a)2 (3.2)

for all y ≠ x in [a,b].

The acronym IVT in Definition 3.2 stands for intermediate value theorem. As we

will see in Theorem 3.17, an IVT-function on a closed interval [a,b] assumes every

intermediate value between f(a) and f(b); hence the name.

It follows immediately from Definition 3.2 that

f ′(x)∼ f(b)−f(a)
b−a ∀x ∈ [a,b]. (3.3)

Remark 3.3. It is easy to check that the property introduced in Definition 3.2 is

preserved under scaling and translation. That is, if f : [a,b] → � is an IVT-function

on [a,b], then for all c1 ≠ 0, c2,c3,c4 in �, the function

g :
[
a−c2

c1
,
b−c2

c1

]
�→�, (3.4)



168 K. SHAMSEDDINE AND M. BERZ

given by g(x) = c3f(c1x+c2)+c4, is an IVT-function on [(a−c2)/c1,(b−c2)/c1]. In

fact, replacing f by g, a by (a−c2)/c1, and b by (b−c2)/c1 yields the same factor

c1c3 on both sides of (3.1), and the same factor c2
1c3 on both sides of (3.2).

We show in Theorem 3.17 that if f is an IVT-function on [a,b] then f assumes ev-

ery intermediate value between f(a) and f(b) and has a differentiable inverse func-

tion. The two conditions in Definition 3.2 may seem strange, but the first condition

means that the function is either constant or one-to-one with slope of uniform magni-

tude; when restricted to R, the uniformity of the magnitude is automatic. Also, when

restricted to R, the second condition means merely that the difference quotient is

bounded. Moreover, the following two examples show that one of the two conditions

alone will not be sufficient.

Example 3.4. Let f : [0,1]→� be given by

f(x)=



3x[0]+(x−x[0])+(x−x[0])2
if x[0] is rational,

2x[0]+(x−x[0])+(x−x[0])2
if x[0] is irrational.

(3.5)

Then f is differentiable on [0,1] with derivative f ′(x) = 1 for all x. Clearly, f does

not assume the value 3π/4 which lies between f(0) = 0 and f(1) = 3. Here, (3.1) is

satisfied since

f(y)−f(x)
y−x ∼ f(1)−f(0)

1−0
= 3 ∀y ≠ x in [0,1]; (3.6)

but (3.2) does not hold. In this example, we even have that

f(y)−f(x)−f ′(x)(y−x)
(y−x)2 ∼ f(1)−f(0)−f

′(0)(1−0)
(1−0)2

∀y ≠ x in [0,1]. (3.7)

Example 3.5. Let f : [0,1]→� be given by

f(x)=



0 if 0≤ x� 1,

x if x ∼ 1.
(3.8)

Then f is differentiable on [0,1] with derivative f ′(x)= 0 if 0≤ x� 1 and f ′(x)=1

if x ∼ 1. Clearly, f does not assume the value d which lies between f(0) = 0 and

f(1)= 1. Here (3.2) is satisfied since

∣∣f(y)−f(x)−f ′(x)(y−x)∣∣
(y−x)2

< 3
∣∣f(1)−f(0)−f ′(0)∣∣= 3 ∀y ≠ x in [0,1];

(3.9)
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but (3.1) does not hold since

f(y)−f(x)
y−x = 0 �∼ 1= f(1)−f(0) for infinitely small x,y ∈ [0,1]. (3.10)

Remark 3.6. Examples of IVT-functions on [0,1] are polynomials and power series

with real coefficients and with finite first derivative throughout the interval, functions

that are equidifferentiable on [0,1] as in [3], and functions that are twice differentiable

on [0,1] in the derivative sense of [1] with finite first and second derivatives. Thus,

the intermediate value theorem we prove below is a generalization of the previous

two versions in [1, 3]; moreover, it will apply for functions on an interval of any size

and not just intervals of finite length.

Lemma 3.7. Let a< b be given in �, and let f : [a,b]→� be an IVT-function. Then

there exists m∈N such that

∣∣∣∣f(y)−f(x)y−x −f ′(x)
∣∣∣∣≤m

∣∣f(b)−f(a)∣∣
(b−a)2 |y−x| ∀y ≠ x in [a,b]. (3.11)

Proof. Let n ∈ N be as in (3.2). Using (3.3), we have that f ′(a) ∼ (f (b)−f(a))/
(b−a); and hence there exists k ∈ N such that |f ′(a)| ≤ k · |f(b)− f(a)|/(b−a).
Thus,

∣∣f(b)−f(a)−f ′(a)(b−a)∣∣
b−a ≤

∣∣f(b)−f(a)∣∣
b−a +∣∣f ′(a)∣∣

≤ (1+k)
∣∣f(b)−f(a)∣∣

b−a .

(3.12)

Hence

∣∣∣∣f(y)−f(x)y−x −f ′(x)
∣∣∣∣≤n

∣∣f(b)−f(a)−f ′(a)(b−a)∣∣
(b−a)2 |y−x|

≤n(1+k)
∣∣f(b)−f(a)∣∣
(b−a)2 |y−x|

(3.13)

for all y ≠ x in [a,b].

Corollary 3.8 (remainder formula). Let a< b be given in �, and let f : [a,b]→�

be an IVT-function. Then, for all x,y ∈ [a,b],

f(y)= f(x)+f ′(x)(y−x)+r(x,y)(y−x)2, (3.14)

with

λ
(
r(x,y)

)≥ λ
(
f(b)−f(a)
(b−a)2

)
. (3.15)
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Proof. For x,y ∈ [a,b], let

r(x,y)=




f(y)−f(x)−f ′(x)(y−x)
(y−x)2 if y ≠ x,

0 if y = x.
(3.16)

Then f(y) = f(x)+ f ′(x)(y −x)+ r(x,y)(y −x)2 for all x,y ∈ [a,b]. Moreover,

using Lemma 3.7, we obtain that λ(r(x,y))≥ λ((f(b)−f(a))/(b−a)2), as claimed.

Remark 3.9. The remainder formula here resembles that obtained in [1] as a result

of the derivative differentiability, but we have the extra condition that λ(r(x,y)) ≥
λ((f(b)−f(a))/(b−a)2) which is useful for proving Theorem 3.17.

Lemma 3.10. Let a < b be given in �, and let f : [a,b] → � be an IVT-function.

Then f is continuously differentiable on [a,b].

Proof. Let m∈N be as in Lemma 3.7, and let x ≠y in [a,b] be given. Then

∣∣f ′(y)−f ′(x)∣∣≤
∣∣∣∣f(y)−f(x)y−x −f ′(y)

∣∣∣∣+
∣∣∣∣f(y)−f(x)y−x −f ′(x)

∣∣∣∣

≤ 2m
∣∣f(b)−f(a)∣∣
(b−a)2 |y−x|.

(3.17)

Hence f ′ is continuous on [a,b].

Corollary 3.11. Let a< b be given in �, and let f : [a,b]→� be an IVT-function.

Then, for all x,y ∈ [a,b],

λ
(
f ′(y)−f ′(x))≥ λ

(
f(b)−f(a)

b−a
)
+λ
(
y−x
b−a

)
. (3.18)

Lemma 3.12. Let a < b be given in �, and let f : [a,b]→ � be an IVT-function. If

f(a)= f(b), then f is constant on [a,b].

Proof. Let x ∈ (a,b] be given. Then (f (x) − f(a))/(x − a) ∼ (f (b) − f(a))/
(b−a)= 0, which entails that f(x)= f(a).

Lemma 3.13. Let a < b be given in �, let f : [a,b] → � be a nonconstant IVT-

function, and let g : [0,1]→� be given by

g(x)= f
(
(b−a)x+a)−f(a)
f(b)−f(a) . (3.19)

Then g is an IVT-function on [0,1], with λ(g(x)) = λ(x) ≥ 0 and λ(g′(x)) = 0 for all

x ∈ [0,1].
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Proof. The proof that g is an IVT-function on [0,1] follows from Remark 3.3. Now

let x ∈ [0,1] be given. Then,

λ
(
g(x)

)= λ
(
f
(
(b−a)x+a)−f(a)

(b−a)x
(b−a)x

f(b)−f(a)
)

= λ
(
f
(
(b−a)x+a)−f(a)(
(b−a)x+a)−a

)
+λ
(

b−a
f(b)−f(a)

)
+λ(x)

= λ
(
f(b)−f(a)

b−a
)
+λ
(

b−a
f(b)−f(a)

)
+λ(x)= λ(x)≥ 0.

(3.20)

Moreover, g′(x)= (b−a)/(f(b)−f(a))·f ′((b−a)x+a)∼ 1, using (3.3).

The following result follows immediately from Lemma 3.13 and Corollary 3.11.

Corollary 3.14. Let a < b be given in �, let f : [a,b] → � be a nonconstant

IVT-function, and let g : [0,1] → � be as in Lemma 3.13. Then, for all x,y ∈ [0,1],
λ(g′(y)−g′(x))≥ λ(y−x).

Lemma 3.15. Let a < b be given in �, let f : [a,b] → � be a nonconstant IVT-

function, and let g : [0,1] → � be as in Lemma 3.13. Let gR : [0,1]∩R → R be given

by gR(X) = g(X)[0]. Then gR is continuously differentiable on [0,1]∩R (in the real

sense), with derivative (gR)′(X)= g′(X)[0]≠ 0 for all X ∈ [0,1]∩R.

Proof. Since g is an IVT-function on [0,1] by Lemma 3.13, there exists m∈N by

Lemma 3.7 such that

∣∣∣∣g(y)−g(x)y−x −g′(x)
∣∣∣∣≤m|y−x| ∀y ≠ x in [0,1]. (3.21)

Now, let X ∈ [0,1]∩R be given. Then

∣∣∣∣g(Y)−g(X)Y −X −g′(X)
∣∣∣∣≤m|Y −X| ∀Y ≠X in [0,1]∩R. (3.22)

Thus, for all Y ≠X in [0,1]∩R, we have that

∣∣∣∣gR(Y)−gR(X)Y −X −g′(X)[0]
∣∣∣∣=

∣∣∣∣
(
g(Y)−g(X)

Y −X −g′(X)
)
[0]
∣∣∣∣≤ 2m|Y −X|, (3.23)

which entails that gR is differentiable (in the real sense) atX with derivative (gR)′(X)=
g′(X)[0]≠ 0, since λ(g′(X))= 0 by Lemma 3.13.

Next, we show that (gR)′ is continuous on [0,1]∩R. As in the proof of Lemma 3.10,

we have that |g′(y)−g′(x)| ≤ 2m|y−x| for all x,y ∈ [0,1]. In particular, |g′(Y)−
g′(X)| ≤ 2m|Y −X| for all X,Y ∈ [0,1]∩R. It follows that

∣∣(gR)′(Y)−(gR)′(X)∣∣= ∣∣g′(Y)[0]−g′(X)[0]∣∣≤ 3m|Y −X| (3.24)

for all X,Y ∈ [0,1]∩R, which entails that (gR)′ is (uniformly) continuous on [0,1]∩R.

Thus, gR is continuously differentiable on [0,1]∩R.



172 K. SHAMSEDDINE AND M. BERZ

Lemma 3.16. Let a < b be given in �, and let f : [a,b]→ � be a nonconstant IVT-

function. Then f is strictly monotone on [a,b].

Proof. Let g : [0,1]→ � be as in Lemma 3.13. We show that g is strictly increas-

ing on [0,1]. Let gR be as in Lemma 3.15. Then gR is continuously differentiable

on [0,1]∩ R and (gR)′(X) ≠ 0 for all X ∈ [0,1]∩R. Thus, gR is strictly monotone

on [0,1]∩R. Since gR(0) = 0 < 1 = gR(1), we obtain that gR is strictly increasing on

[0,1]∩R. Now let x,y ∈ [0,1] be such that x <y , and let X = x[0] and Y =y[0]. As

a first case, assume that X < Y ; then gR(X) < gR(Y). Hence

g(y)−g(x)= (gR(Y)−gR(X))+(g(y)−g(Y))+(g(Y)−gR(Y))

+(gR(X)−g(X))+(g(X)−g(x)), (3.25)

where the first term is positive and real. By Corollary 3.8, we have that g(y)−g(Y)=
g′(Y)(y−Y)+r(Y ,y)(y−Y)2, where λ(g′(Y))= 0, λ(y−Y) > 0, and λ(r(Y ,y))≥ 0.

Hence |g(y)−g(Y)| is infinitely small. Similarly, |g(X)−g(x)| is infinitely small. Since

λ(g(Y)) ≥ 0 and gR(Y) = g(Y)[0], we obtain that |g(Y)−gR(Y)| is infinitely small.

Similarly, |gR(X)−g(X)| is infinitely small. So g(y)−g(x)≈ gR(Y)−gR(X) > 0; and

hence g(x) < g(y).
As a second case, assume that X = Y . Then y−x� 1, and hence

g(y)−g(x)= g′(x)(y−x)+r(x,y)(y−x)2 ≈ g′(x)(y−x) (3.26)

since |r(x,y)| is at most finite and hence

λ
(
r(x,y)(y−x)2)= λ(r(x,y))+2λ(y−x)≥ 2λ(y−x) > λ(y−x)

= λ(g′(x))+λ(y−x)
= λ(g′(x)(y−x)).

(3.27)

By Corollary 3.14, we have that λ(g′(x)−g′(X))≥ λ(x−X) > 0. Since g′(x)∼ 1, since

g′(X)∼ 1 and since |g′(x)−g′(X)|� 1, we obtain that

g′(x)≈ g′(X)≈ (gR)′(X) > 0. (3.28)

From (3.26) and (3.28), we obtain that g(y)−g(x) > 0. Thus, g(x) < g(y) for all

x <y in [0,1]; and hence g is strictly increasing on [0,1]. Since

f(x)= (f(b)−f(a))g
(
x−a
b−a

)
+f(a) ∀x ∈ [a,b] (3.29)

and since g is strictly increasing on [0,1], we obtain that f is strictly increasing

on [a,b] if f(a) < f(b), and f is strictly decreasing on [a,b] if f(a) > f(b).

Theorem 3.17 (intermediate value theorem). Let a < b be given in �, and let f :

[a,b]→� be an IVT-function. Then f assumes every intermediate value between f(a)
and f(b).

Proof. If f(a) = f(b), then f is constant on [a,b] by Lemma 3.12, and there is

nothing to prove. So we may assume that f(a) ≠ f(b). Let g : [0,1] → � be as in



INTERMEDIATE VALUES AND INVERSE FUNCTIONS . . . 173

Lemma 3.13. For all x ∈ [a,b], we have that

f(x)= (f(b)−f(a))g
(
x−a
b−a

)
+f(a)= l2 ◦g◦l1(x), (3.30)

where l1 and l2 are linear functions. Hence it suffices to show that g assumes every

intermediate value between g(0)= 0 and g(1)= 1.

Let gR be as in Lemma 3.15, let S ∈ (0,1) be given, and let SR = S[0]. Then SR ∈
[0,1]∩R. SincegR is continuous on [0,1]∩R by Lemma 3.15, there existsX ∈ [0,1]∩R
such that gR(X) = SR . If g(X) = S then the claim is proved; so we may assume that

g(X)≠ S. Thus, |S−g(X)| ≤ |S−SR|+|gR(X)−g(X)| is infinitely small.

Now we proceed to find x such that 0 < |x| � 1, X+x ∈ [0,1], and g(X+x) = S.

Since g is differentiable on [0,1], we have, using Corollary 3.8, that

S = g(X+x)= g(X)+g′(X)x+r(X,X+x)x2, (3.31)

where |r(X,X+x)| is at most finite.

Transforming (3.31) into a fixed point problem yields

x = s
g′(X)

− r(X,X+x)
g′(X)

x2 = h(x), (3.32)

where s = S−g(X), and |s| is infinitely small. Let M = {z ∈ � : λ(z) ≥ λ(s)} and let

x ∈M be given. Since |r(X,X+x)| is at most finite and since g′(X)∼ 1, we have that

λ
(
r(X,X+x)
g′(X)

x2
)
≥ 2λ(x) > λ(x)≥ λ(s)= λ

(
s

g′(X)

)
. (3.33)

Thus, h(x)≈ s/g′(X); and hence λ(h(x))= λ(s) for all x ∈M . Hence h(M)⊂M . Now

let x1 ≠ x2 be given in M . Then

∣∣h(x1
)−h(x2

)∣∣=
∣∣∣∣r
(
X,X+x2

)
x2

2−r
(
X,X+x1

)
x2

1

g′(X)

∣∣∣∣

=
∣∣∣∣g
(
X+x2

)−g(X+x1
)

g′(X)
+x1−x2

∣∣∣∣.
(3.34)

But g(X+x2) = g(X+x1)+g′(X+x1)(x2−x1)+r(X+x1,X+x2)(x2−x1)2, where

|r(X+x1,X+x2)| is at most finite. Thus,

∣∣h(x1
)−h(x2

)∣∣

=
∣∣∣∣g

′(X+x1
)(
x2−x1

)+r(X+x1,X+x2
)(
x2−x1

)2

g′(X)
+x1−x2

∣∣∣∣

=
∣∣∣∣g

′(X+x1
)−g′(X)

g′(X)
(
x2−x1

)+ r
(
X+x1,X+x2

)
g′(X)

(
x2−x1

)2
∣∣∣∣

≤ ∣∣x1−x2

∣∣(
∣∣g′(X+x1

)−g′(X)∣∣
g′(X)

+
∣∣r(X+x1,X+x2

)∣∣
g′(X)

∣∣x1−x2

∣∣).

(3.35)
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Using Corollary 3.14 and the fact that g′(X)∼ 1, we have that

λ
(∣∣g′(X+x1

)−g′(X)∣∣
g′(X)

)
= λ(g′(X+x1

)−g′(X))≥ λ(x1
)≥ λ(s) > λ(s)

2
. (3.36)

Also

λ
(∣∣r(X+x1,X+x2

)∣∣
g′(X)

∣∣x1−x2

∣∣)≥ λ(x1−x2
)≥min

{
λ
(
x1
)
,λ
(
x2
)}
>
λ(s)

2
. (3.37)

Hence λ(h(x1)−h(x2)) > λ(s)/2+λ(x1−x2), where λ(s) > 0. So h and M satisfy the

requirements of Theorem 3.1, and hence h has a fixed point x in M .

Finally, we show that X +x ∈ (0,1). First assume that X = 0; then S > 0 = g(X)
and hence s = S−g(X) > 0. Since g′(0) ≈ (gR)′(0) > 0, we obtain that X+x = x ≈
s/g′(0) > 0. Moreover, x � 1; hence X +x = x ∈ (0,1). Now assume that X = 1,

then S < 1 = g(1) and hence s < 0. It follows that x ≈ s/g′(1) < 0 and hence X +
x = 1+x < 1. Since |x| � 1, we obtain that X+x = 1+x ∈ (0,1). Finally assume

that 0 < X < 1; then X is finitely away from 0 and 1. Since |x| � 1, we obtain that

X+x ∈ (0,1).

Using Lemma 3.16 and Theorem 3.17, we readily obtain the following two results.

Corollary 3.18. Let a < b be given in �, and let f : [a,b]→ � be a nonconstant

IVT-function. Let m = min{f(a),f (b)} and M = max{f(a),f (b)}. Then f([a,b]) =
[m,M].

Theorem 3.19 (closed mapping theorem). Let a, b, f ,m, andM be as in Corollary

3.18. Then for alla1 < b1 in [a,b], there existm1 <M1 in [m,M] such that f([a1,b1])=
[m1,M1]. Conversely, for all m1<M1 in [m,M], there exist a1<b1 in [a,b] such that

f([a1,b1])=[m1,M1].

We note here that even though the conditions in Definition 3.2 depend on the

end points a and b, the function f assumes all intermediate values between f(a1)
and f(b1) for any subinterval [a1,b1] of [a,b].

Theorem 3.20 (inverse function theorem). Let a < b be given in �, and let f :

[a,b] → � be a nonconstant IVT-function. Let m = min{f(a),f (b)} and M =
max{f(a),f (b)}. Then the inverse function f−1 : [m,M] → [a,b] exists and is dif-

ferentiable; moreover,

(
f−1)′ = 1(

f ′ ◦f−1
) . (3.38)

Proof. The proof that f−1 exists follows from Lemma 3.16. To show that f−1 is

differentiable on [m,M], let y0 ∈ [m,M] be given and let x0 = f−1(y0). Let ε > 0

in � be given and let ε1 ∈ (0,ε) be such that |(f (x)− f(x0))/(x−x0)− f ′(x0)| <
min{|f ′(x0)|/2,
ε|f ′(x0)|2/2} for x ∈ [a,b] satisfying 0 < |x − x0| < ε1. It follows that |f(x) −
f(x0)| > |f ′(x0)||x−x0|/2 when x ∈ [a,b] and 0 < |x−x0| < ε1. By Theorem 3.19,
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there exist δ1, δ2 > 0 such that f([a,b]∩ [x0−ε1/2,x0+ε1/2]) = [y0−δ1,y0+δ2].
Let δ=min{δ1,δ2}. Then f−1((y0−δ,y0+δ))⊂ [a,b]∩(x0−ε1,x0+ε1).

Now, let y ∈ [m,M] be such that 0< |y−y0|< δ. Then

∣∣∣∣f
−1(y)−f−1

(
y0
)

y−y0
− 1
f ′
(
x0
)
∣∣∣∣=

∣∣∣∣ x−x0

f(x)−f (x0
) − 1

f ′
(
x0
)
∣∣∣∣

=
∣∣x−x0

∣∣·∣∣(f(x)−f (x0
))
/
(
x−x0

)−f ′(x0
)∣∣∣∣f ′(x0

)∣∣·∣∣f(x)−f (x0
)∣∣

<
∣∣x−x0

∣∣·ε∣∣f ′(x0
)∣∣2/2∣∣f ′(x0

)∣∣·∣∣f(x)−f (x0
)∣∣

<
∣∣x−x0

∣∣·ε∣∣f ′(x0
)∣∣2/2∣∣f ′(x0

)∣∣·∣∣f ′(x0
)∣∣∣∣x−x0

∣∣/2
= ε.

(3.39)

Hence f−1 is differentiable at y0, and (f−1)′(y0)= 1/f ′(x0)= 1/f ′(f−1(y0)).
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