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INITIAL-BOUNDARY VALUE PROBLEM WITH A NONLOCAL
CONDITION FOR A VISCOSITY EQUATION
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This paper deals with the proof of the existence, uniqueness, and continuous dependence
of a strong solution upon the data, for an initial-boundary value problem which combine
Neumann and integral conditions for a viscosity equation. The proof is based on an energy
inequality and on the density of the range of the linear operator corresponding to the
abstract formulation of the studied problem.
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1. Formulation of the problem. In this paper, we deal with a class of hyperbolic
equations with time- and space-variable characteristics, with a nonlocal boundary
condition. The precise statement of the problem is as follows: let § > 0, T > 0, and
Q={(x,t)eR?:x<x < B, 0<t<T}. Find a function v (x,1t), (x,t) € Q, satisfying

22v 0 ov 02 ov
gv =0 - a(a(x,t)a) - (b(x,t)a) feta b =fxn,  (1L1)

the initial condition

v =v(x,0)=d(x), xe(xf),

(1.2)
Lov = w =¥(x), xe(B),
the Neumann condition
ov(x,t)
i u(t), te(,T), (1.3)
and the integral condition
B
J vix,t)ydx =E(t), te(0,T), (1.4)
[0

where ®, ¥, u, E, a, b, ¢, and f are known functions.
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ASSUMPTION 1.1. For all (x,t) € Q, we assume that

da(x,t) da(x,t)
co <a(x,t) <ci, TS 2, T—Cs,
c4 < b(x,t), Cs < M < Cg, qu, (1.5)
ot 0x
2%b(x,t 2%b(x,t
% <csg, # < Cy, c(x,t) <cp.
ASSUMPTION 1.2. For all (x,t) € Q, we assume that

0%a(x,t) ¢ 02b(x,t) - 23b(x,t) e (1.6)
oxor ' ox2  ~® oxorz '

In Assumptions 1.1, 1.2, and in the rest of the paper, we assume that c;, where
i=0,...,17, are positive constants.
The data satisfies the following compatibility conditions:

dd(x) B
o = o), ch(x)dx=£(0>,
p (1.7)
a¥(e) _
20— 1 (0), LW(x)dx—E(O).

Several authors investigated the initial-boundary value problems in one space vari-
able, which involve an integral over the spatial domain of a function of the desired
solution that may appear in a boundary condition. Along a different line, problems for
parabolic equations which combine classical and integral conditions were considered
by Batten [1], Ionkin [12], Cannon et al. [8, 9, 10, 11], Yurchuk [16], Lin [13], Benouar-
Yurchuk [2], Shi [15], Bouziani et al. [7, 14]. However, most of these papers considered
particular situations like heat equation in the rectangle (0,1) x (0, T). Problems with
only boundary integral conditions for a second-order parabolic equation have been
treated in Bouziani-Benouar [5], and for a 2m-parabolic equation in Bouziani [4]. Re-
cently, a problem of this type for second-order pluriparabolic equation is studied
in Bouziani [6].

In this paper, the existence, uniqueness, and continuous dependence of a strong
solution upon the data of problem (1.1), (1.2), (1.3), and (1.4) are demonstrated. We
use a functional analysis method based on an energy inequality and on the density
of the range of the linear operator corresponding to the abstract formulation of the
considered problem.

To this end, we reduce the inhomogeneous boundary conditions (1.3) and (1.4)
to homogeneous conditions, by introducing a new unknown function u defined by
ulx,t) =v(x,t)+K(x,t), where

_ (x-x

Koet =5 =g

6(x - o) } (1.8)

JE(t)

{(3X—O(—25)H(t)— W
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Then, problem (1.1), (1.2), (1.3), and (1.4) becomes
Fu =f(x,t) +FK(x,t) = f(x,t), (1.9)

fiu=u(x,0) =& (x)+4:1K = p(x),
_ ou(x,0) (1.10)

Lou T Y(x)+ 2K = u(x),
oulet) _ (1.11)
0x
B
J ulx,t)dx =0. (1.12)

Here we assume that the functions @ and x satisfy conditions of the form (1.11)
and (1.12), that is,

de(c) _
dx

dx(x)
dx

B B
0, J @(x)dx =0, 0, I x(x)dx =0. (1.13)

Instead of searching for the function v, we search for the function u. So the solution
of problem (1.9), (1.10), (1.11), and (1.12) will be given by v (x,t) = u(x,t) —K(x,t).

2. Energy inequality and its consequences. The solution of problem (1.9), (1.10),
(1.11), and (1.12) can be considered as a solution of the operator equation

Lu=(f,p,x), (2.1)

where L = (£,41,¥>). The operator L maps from B to F, where B is the Banach space
consisting of functions J,u € L2(Q), where J,u = fgfu(g, -)d&, having finite norm:

- 1/2
oul|? ) H ou|l’
ullp = -— +|lu + (S — , 2.2
lull {] 5t ey 4002 19 58 | paeany 2.2)
and F is the Hilbert space with the finite norm
2 2 2 1/2
1Ll e = {119xLull2 ) + 1 1ul[f2 o + |9 L2ullio o } - (2.3)

The domain D (L) of the operator L is the set of all functions u such that 3,u €
L2(Q) for which I, (0u/0t), I (0%u/0t?), I, (0%u/0x?) € L?(Q), and satisfying (1.11)
and (1.12)

THEOREM 2.1. Let Assumption 1.1 be fulfilled. Then the a priori estimate
llullp < CliLullr (2.4)

holds for any function u € D (L), where C is a positive constant independent of u.
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PROOF. Applying operator J, to (1.9) by taking into account condition (1.11), mul-
tiplying the obtained equality with 23, (du/dt), and integrating over Q7 := (&, B) X
(0,T), where 0 < T < T. Observe that

2J S"atzs"_d xdt - 2J a(x, t)—sxa“

Ed xdt
ou ou
_2J at(b( Dax ) x g dxat

(2.5)
+ ZJ B} Ix(c(E, t)u)iixaa—?dxdt

- zj sxfsx dxdt

Integrating by parts the first three integrals on the left-hand side of (2.5), we obtain

2
. o (Tx®)"dx,

J 52U atz d dt‘JB(SxM)deij

4

B B
-2 a—”sxa—”d dt—J a(X,T)uz(X,T)dX—J a(x,0)p?dx
ot 0x ot &

oa W2 J da ou
JQ at dxdt+?2 uﬂxatdxdt

o B2 S (2 s

2
. n u-(x,t)dx

_Jﬁab(x,O)(pZdX J 3%b

oY o
. T 3 ucdxdt
ob 8u ou 2%b ou
or Fyviere 6t T —-dxdt+ . 3x atuf}x 3t dxdt.
(2.6)
Substituting (2.6) into (2.5), we get
B ob au(E,T) 2
ZJ ( ) dxdt+L{<a+§>u (x, T)+( ot ) dx
B
=2J Sxfsxa—udxdt+J {(a(x,0)+ ab(x’o))(p2+(sxx)2}dx
QT at o at
(2.7)
da 09°b\ , da 0°b ou
+qu (at - atZ) dxdt=2] ($+ axat> U Gy dxdt
B obou_ ou

ou
or aﬁsxﬁd dt—ZJQT Sx(Cu)sxadth
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Estimating the first and the three last integrals on the right-hand side of (2.7), by
applying elementary inequalities, we get

ou
ot

da  9%b ou 2 (0%b \?*] .,
_2JQT(&*axat>“3"atd"dt<zj {(69{) +(axat> widxdt
ou\?
+jQT (%E) dxdt,
obou_ ou

2
-2 ——Sx—dxdt<C4J (%—?) dxdt

or 0x ot ot
1 b\2/_ ou\?
“a Q(@ (325 ) axar,

2[ sxfﬁxa—”dxdtsj (Sxf)2dxdt+f (sx )dxdt,
QT ot QT

_ 2
—2J Sx(cu)Sxa—udxdtsMJ czuzdxdtJrJ ( a”) dx dt.
ot ot 2 ot * ot
2.8)

Therefore, by formulas (2.7), (2.8), and Assumption 1.1, we obtain

J

au('yT) 2
ot

du(-,t)?
ot

dt+||u(-,'r)||iz(o(,3)+

L2(e,B) L2(e,B)

<C14{J ||Sxf( t)||L2 (o,B) dt+ ||(P||Lz(o(3 +||8x}‘||iz(¢x,ﬁ)} (2.9)

2

ou(-,t) }dt
L2(et,B) '

ot

Ix

-
+C15 ,[0 {Hu("t)Hiz(o(,B) +‘

where

max (1,c; +¢g)
min (¢g,co +¢s5,1)°

Clg =

' (2.10)
max (cp +cg +c5 +c2,3+c%/cy)

min (c4,co +cs,1)

C15 =

Eliminating the last integral on the right-hand side of inequality (2.9). To this end,
using Gronwall’s lemma, it follows that

Jy

oul-, )P
ot 12(ex,B)

du(-,t)|?

N
ot llrzp *

[0 e +)
(2.11)

< o] [ 13S0 Bty 5 191 g+ 190 ).

where c16 = ciqaexp(ci5T).
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The right-hand side of (2.11) is independent of T; hence, replacing the left-hand
side by the upper bound with respect to T. Thus inequality (2.4) holds, where C = c%éz.

a

It follows from (2.4) that there is a bounded inverse L~! on the range R(L) of L.
However, since we have no information concerning R(L) expect that R(L) C F, we
must extend L (construct its closure L) so that (2.4) holds for the extension and its
range is the whole space.

We first show that L : B — F with domain D (L), has a closure, that is, the closure of
the graph G(L) c BxF of L is a graph G(L) = G(L) of a new linear operator L, which
we call the closure of L.

PROPOSITION 2.2. The operator L from B into F has a closure.

PROOF. Suppose that u, € D(L) is a sequence such that

Un —=.0 in B, (2.12)
Lu, —= (f,@,%) inF, (2.13)

we must prove that f =0, ¢ =0, and x = 0. Equation (2.12) implies that
n

Up —=.0 in9'(Q). (2.14)

By virtue of the continuity of derivation of &%’ (Q) in %' (Q), we have

Pup —=-0 in%(Q). (2.15)
We see via (2.13) that

Pu, —= f inL*(Q), (2.16)
then

Pu, == f in3'(Q). (2.17)

By virtue of the uniqueness of the limit in @' (Q), (2.15) and (2.17) imply that f = 0.
On the other hand, from (2.13) we have

O, ==~ @ inL%(x,p). (2.18)
We see via (2.12) and the obvious inequality

Hrunllie (o p) < llunllp,  Vn, (2.19)
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that
fiup —=-0 inL*(x,B). (2.20)
By virtue of (2.18), (2.20), and the uniqueness of the limit in L% («, ), we conclude that

@ = 0. The reasoning is similar for proving that x = 0. a

DEFINITION 2.3. A solution of the equation
Lu=(f,p,%), (2.21)

is called a strong solution of problem (1.9), (1.10), (1.11), and (1.12).

Since points of the graph of L are limits of sequences of points of the graph of L,
we extend (2.4) to apply to strong solutions by taking the limits.

COROLLARY 2.4. Under the conditions of Theorem 2.1, there is a constant C > 0
independent of u such that

lullg < CllLullp, VYueD(L). (2.22)

Corollary 2.4 asserts that, if a strong solution exists, it is unique and depends con-
tinuously on ( f, @, %), if u is considered in the topology of B and (f, @, %) is considered
in the topology of F.

COROLLARY 2.5. The rangeR (L) of the operator L equals to the closure R(L) of R(L).

PROOF. It follows from the definition of L that R(L) < R(L). It remains to prove the
opposite inclusion. Suppose that w € R(L), then there exists a sequence {wnln-; of
elements in R(L) such that lim,,-.. w, = w. Consequently, there exists a correspond-
ing sequence u, € D(L) such that Lu,, = wy.

According to Theorem 2.1, we have

[|m —un|lp < C||[Lum — Luy ¢ (2.23)
when n and m — . Thus {u,} is a fundamental sequence in B which converges to
an element u € B and Lu = w, then w € R(L). This proves Corollary 2.5. a

Corollary 2.5 states that, to prove that problem (1.9), (1.10), (1.11), and (1.12) has a
strong solution for arbitrary (f,,x) € F, it is sufficient to show that R(L) = F.
3. Solvability of the problem

THEOREM 3.1. Let Assumptions 1.1 and 1.2 be fulfilled. Then for any 3. f € L?(Q),
@ € L%(x,B), and Ixx € L2(x,B), problem (1.9), (1.10), (1.11), and (1.12) admits a
unique strong solutionu = L1 (f,@,x) = L-1(f, @, x).
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PROOF. First, we prove that R(L) is dense in F for the special case in which L is
reduced to Ly = (%o,¥1,¥>) with domain Dy(Lg) = Do(L), where %, is the principal
part of &, that is,

o’u 0 ou 02 ou
§£ou—w—$(a(x,t)a)—atax (b(x;t)a), 3.1)

and Do(L) = {fu/u € D(L) : 47u =0 and f>u = 0}.

PROPOSITION 3.2. Under the conditions of Theorem 3.1. If
J IxFou - Jywdxdt =0, (3.2)
Q

for 3,w € L?(Q) and for all u € Dy(L), then w vanishes almost everywhere in Q.

PROOF OF PROPOSITION 3.2. Construct the function J,w. Using the fact that re-
lation (3.2) holds for any function u € Do(L), we can express J,u in a special form.
Let

0, O<t<s,
TJeu =1 ot 2 (3.3)
) J (t—‘r)—a (qu)dT, s<t<T,
s aTZ
and let 9, (02u/3t2) be a solution of the equation
o%u T
a(0,0)9x 55 = 97 (xw) = L SywdT, (3.4)
where o is a fixed number in [«, 8]. We now have
_ o%u 0 o%u
Iyw = Jf 1<a(o,t)€lxﬁ> =—E(a(a,t)sxa?). (3.5)

Relations (3.3) and (3.4) imply that u is in Ds(L), where D (L) is the set of functions
D (L) such that u and du /0t vanish in the neighborhood of t < s. If we put s = 0, then
uisin Dy (L).

LEMMA 3.3. Under the conditions of Proposition 3.2, the function J3,u, defined by
(3.3) and (3.4), has derivatives with respect to t up to third-order inclusive belonging to
the space L%(Qs), where Qg = (&, B) X (s,T).

The proof of Lemma 3.3 is similar to that of [4, Lemma 1].
Substituting (3.1) and (3.5) into (3.2), we have

o°u 0 o’u
_JQS waa(a(g,t)gxm>dxdt

ou 0 0%u
+JQsaaﬁ<a(U,t)Sxﬁ)dxdt (36)

o (,0u\ o o%*u
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Integrating by parts each term of the above equality, we obtain

0°u 0
—Lbsxa? (a(o,0)3, atz)dxdt

1k azu(g,s))z 1 , ( 2*u )
-5 | a9 (5555 dx—ZJQSa(O',t) 5.5 ) dxat,

ou o
Jo, 5 27 (2t ”Sxatz)dx”“
au 6a dadu 0%a

+ u)a(o (IR} az—udxdt
dx ot  otdx ST ’
0 (,0u\ 0 o0%u

JQS E(bﬁ) ot (a(a 9 5z )dth

 bato, t)(azu) dx dt+J %—?a( T)(%)de

1 82b

2 ob ou
“2)g 022 t)(s" aﬂ) doedt - J (W“(‘T Dt 5ra @ t))(at) dxdt
2 2
+2J b o t)—s,(—a Yixdi+| 2P
Qs 0x0t

o2 ﬁﬂ(ﬂ' t)uﬁdxdt

3b o°u
+ JQS W{l(g, t)uﬁxﬁdxdt

3.7)
Substituting (3.7) into (3.6) yields

ot ot

[ 15 5P 8 v
J pa(o,0)( ;g) dxdt

I (a(Ut)+—a(U 0)(s aatz)dth
+of, (Gracor Garon) (5) axar -
o dag (5 20 ulato,n % Laxar
{

ot?

J ( 82b>6u+(82a L. 0°b 3b ) }a(cr O3 a
Qs axat ot  \0otdx 0Oxot2 x

dx dt.
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By virtue of Assumptions 1.1 and 1.2, we obtain

2

coll. d2u(-,s)|? ou(-,T)
— || —=5— +coCs||—=——
2 [17% ot L2(ct,B) 0w ot 12(,B)
1 c? J‘T 2u(-,t)|?
<-Jc+ + = I—5— dt
Z{Cz C1C12 > } B T 52 L2(af)
(3.9)
2 T 2
ci 2 Z}J ou(-,t)
+4c1c8+Cacg+ +c5 +4c
{ 158 TRt 2CoCyq 3 9 s ot 12 (o, 8)

202, 2 T
ci(cs+cg) ) 2
+{72C0C4 +Ci i3 . (- )12 (0 p At

Using the Friedrichs inequality for the norm of u obtained from the norm of ou/0dt.
This yields

2

‘3 *u(-,s)||* ‘Bu(-,T)
Yootz iz ot llr2(ep)
. , , (3.10)
o%u(-,t) ‘ ou(-,t) }
<c N AR N + RGN dt’
17L {‘ ot 2 ot 2w
where
2 2 2 2 2
cr+Cicl2 € c ci(c5 +cg)
C17 = [max (72 + Zl,C1C8 +CaCe+ 26(;1(:4 +c3 +4c§+y(12CT+clz1 +ciy

2 -1
. [&h)
><|:1’1’111’1<?,COC5)]

and y is the constant of the Friedricks inequality.
Inequality (3.10) is basic in our proof. In order to use it, we introduce a new function
z defined by the formula

(3.11)

2 T A2
AL U (3.12)

2D =957 =], 57

Then, ou(x,t)/ot = z(x,s) —z(x,t), ou(x,T)/ot = z(x,s), and we have

r

Consequently, (3.10) becomes

|

ou(-, )|

ot

T
dtsz{j ||z<-,t>||§z(a,,;)dt+<T—s>||z<-,s)||§z(a,ﬁ)}. (3.13)

L2(ax,B)

22u(-,s)|I?

e +(l—2C17(T—3))||Z('ys)||i2(a,ﬁ)

L2 (ct,B)

T
< 2C17J {
s

Ix

(3.14)
2u(-, )2

12 +<|Z("t)||i2(a,ﬂ)}dt'

Jx
L2(x,B)
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Hence, if so > 0 satisfies 1 —2¢,17(T —s) = 1/2, then inequality (3.14) implies

%u(-,s) || 2
‘ SXT LZ(aB)+HZ("S)||L2(0<,ﬁ) 515)
T azu(.’t) 2 ) ’
s4cl7L {|ox =5 LZM)+|\z(-,t>\|L2(a,ﬁ)}dt

for all s € [T —so, T]. We denote the integral on the right-hand side of (3.15) by y (s).
Hence, we obtain

dy (s
—% <4ci7y(s), (3.16)
and, consequently,
d
——(y(s)exp (4c178)) < 0. (3.17)

ds

It follows from (3.17) that y(s) = 0, and thus J,w = 0 almost everywhere in Q7 _,.
Proceeding in this way step by step along a rectangle of side 5o, we prove that 3, w =0,
and thus w = 0 almost everywhere in Q. a

Now, we will prove Theorem 3.1. For this end in view, it is sufficient to prove that
the range R(L) of L is dense in F. Suppose that, for some W = (w,w;,w>) € F be
orthogonal to R(Ly), so that

B B
J IePou-Iywdxdt +J Yiuw dx +I FlouIwrdx = 0. (3.18)
Q « «
We must prove that W = 0. Putting u € Dy (L) in (3.18), we obtain

Jﬂxifou-sxwdxdt:O, u € Dy(L). (3.19)
Q

Hence Proposition 3.2 implies that «w = 0. Thus (3.18) takes the form
B B
J Eluwldx+J I louJywordx = 0. (3.20)
(04 (44

Since #; and ¥, are independent and the sets of the operators #; and > are everywhere
dense in L2(«x, ) and the space with the norm (ff(fixwg)de)l/Z, respectively, the
above relation implies that w; = 0 and w» = 0. Hence W = 0, and thus R (L) = F.

Now consider the general case. If we use the fact that R(Lg) is dense in F and that
L—Ly = (£-%,¥1,¢>) maps continuously B into F, we conclude that we can prove
that R(L) is dense in F by means of the method of continuation along the parameter.
We will not describe the application of this method because it is analogous to the
method used in [3].
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