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The aim of this paper is to establish a connecting thread through the probabilistic concepts
of pth-moment Lyapunov exponents, the integral averaging method, and Hale’s reduction
approach for delay dynamical systems. We demonstrate this connection by studying the
stability of perturbed deterministic and stochastic differential equations with fixed time
delays in the displacement and derivative functions. Conditions guaranteeing stable and
unstable solution response are derived. It is felt that the connecting thread provides a
unified framework for the stability study of delay differential equations in the deterministic
and stochastic sense.
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1. Introduction. Concepts ofpth-moment Lyapunov exponent have been employed

in the study of stability behaviour of structural systems with stochastically perturbed

excitations, where governing equations for single-degree-of-freedom systems are typ-

ically of nonlinear stochastic ordinary differential equations (ODEs) of the form

ẍ+[2δ0ω0+ε1/2σ0ξ(t)
]
ẋ+ω2

0

[
1+ε1/2σ1γ(t)

]
x+εσ3x3 = 0, (1.1)

where δ0 andω0 represent the damping ratio and the undamped natural frequency of

the excitations, respectively. The processes ξ(t) and γ(t) are independent processes

which are typically stationary with zero mean values; σ0, σ1 are the noise intensities

of the processes, ε is a small parameter that takes values between 0 and 1, while σ3

is a real constant denoting the nonlinear perturbation. The name moment Lyapunov

exponent comes from the connection of pth-moment stability, which we denote here

as �(p), and the sample stability or Lyapunov exponent of stochastic solutions which

is denoted by πexp. The concepts have become the most attractive aspects for the

study of stability behaviour of stochastic dynamical systems. The parameter p ∈� of

moment exponent is a unique number and it stands for stability index of the solutions.

To define the concepts of pth-moment Lyapunov exponent, we consider the special

linearized case of (1.1), written by means of the transformation x = x1, ẋ = x2, and

along with the assumed equilibrium conditions x1(0) = x0, x2(0) = v0, as form of a

pair of Itô ODEs, namely

dx1(t)= x2dt, (1.2)

dx2(t)=−
{
ω2

0x1+
(

2δ0ω0− εσ
2
0

2

)
x2

}
dt−ε12σ0x2dW(t), (1.3)
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whereW(t) is a unit Wiener process. By the multiplicative ergodic theorem of Oseledec

[7], the Lyapunov exponent and the pth-moment exponent of solutions to (1.2) and

(1.3) are defined, respectively, as

πexp = lim
t→∞

t−1
{

log
{∣∣x1

(
t,x0,υ0

)∣∣2+∣∣x2
(
t,x0,υ0

)∣∣2
}1/2

}
, (1.4)

�(p)= lim
t→∞

logE
[{{∣∣x1

(
t,x0,υ0

)∣∣2+∣∣x2
(
t,x0,υ0

)∣∣2
}1/2

}p]
, (1.5)

in which E [·] stands for the expected value of the quantity within the square bracket.

In (1.5), if the exponent �(p) < 0, then by definition E[{·}p]→ 0 as t →∞, and thus

we can say that the solution response to (1.2) and (1.3) is pth-moment stability in the

almost-sure sense. On the contrary, that is, for �(p) > 0, the expectation E[{·}p]≠ 0

as t → ∞, and thus pth-moment instability will occur in the almost-sure sense. The

values of πexp and �(p) are real and deterministic in nature as long as the random

system is ergodic. By the pth-moment Lyapunov exponent of a stochastic dynamical

system, we mean that there is a pth-moment stability of the corresponding random

linear solutions of the system in the almost-sure sense. This means that, among an n
number of exponents, if the maximal Lyapunov exponent is negative (i.e., πexp < 0),

the random system is almost-surely stable for small values of the stability index p.

However, in this situation pth-moment grows exponentially for large values of p, and

thereby indicating that pth-moment response of the system is unstable. A remarkable

observation one can infer from this, is that although at an exponential rate we may

haveπexp < 0, thereby resulting to stability of the solution response in the almost-sure

sense, yet for large values of p there is small probability of chance that the response

would be large. Corresponding expected values for this rare event are indeed also

large, and it is conclusive to say that pth-moment exponent of the system is unstable.

Opposite of this situation is when the Lyapunov exponent is positive (i.e., πexp > 0)

and the system is almost-surely unstable.

The values for the stability index p are usually determined by the solutions of

�(p) = 0, and these values are dependent upon the dimension of the random dy-

namical system. It has been shown by Baxendale [3] that the corresponding values

of p when �(p) = 0 equal the negative of the dimension of the system. For exam-

ple a system with a dimension n, if for a solution of �(p) = 0, we have p = p1 ≠ 0,

then we can write p1 = −n. At such a point, p = p1, there is an expectation that the

sign of the maximal value of the Lyapunov exponent πexp will change from negative

to positive, and thus a change in character of the corresponding probability density

function will occur as well. Traditionally, there is an obvious computational difficulty

if one wishes to determine �(p) for many arbitrary values of p. Efforts by Arnold et

al. [1, 2] and many others in the stochastic community, led to the fact that the pth-

moment Lyapunov exponent �(p) : � → � is a convex and analytic function in p in

such a way that the expression �(p)/p increases and �(p) = {0}p=p1 . Thus by tak-

ing the asymptotic expansion of �(p) for p = p1 near zero, and bearing in mind that

(d�/dp)(0)=πexp, �(0)= 0, we have

�(p)= pπexp+(2!)−1p2 d2�
dp2

(0)+(3!)(−1)p3 d3�
dp3

(0)+O(pn). (1.6)
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This asymptotic connection indeed brought about the concepts of large deviations

of linear random dynamical systems in the stability study of solution responses. The

asymptotic expansion has been employed in the literature to determine rare situations

where negative maximal Lyapunov exponent, pth-moment solution response grow

exponentially for large values of p.

Another attractive aspect of pth-moment Lyapunov exponent is its further con-

nection with the integral stochastic averaging method. It was Has’minskĭı [5] and

Stratonovich [9] who developed formulas for such a connection, and the formulas

were based upon the ideas of Bogoliubov and Mitropolski [6] in the context of deter-

ministic averaging method. When the integral stochastic averaging method is applied

to equations of the form (1.2) and (1.3), it produces Markovian solutions to the non-

linear systems in terms of amplitude and phase relations, which can be written either

in the sense of Stratonovich or Itô using stochastic differential rules. The rules treat

differentiation of functions mapped originally from a logarithmic polar transforma-

tion of the vector state variables, which depend on the corresponding Itô equations.

The connection between these probabilistic concepts and the stability study of de-

lay differential equations (DDEs), by means of Andronov-Hopf bifurcation and centre

manifold, is the focus of this investigation. In pursuing this, we expect to provide a

unified framework for the study of stability of DDEs with deterministic and stochastic

perturbations. First, we will use the Andronov-Hopf bifurcation and centre manifold

according to Hale [4] to reduce the infinite-dimensional character of the DDEs into

family of ODEs in the space C := C([−τ,0],�2). The integral averaging of the ODEs

produces averaged equations in terms of amplitude and phase relations. From the

averaged equations, explicit expressions for the occurrence of stable and unstable

solution responses will be derived using pth-moment Lyapunov exponent.

2. Hale’s reduction approach (see [4]). Let L = L(xt(θ),µ) : Cx�→�n and ∆f =
∆f(xt(θ),µ,ε) : �×C → �n denote accordingly the linear and nonlinear functional

mappings depending upon a parameter µ and the state variable xt(θ). The variable

xt(θ) is contained inC := C([−τ,0],�n), the Banach space of all continuous functions

equipped with the usual supremum norm ‖·‖ in C and vector norm |·| in�n; xt(θ)∈
C represents the past history solution of a delay differential equation of the form

ẋ(t)= L(xt(θ),µ)xt(θ)+ε�f (xt(θ),µ,ε), 0≤ ε	 1, (2.1)

whose trajectory will coincide with the solution of the future state variable x(t)∈�n
through the definition xt(θ)= x(t+θ), −τ ≤ θ ≤ 0, t ≥ 0, where τ > 0 is a fixed time

delay. For a given initial continuously differential functionφ(θ)∈ C having supremum

norm ‖φ(θ)‖ = sup−τ≤θ≤0 |φ(θ)|, we can say that the function x(φ(0),t,µ) ∈ �n
through φ(θ) with initial value φ(0) at zero is the solution to (2.1) if and only if

xt(φ(θ),µ)∈ C satisfies the variation of constants-integral equation

xt
(
φ(θ),µ

)= J(t,µ)φ(θ)+ε
∫ t

0
J
(
(t−ξ),µ)X0(θ)�f

(
φ(θ),µ,ε

)
dξ, (2.2)

where the element X0(θ) is n×n matrix function defined as X0(θ) = 0, −τ ≤ θ < 0

and X0(0) = I, θ = 0, and I is the identity matrix. In this integral equation, J(t,µ) is
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defined for t,µ ≥ 0, and it is a bounded linear operator with infinitesimal generator

A(θ,µ)∈ C described via the linear delay equation when ε = 0 in (2.1), namely

ẋ(t)= L(xt(θ),µ)xt(θ), φ(θ)= x(θ), −τ ≤ θ ≤ 0, (2.3)

in which for φ(θ) ∈ C , we have D(A(θ,µ)) = φ(θ) ∈ C : φ̇(θ) ∈ C , φ̇(θ) = L =
L−τ(φ(−τ),µ) + L0(φ(0),µ), θ = 0 and A(θ,µ)φ(θ) = φ̇(θ), −τ ≤ θ < 0, where

L−τ(φ(−τ),µ) and L0(φ(0),µ) are n × n matrices. For a given function η(θ,µ) :

[−τ,0] → �n of bounded variation in [−τ,0], described by η(θ,µ) = L−τ((−τ),µ)
when θ = −τ,0, −τ < θ < 0 and L0((0),µ), and θ = 0, we have the representation

L(xt(θ),µ)xt(θ) =
∫ 0
−τ[dη(θ,µ)]xt(θ). J(t,µ) is a semigroup, that is, for t,ς ≥ 0, we

have J(t,µ), J(t,µ), J(ς,µ)= J(t+ς,µ), and furthermore J(0,µ)= I for t = 0. It maps

C into itself, namely J(t,µ) : Cx�→ C , or equivalently carries the solution state evo-

lution of xt(φ(θ),µ) in C onto �n by the relation xt(φ(θ),µ) = J(t,µ)φ(θ), where

J(t,µ)φ(θ) is the solution operator of (2.3). For φ(θ) ∈D(A(θ,µ)), the solution op-

erator J(t,µ)φ(θ) is differentiable and there is the differential equation

d
dt
[
J(t,µ)φ(θ)

]=A(θ,µ)[J(t,µ)φ(θ)]= J(t,µ)[A(θ,µ)φ(θ)]. (2.4)

Then the action of J(t,µ) on the function φ(θ) is described by J(t,µ)φ(θ) =
φ(0)eB(t+θ), −τ ≤ θ ≤ 0, t ≥ 0, while the action of (A(θ,µ)) on φ(θ) is given by

A(θ,µ)φ(θ)=φ(θ)B, −τ ≤ θ ≤ 0. B ∈ C is an n×n constant matrix whose elements

are the eigenvalues with zero real parts of the transcendental characteristic equation

∆(λ,µ) := det
{
λI−

∫ 0

−τ

[
dη(s,µ)

]
eλθ

}
= 0, (2.5)

associated with (2.3). The properties of J(t,µ) and the unique correspondence be-

tween J(t,µ) and its generator A(θ,µ) ensure that the spectra sets σ(J(t,µ)) of

J(t,µ) and σ(A(θ,µ)) of A(θ,µ) ∈ C are the point spectra of the finite type, and

they consist of those eigenvalues that satisfy (2.5). This equation ∆(λ,µ) = 0 in (2.5)

has infinite-dimensional eigenvalues, and among them we will assume that the pa-

rameter µ varies near µc , and there exists a finite number of eigenvalues of the form

∧(λ,µ) = {λ1,λ2,λ3, . . . ,λk}, k = 1,2, . . . ,n. Furthermore, we assume that these eigen-

values are exactly the point spectrum of J(t,µ) and its generator A(θ,µ), and they

have positive real and complex conjugate parts. All other eigenvalues of ∆(λ,µ) = 0

are assumed to have negative real parts.

With the above assumptions, we decompose C into the generalized eigenspace

P = P(λ,µ) ∈ C and complementary subspace Q = Q(λ,µ) ∈ C as C = P ⊕Q by

all the eigenvalues of (2.5), where P is associated with the k-dimensional eigenval-

ues of ∧(λ,µ) and Q corresponds to all the remaining infinite-dimensional eigen-

values of ∆(λ,µ) = 0 with negative real parts. The subspaces P , Q are disjoint and

invariant under J(t,µ) and A(θ,µ). This way, if for example φ(θ) ∈ P , then a so-

lution x(φ(0),t,µ) defined on [−τ,∞) has a backward extension on (−∞,−τ], and

indeed xt(φ(θ),µ) remains in P for all values of time t ∈ (−∞,∞). The decomposi-

tion C = P⊕Q by ∆(λ,µ)= 0 yields that the elements φ(θ) and X0(θ) of the integral

equation (2.2) in C can have the unique representations φ(θ) = φP(θ)+φQ(θ) and
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X0(θ) = XP0 (θ)+XQ0 (θ) where the superscripts denote their respective projections

onto P andQ. Also, for the integral solution xt(φ(θ),µ) in C , we have the representa-

tion xt(φ(θ),µ) = xPt (φ(θ),µ)+xQt (φ(θ),µ) where the projections xPt (φ(θ),µ) and

xQt (φ(θ),µ) are given by

xPt
(
φ(θ),µ

)= J(t,µ)φP(θ)+ε
∫ t

0
J
(
(t−ξ),µ)XP0 (θ)�f (φ(θ),µ,ε)dξ, t ∈ (−∞,∞),

xQt
(
φ(θ),µ

)= J(t,µ)φQ(θ)+ε
∫ t

0
J
(
(t−ξ),µ)XQ0 (θ)�f (φ(θ),µ,ε)dξ, t ∈ [0,∞),

(2.6)

and the elements in these equations are explicitly defined by

φ(θ)∈ C |φP(θ)=φ(θ)−φQ(θ), φP(θ)= Φ(θ)b, b = (Ψ̄(s),φP(θ)),
X0(θ)∈ C |XP0 (θ)=X0(θ)−XQ0 (θ), X0(θ) := Φ(θ)Ψ̄(0), −τ ≤ θ ≤ 0.

(2.7)

Furthermore, it is known that the restriction of the semigroup J(t,µ) to the subspace

P constitutes a generalized centre manifold Mµ =Mµ(A(θ,µ))∈ C([−τ,0],�n). This

centre manifold is tangent to the subspace P at a point where P andQ are orthogonal.

On this centre manifold, long-term qualitative behaviour of the original nonlinear de-

lay equation (2.1) can be well approximated by the behaviour of the finite-dimensional

ODEs restricted to the point spectrum of J(t,µ) and A(θ,µ), or equivalently to the

eigenvalues of ∧(λ,µ)= {λ1,λ2,λ3, . . . ,λk}. The ODEs come from the variation of con-

stant integral equation xPt (φ(θ),µ) of the generalized eigenspace P ∈ C.
The function Φ(θ) in (2.7) is a basis for P ∈ C , and its elements are the linearly

independent solutions of (2.3) for which ∧(λ,µ) = {λ1,λ2,λ3, . . . ,λk} are eigenval-

ues of (2.5). That is, for all λk of ∧(λ,µ), we have φk(θ) = eλkθ where we denote

Φ(θ)= [φ1(θ),φ2(θ), . . . ,φk(θ)]∈ C. Also, corresponding to these finite-dimensional

eigenvalues is the k×k constant matrix B in C . This matrix B is usually the Jordan-

canonical form whose elements are the eigenvalues of ∆(λ,µ)= 0 with zero real parts,

and they can be determined by means of the definition A(θ,µ)Φ(θ) = Φ(θ)B such

that the identity Φ(θ) = Φ(0)eBθ for −τ ≤ θ ≤ 0 holds. Ψ̄(0) is the normalized ba-

sis of Ψ(s) = [ψ1(s),ψ2(s), . . . ,ψk(s)] ∈ Ĉ , ψk(s) = e−λks at s = 0 for the general-

ized eigenspace P̂ = P̂ (λ,µ) ∈ Ĉ corresponding to the functional delay differential

equations

u̇t̂(s)= L̂
(
ut̂(s),µ

)
ut̂(s), ut̂(s)∈ Ĉ := Ĉ([0,τ],�n), L̂

(
ut̂(s),µ

)
: Ĉx� �→�n,

L̂
(
ut̂(s),µ

)
ut̂(s)=−

∫ 0

−τ

[
dη̂(s,µ)

]
ut̂(s), ut̂(s)=ψ(s),

ut̂(s)=u
(− t̂+s), 0≤ s ≤ τ, t̂ ∈ [0,∞),

(2.8)

formally adjoint to (2.3) with respect to the bilinear relation

(
ψj(s),φk(θ)

)= (ψj(0),φk(0))−
∫ 0

−τ

∫ θ
0
ψj(ξ−s)

[
dη(θ,µ)

]
φk(ξ)dξ,

φk(θ)∈ C, ψj(s)∈ Ĉ, j,k= 1,2,3, . . . ,n,
(2.9)



344 M. S. FOFANA

in C × Ĉ . The normalized basis Ψ̄(s) is determined by computing Ψ̄(s) = (Ψ(s),
Φ(θ))−1Ψ(s) where (Ψ(s),Φ(θ)) is a k×k inner product matrix with the bilinear re-

lation in (2.9) as elements. That is, for φk(θ) ∈ C , ψj(s) ∈ Ĉ , we have (Ψ(s),Φ(θ)) =
(ψj(s),φk(θ)), j,k= 1,2, . . . ,n, which usually produces a nonsingular value after the

substitution of its elements into (2.9). That is, (Ψ(s),Φ(θ)) ≠ I. However, with the

normalized basis Ψ̄(s) ∈ Ĉ for P̂ ∈ Ĉ , we can see that the substitution of the ele-

ments (ψ̄j(s),φk(θ)) of the new inner product (Ψ̄(s),Φ(θ)) produces the identity

matrix, (Ψ̄(s),Φ(θ)) = I. Next interest is to determine the exponential estimates of

the projected solutions xPt (φ(θ),µ) and xQt (φ(θ),µ), and for this purpose we need

the following theorem.

Theorem 2.1. For any real number, say µ, let ∧(λ,µ) = {λ ∈ A(θ,µ) | ∆(λ,µ) =
0,�eλ > µ} be the point spectral set of the finite type and has eigenvalues satisfying

the characteristic equation (2.5). If C is decomposed into the generalized eigenspace P
and the complementary subspace Q by all the eigenvalues of ∆(λ,µ)= 0 as C = P⊕Q.

Then, for any φ(θ) ∈ C with the representation φ(θ) = φP(θ)+φQ(θ) there exist

positive constants δ and κ = κ(δ) such that the following inequalities hold:

∥∥J(t,µ)φP(θ)∥∥≤ κe(µ+δ)t∥∥φP(θ)∥∥, t ≤ 0,
∥∥J(t,µ)φQ(θ)∥∥≤ κe−(µ+δ)t∥∥φQ(θ)‖, t ≥ 0.

(2.10)

Remark 2.2. A proof of the above theorem is given in the classical book of Hale

[4]. By means of (2.10), numerous autonomous and nonautonomous time delay per-

turbations have been estimated. Here, we exploit the insights that emerged from the

proof of these inequalities. Namely, any projected solution of equations (2.3) onto

P ∈ C is bounded as t → −∞, and unbounded when t → ∞, while a solution projec-

tion onto Q ∈ C will remain bounded for all values of t ≥ 0. In particular, having

φQ(θ) = φ(θ)−φP(θ) and φP(θ) = Φ(θ)b such that J(t,µ)Φ(θ) = Φ(0)eB(t+θ), we

have from the first inequality that ‖J(t,µ)φP(θ)‖ → 0, as t →−∞, and while the sec-

ond inequality will yield ‖J(t,µ)φQ(θ)‖ → 0, as t → ∞. Also, by means of the first

inequality in (2.10), it can be shown that the exponential estimate for xPt (φ(θ),µ),
t ∈ (−∞,∞) defined on P are bounded as t → −∞ and unbounded when t →∞. The

latter is indeed the situation which produces the corresponding ODEs on the centre

manifold.

Hence, for the estimation of the nonlinear variation of constant integral solutions

xPt (φ(θ),µ), x
Q
t (φ(θ),µ) in (2.6) and (2.7) we have from the second inequality the

following:

∥∥J(t,µ)φQ(θ)∥∥

=
∥∥∥∥xQt (φ(θ),µ)−ε

∫ t
0
J
(
(t−ξ),µ)XQ0 (θ)�f (φ(θ),µ,ε)dξ

∥∥∥∥, t ∈ [0,∞),

XQ0 (θ)=
{
X0(θ)−XP0 (θ) |X0(θ) := Φ(θ)Ψ̄(0)},

φQ(θ)=φ(θ)−φP(θ),
(2.11)



MOMENT LYAPUNOV EXPONENT OF DELAY DIFFERENTIAL EQUATIONS 345

where the left-hand side of this equation exponentially converges to zero as t → ∞,

namely

∥∥J(t,µ)φQ(θ)∥∥≡ ∥∥J(t,µ){φ(θ)−φP(θ)}∥∥= ∥∥J(t,µ)φ(θ)−Φ(0)eBtb∥∥
≡ ∥∥J(t,µ)Φ(0)eBtb−Φ(0)eBtb∥∥ �→ 0,

t �→∞, J(0,µ)= I, b := (Ψ̄(s),φP(θ)).
(2.12)

In a similar way, the first inequality produces ‖xPt (φ(θ),µ)‖ → 0 as t→−∞. As first-

order approximation, one can accept these convergencies, and then describe the long-

term behaviour of the original delay differential equations (2.1) with the corresponding

set of ODEs for xPt (φ(θ),µ),−τ ≤ θ ≤ 0, t ∈ [0,∞) on the generalized centre manifold

Mµ ∈ C .

Therefore, on the centre manifold Mµ ∈ C , we have the corresponding solution of

(2.1) as

Mµ = xPt
(
φ(θ),µ

)∈ C, xPt
(
φ(θ),µ

)= Φ(θ)z(t)+xQt (φ(θ),µ),
z(t)= (Ψ̄(s),φP(0)), z(t)∈�k. (2.13)

Since we know that the exponential estimate for xQt (φ(θ),µ) in the complementary

subspace Q is zero, then the change of variables xPt (φ(θ),µ)= Φ(θ)z(t), −τ ≤ θ ≤ 0,

and their differentiation with respect to time t produces

Φ(θ)ż(t)= ẋPt
(
φ(θ),µ

)

= d
dt

{
J(t,µ)φP(θ)+ε

∫ t
0
J
(
(t−ξ),µ)XP0 (θ)�f (φ(θ),µ,ε)dξ

}
,

(2.14)

where the substitution of XP0 (θ) := Φ(θ)Ψ̄(0) into this equation gives the k-dimen-

sional ODEs

ż(t)= Bz+ Ψ̄(0)�f (Φ(θ)z(t),µ,ε), z(t)∈�k, t ∈ [−τ,∞), (2.15)

and B is a k×kmatrix. We now illustrate these ideas by two examples with fixed time

delays.

3. An illustrative example I. The specific single-degree-of-freedom dynamical sys-

tem considered is represented by the second-order DDEs of the form

ẋ1(t)= x2,

ẋ2(t)=−ω2
0x1−2δ0ω0x2−µω2

0

{
x1
(
t−τ1

)+δ1x2
(
t−τ2

)}−ε1/2σ0ξ(t)x2,
(3.1)

in C := C([−τ,0],�2), where τ2 ≤ τ ≤ τ1. All the parameters contained in these equa-

tions are real and µ is the selected bifurcation parameter, which is set to vary by εµ̃
in the neighborhood of some critical value µc , namely µ = µc+εµ̃. τ1, τ2 are the re-

spective time delays in the restoring and damping forces. Equations of the form (3.1)

have been encountered in the active controlling of structural systems with earthquake

excitations [8], where the parameter µ often stand for the gain of the delayed forces.
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We study the stability of (3.1) by examining the eigenvalues of the transcendental

characteristic equation

∆(λ,µ) := λ2+(2δ0+µω0δ1e−λτ2
)
ω0λ+ω2

0(1+µ)e−λτ1 = 0, (3.2)

which is associated with the linearized part when σ0 = 0. Along with the linear DDEs

in (3.1), we consider their corresponding adjoint form

u̇1(t̂)=ω2
0u2+ω2

0µu2
(
t̂+τ1

)
, t̂ =−t,

u̇2(t̂)=−u1+2δ0ω0u2+ω2
0µδ1u2

(
t̂+τ2

)
,

(3.3)

in Ĉ := Ĉ([0,τ],�2) with respect to the bilinear relation

(
ψj(s),φk(θ)

)=ψj(0)φk(0)−µδ1ω2
0

{
ψj(0)φk

(−τ1
)}

−µδ1ω2
0

∫ 0

−τ2

(dψj(ζ+τ2
)

dζ

)
φk(ζ)dζ

+µω2
0

∫ 0

−τ1

ψj
(
ζ+τ1

)
φk(ζ)dζ, j,k= 1,2,

(3.4)

where φk(θ)∈ C and ψj(s)∈ Ĉ . Solutions to the linear DDEs are identical. However,

the only difference is that each set of solutions is described in a separate space. That

is, solutions of (3.1) are contained in C , while those of (3.3) are contained in the adjoint

space Ĉ .

We assume that λ1,2 = υ(µ)± iω(µ), υ(µ) > 0, ω(µ) ≠ 0 are solutions to (3.2)

satisfying υ(µc) = 0, ω(µc) ≠ 0, �e{d∆(λ,µ)/dµ} ≠ 0 at Hopf bifurcation and all

other solutions of ∆(λ,µ) = 0 correspond to eigenvalues with negative real parts.

When we put λ1 = iω into (3.2) and set the resulting real and imaginary parts to zero,

we obtain

ω2−µω2
0

(
δ1 sinωτ2+ω−1 cosωτ1

)
ω−ω2

0 = 0,(
2δ0+µω0δ1 cosωτ2

)
ω0ω−ω2

0µ sinωτ1 = 0.
(3.5)

These are the explicit expressions for the determination of boundaries of stable and

unstable solutions in the phase plane, say (µ1 δ0). By the implicit function theorem, we

take the derivative of ∆(λ,µ)= 0 with respect to µ. Then the substitution of λ1 = iω
into the resulting equations yields the expression for {d∆(λ,µ)/dµ}λ=iω,µ=µc , whose

real part �e{d∆(λ,µ)/dµ}λ=iω,µ=µc is a nonzero quantity.

We decompose C by all the eigenvalues of ∆(λ,µ)= 0 as C = P⊕Q, where the eigen-

values λ1,2 = υ(µ)±iω(µ) are associated with the two-dimensional subspace P and the

infinite-dimensional complementary subspace Q is associated with all the remaining

eigenvalues of ∆(λ,µ)= 0. For λ1 = iω(µ), we have the exponential solutions Φ(θ)=
[φ1(θ),φ2(θ)], φ1(θ) = [cosωθ,sinωθ]T , and φ2(θ) = [−sinωθ,cosωθ]T , which

form a basis for P ∈ C as well as for all the solutions to (3.1). That is, for some con-

stant vector b, we have the required initial function φ(θ)= Φ(θ)b ∈ C . Furthermore,

we have B = [[0,ω]T ,[−ω,0]T ] and it can be shown that Φ(θ)= Φ(0)eBθ , −τ ≤ θ ≤ 0.

T stands for transpose. The basis for Q is determined by means of the basis function
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Φ(θ) for P ∈ C and the exponential solutions Ψ(s)= [ψ1(s),ψ2(s)]∈ Ĉ , which is the

basis for the subspace P̂ ∈ Ĉ of the adjoint equation (3.3). Again for λ1 = iω(µ), we

have the elements ψ1(s) = [cosωs,−sinωs]T , ψ2(s) = [sinωs,cosωs]T , 0 ≤ s ≤ τ .

The elements of Φ(θ)∈ C , and Ψ(s)∈ Ĉ form the inner product matrix (Ψ(s),Φ(θ)),
namely (Ψ(s),Φ(θ)) = [[(ψ1(s),φ1(θ)),(ψ2(s),φ1(θ))]T ,[(ψ1(s),φ2(θ)),(ψ2(s),
φ2(θ))]T ]. When we make the substitution of the elements of (Ψ(s),Φ(θ)) into (3.4),

it produces the nonsingular matrix (Ψ ,Φ)nsg = [[ψ11,ψ21]T ,[−ψ12,ψ22]T ] where

ψ11 =
(
1−ω2

0τ1µcosωτ1
)−δ1ω2

0µ
(
cosωτ2−ωτ2 sinωτ2

)
, ψ22 =ψ11,

ψ12 =−δ1ω2
0µ
(
ωτ2 cosωτ2+sinωτ2

)−ω2
0τ1µ sinωτ1, ψ21 =−ψ12.

(3.6)

With this nonsingular matrix, we know that the basis Ψ(s)∈ Ĉ for P̂ can be normalized

to a new basis Ψ̄(s)= [ψ̄1(s),ψ̄2(s)]∈ Ĉ , where its elements ψ̄1(s)=[ψ̄11(s),ψ̄21(s)]T ,

ψ̄2(s)= [ψ̄12(s),ψ̄22(s)]T are obtained by evaluating Ψ̄(s)= (Ψ ,Φ)−1
nsgΨ(s). Namely,

ψ̄11(s)=
(
ψ2

11+ψ2
12

)−1(ψ22 cosωs+ψ12 sinωs
)
,

ψ̄12(s)=
(
ψ2

11+ψ2
12

)−1(ψ22 sinωs−ψ12 cosωs
)
,

ψ̄21(s)=−
(
ψ2

11+ψ2
12

)−1(ψ21 cosωs+ψ11 sinωs
)
,

ψ̄22(s)=−
(
ψ2

11+ψ2
12

)−1(ψ21 sinωs−ψ11 cosωs
)
.

(3.7)

Then the substitution of the new elements (ψ̄j(s),φk(θ)), j,k= 1,2 of the inner prod-

uct matrix (Ψ̄(s),Φ(θ)) into (3.4) yields the identity matrix (Ψ ,Φ)id = I. Consequently

on the subspaces P,Q∈ C , we have the characterizations:

P ≡ {φ(θ)∈ C |φ(θ)=φP(θ)+φQ(θ), φP(θ)= Φ(θ)b, b := (Ψ̄(s), φP(θ))},
Q= {φ(θ)∈ C, φQ(θ)=φ(θ)−φP(θ), (Ψ̄(s), φ(θ))= 0

}
.

(3.8)

Then on P the transformation xPt (φ(θ),µ) = Φ(θ)z(t), z(t) = (Ψ̄(s),φ(θ)), z(t) ∈
�2 will give rise to the following relationships: x1(t) = z1(t), x2(t) = z2(t), θ = 0,

x1(t−τ)= z1 cosωτ+z2 sinωτ , z2(t−τ)=−z1 sinωτ+z2 cosωτ , θ =−τ .

Therefore, with the above characterizations, specifically the bases Φ(θ)∈ C , Ψ̄(s)∈
Ĉ so that (Ψ ,Φ)id = I, the matrix B = [[0,ω]T ,[−ω,0]T ] and the coefficients of the

matrix Ψ̄(0) of the normalized basis Ψ̄(s) for P̂ ∈ Ĉ of the adjoint equation (3.3), we

have the equivalent stochastic ODEs on the centre manifold Mµ ∈ C([−τ,0],�2)

ż1(t)=−ωz2−ε
{
ψ̄12(0)

{
µ̃ω2

0

(
z1 cosωτ1+z2 sinωτ1

)+ε−1/2σ0ξ(t)z2
}

−ψ̄11(0)µ̃ωω2
0δ1

(
z2 cosωτ2−z1 sinωτ2

)}
,

ż2(t)=ωz1−ε
{
ψ̄22(0)

{
µ̃ω2

0

(
z1 cosωτ1+z2 sinωτ1)+ε−1/2σ0ξ(t)z2

}
−ψ̄21(0)µ̃ωω2

0δ1
(
z2 cosωτ2−z1 sinωτ2

)}
.

(3.9)
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The polar coordinate transformation z1 = asinΘ, z2 = −acosΘ, Θ = ωt+ϕ writes

(3.9) in terms of amplitude a and phase ϕ relations. Then the method according to

Has’minskĭı [5] and Stratonovich [9] produces the uncoupled averaged equations

da=−1
2
aε
{
ω2

0µ̃
(
κ111+δ1κ112

)− 1
4
σ 2

0

(
ψ̄2

12(0)+ψ̄2
22(0)

)}
dt

+ε1/2

√
ψ̄2

12(0)+ψ̄2
22(0)

8
σ0adW1(t),

dϕ =−1
2
ε
{
ω2

0µ̃
(
κ113+δ1κ114

)}
dt+ε1/2

√
ψ̄2

12(0)+ψ̄2
22(0)

8
σ0dW2(t),

κ111 = ψ̄12(0)cosωτ1+ψ̄22(0)sinωτ1, κ112 = ψ̄11(0)sinωτ2−ψ̄21(0)cosωτ2,

κ113 = ψ̄22(0)cosωτ1−ψ̄12(0)sinωτ1, κ114 = ψ̄11(0)cosωτ2+ψ̄21(0)sinωτ2.
(3.10)

We set ρ = log |a| to get dρ(t)= (1/a)da, whose direct integration yields with prob-

ability one (w.p.1) the Lyapunov exponent

πexp :=−
(

1
2

)
ε
{
ω2

0µ̃
(
κ111+δ1κ112

)−(1
4

)
σ 2

0

(
ψ̄2

12(0)+ψ̄2
22(0)

)}
. (3.11)

Thus, the solution response is asymptotically stable w.p.1, if for πexp = 0, we have

ω2
0µ̃(κ111 + δ1κ112) > (1/4)σ 2

0 (ψ̄
2
12(0)+ ψ̄2

22(0)), otherwise unstable when this in-

equality fails.

In order to obtain the pth-moment exponent �(p) for the amplitude equations

(3.10), we set up an Itô equation for ap as follows:

d
(
ap
)=−1

2
pε
{
ω2

0µ̃
(
κ111+δ1κ112

)− 1
4
σ 2

0p
(
ψ̄2

12(0)+ψ̄2
22(0)

)}
apdt

+ε1/2

√
ψ̄2

12(0)+ψ̄2
22(0)

8
σ0appdW1(t).

(3.12)

From which and taking the expectation of both sides of (3.12) leads to �(p) :=
−(1/2)pε{ω2

0µ̃(κ111+δ1κ112)−(1/4)σ 2
0p(ψ̄

2
12(0)+ψ̄2

22(0))}. Putting �(p)= {0}p=p1

produces two values of the stability index p, and thus we can say that the solution

response is pth stable if and only if the inequality 0 < p1 < 4ω2
0µ̃(κ111 +δ1κ112)/

σ 2
0 (ψ̄

2
12(0)+ψ̄2

22(0)) holds.

3.1. An illustrative example II. The reduction of the infinite-dimensional character

of DDEs to ODEs is further demonstrated by considering the nonlinear delay equation

ẋ1(t)= x2,

ẋ2(t)=−ω2
0

{
(1−µ)x1+µx1(t−τ)

}−2δ0ω0x2

−εω2
0

{
β3µx3

1(t−τ)+σ3x3
1

}
,

(3.13)

which is precisely the classical Duffing equation when µ = 0. The parameters β3, σ3

in these equations denote the coefficients of the nonlinearity. The linearized part of

(3.13)

ẋ1(t)= x2, ẋ2(t)=−ω2
0

{
(1−µ)x1+µx1(t−τ)

}−2δ0ω0x2, (3.14)
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in C := C([−τ,0],�2) has the adjoint form

u̇1(t̂)=ω2
0

{
(1−µ)u2+µu2

(
t̂+τ)}, u̇2(t̂)=−u1+2δ0ω0u2, (3.15)

in Ĉ := Ĉ([0,τ],�2) and the bilinear relation

(
ψj(s),φk(θ)

)=ψj(0)φk(0)+ω2
0µ
∫ 0

−τ
ψj(τ+ζ)φk(ζ)dζ, j,k= 1,2. (3.16)

Furthermore, (3.14) has the characteristic equation

∆(λ,µ) := λ2+2ζ0ω0λ+ω2
0

{
(1−µ)+µe−λτ}= 0, (3.17)

which may have eigenvalues of the form λ1,2 = ±iω(µ) for µ = µc > 0, and while all

the remaining ones can be assumed to have negative real parts. Substituting λ1 = iω
into (3.17), we get the expressions for stability characterization ω2 −ω2

0{(1−µ)+
µcosωτ} = 0 and 2δ0ω0ω−ω2

0µ sinωτ .

Next for the eigenvalues of λ1,2 =±iω(µ), we define the bases of P ∈ C and P̂ ∈ Ĉ of

the linear delay equations (3.14), (3.15), and (3.16), namely Φ(θ)= [φ1(θ),φ2(θ)]∈ C ,

φ1(θ)= [cosωθ,sinωθ]T , φ2(θ)= [−sinωθ,cosωθ]T , and Ψ(s)= [ψ1(s),ψ2(s)]∈
Ĉ , ψ1(s)= [cosωs,−sinωs]T , ψ2(s)= [sinωs,cosωs]T . The computation of the in-

ner product matrix (Ψ(s),Φ(θ))= (ψj(s),φk(θ)), j,k= 1,2, yields (Ψ ,Φ)nsg = [[ψ11,
ψ21]T , [−ψ12,ψ22]T ] where ψ11 = ψ22 = 1+ω2

0µτ cosωτ , ψ12 = ω2
0µτ sinωτ , and

ψ21 =−ψ12. We define the new basis Ψ̄(s)∈ Ĉ for P̂ by computing Ψ̄(s)=(Ψ ,Φ)−1
nsgΨ(s),

which yields

Ψ̄(s)= [ψ̄1(s),ψ̄2(s)
]=

[
ψ̄11(s) ψ̄12(s)
ψ̄21(s) ψ̄22(s)

]
, 0≤ s ≤ τ,

ψ̄11(s)=
(
ψ2

11+ψ2
12

)−1(ψ22 cosωs+ψ12 sinωs
)
,

ψ̄12(s)=
(
ψ2

11+ψ2
12

)−1(ψ22 sinωs−ψ12 cosωs
)
,

ψ̄21(s)=−
(
ψ2

11+ψ2
12

)−1(ψ21 cosωs+ψ11 sinωs
)
,

ψ̄22(s)=−
(
ψ2

11+ψ2
12

)−1(ψ21 sinωs−ψ11 cosωs
)
.

(3.18)

Again the substitution of the elements (ψ̄j(s),φk(θ)), j,k = 1,2, of the new inner

product (Ψ̄(s),Φ(θ)) into (3.16) produces the 2×2 identity matrix (Ψ ,Φ)id = I. Since

the elements φ(θ), X0(θ) are in C , we have the corresponding projections onto the

subspaces P,Q∈ C as follows:

P =
{
φ(θ)∈ C, φP(θ)=φ(θ)−φQ(θ) |φP(θ)= Φ(θ)b,

b = (Ψ̄(s),φP(θ)), XP0 (θ) := Φ(θ)Ψ̄(0)
} (3.19)

and

Q=φ(θ)∈ C, φQ(θ)=φ(θ)−φP(θ) | (Ψ̄(s),φQ(θ))= 0. (3.20)
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Consequently, the change of variable xPt (θ) = Φ(θ)z(t), z(t) ∈ �2, z(t) = (Ψ̄(s),
φP(θ)) produces the set of nonlinear ODEs on the centre manifoldMµ ∈ C([−τ,0],�2)

ż1(t)=−ωz2+εψ̄12(0)
{
β3µc

(
z1 cosωτ+z2 sinωτ

)3+σ3z3
1

+ω2
0µ̃
(
z1−

(
z1 cosωτ+z2 sinωτ

))}
,

ż2(t)=ωz1+εψ̄22(0)
{
β3µc

(
z1 cosωτ+z2 sinωτ

)3+σ3z3
1

+ω2
0µ̃
(
z1−

(
z1 cosωτ+z2 sinωτ

))}
,

(3.21)

where ψ̄12(0)=−(ψ2
11+ψ2

12)−1ψ12 and ψ̄22(0)= (ψ2
11+ψ2

12)−1ψ11. Writing the ODEs

(3.21) into amplitude and phase relations at the expense of the transformation z1 =
asinΘ, z2 = −acosΘ, Θ =ωt+ϕ, and then applying the integral averaging method

leads to the uncoupled averaged equations

ȧ(t)=−εa
8

{
3q311a2+4q111µ̃

}
,

ϕ̇(t)=− ε
8

{
3p311a2+4p111µ̃

}
,

q311 = β3µc
{
ψ̄12(0)cosωτ+ψ̄22(0)sinωτ

}+σ3ψ̄12(0),

q111 =ω2
0

{
ψ̄12(0)(1−cosωτ)−ψ̄22(0)sinωτ

}
,

p311 = β3µc
{
ψ̄22(0)cosωτ−ψ̄12(0)sinωτ}+σ3ψ̄22(0),

p111 =ω2
0

{
ψ̄22(0)(1−cosωτ)−ψ̄12(0)sinωτ

}
.

(3.22)

By the relationship a= a0+ρ, we have the variational equation

ρ̇(t)=−
(
ε
8

){
9q311a2

0+4q111µ̃
}
ρ, (3.23)

where for ρ̇(t)= 0 yields the scalar equation

g
(
a0,µ

)
:=−

(
ε
8

){
9a2

0q311+4q111µ̃
}= 0, (3.24)

where a0 is the steady state value determined by setting ȧ(t)= ϕ̇(t)= 0. Thus, it can

be shown that the solution responses of the nonlinear delay equations (3.13) show

the subcritical stability for 9q311 < −4q111 and 4q111 > 0, and supercritical stability

when 9q311 > 4q111 and 4q111 > 0.

4. Conclusion. An attempt to establish a unified framework for the study of sta-

bility of second-order differential equations with multiple and distinct time delays

in the displacement and derivative functions, plus a derivative process of the damp-

ing coefficient, has been made. Andronov-Hopf bifurcation, centre manifold theorem,

the integral stochastic averaging method, and pth-moment Lyapunov exponents have

been employed in the development of the framework. Sufficient conditions for stabil-

ity in the deterministic and stochastic sense have been presented. It is felt that this

framework will uncover a wealth of phenomena of stochastic dynamical systems with

delays since the investigations are conducted in the appropriate infinite-dimensional

space C([−τ,0],�2) without the assumption of small delay.
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