ON THE SINE INTEGRAL AND THE CONVOLUTION

BRIAN FISHER and FATMA AL-SIREHY

Received 7 June 2001

The sine integral $Si(\lambda x)$ and the cosine integral $Ci(\lambda x)$ and their associated functions $Si_{+}(\lambda x)$, $Si_{-}(\lambda x)$, $Ci_{-}(\lambda x)$, $Ci_{-}(\lambda x)$ are defined as locally summable functions on the real line. Some convolutions of these functions and $Sin_{+}(\mu x)$, $Sin_{+}(\mu x)$, and $Sin_{-}(\mu x)$ are found.

2000 Mathematics Subject Classification: 33B10, 46F10.

The *sine integral* Si(x) is defined by

$$\int_{0}^{x} u^{-1} \sin u du,\tag{1}$$

(see Sneddon [6]). This integral is convergent for all x. More generally, for all $\lambda \neq 0$, we define $Si(\lambda x)$ by

$$\operatorname{Si}(\lambda x) = \int_0^{\lambda x} u^{-1} \sin u \, du = \int_0^x u^{-1} \sin(\lambda u) \, du; \tag{2}$$

and we define $Si_+(\lambda x)$ and $Si_-(\lambda x)$ by

$$\operatorname{Si}_{+}(\lambda x) = H(x)\operatorname{Si}(\lambda x), \quad \operatorname{Si}_{-}(\lambda x) = H(-x)\operatorname{Si}(\lambda x),$$
 (3)

(see [1]).

It is easily proved that

$$\left[\operatorname{Si}_{+}(\lambda x)\right]' = \sin(\lambda x)x_{+}^{-1}.\tag{4}$$

We need the following lemma which was proved in [1].

LEMMA 1. If $\lambda \neq 0$, then

$$\int_0^\infty u^{-1} \sin(\lambda u) du = \frac{1}{2} \operatorname{sgn} \lambda \cdot \pi.$$
 (5)

The cosine integral Ci(x) is defined for x > 0 by

$$\operatorname{Ci}(x) = -\int_{x}^{\infty} u^{-1} \cos u \, du,\tag{6}$$

(see Sneddon [6]). This integral is divergent for $x \le 0$; but in [3], $Ci(\lambda x)$ was defined as a locally summable function on the real line by

$$\operatorname{Ci}(\lambda x) = -\int_{\lambda x}^{\infty} u^{-1} [\cos u - H(1 - u)] du + H(1 - \lambda x) \ln |\lambda x|, \tag{7}$$

where H denotes Heaviside's function. In particular,

$$Ci(x) = -\int_{x}^{\infty} u^{-1} [\cos u - H(1-u)] du + H(1-x) \ln|x|.$$
 (8)

It was proved in [4] that the cosine integral is an even function. We can therefore define $Ci(\lambda x)$ by

$$\operatorname{Ci}(\lambda x) = -\int_{|\lambda x|}^{\infty} u^{-1} \cos u \, du = -\int_{|x|}^{\infty} u^{-1} \cos(\lambda u) \, du, \quad \lambda, x \neq 0, \tag{9}$$

simplifying the definition given in [3].

The locally summable functions $Ci_+(\lambda x)$ and $Ci_-(\lambda x)$ are now defined for $\lambda \neq 0$ by

$$\operatorname{Ci}_{+}(\lambda x) = H(x)\operatorname{Ci}(\lambda x), \qquad \operatorname{Ci}_{-}(\lambda x) = H(-x)\operatorname{Ci}(\lambda x).$$
 (10)

It was proved in [3] that

$$\left[\operatorname{Ci}_{+}(\lambda x)\right]' = \cos(\lambda x)x_{+}^{-1} - (c - \ln|\lambda|)\delta(x),\tag{11}$$

where

$$c = \int_0^\infty u^{-1} [\cos u - H(1 - u)] du.$$
 (12)

We also need the following lemma which was also proved in [4].

LEMMA 2. If x > 0, then

$$\int_0^x u^{-1} \left[\cos(\lambda u) - 1\right] du = c + \operatorname{Ci}(\lambda x) - \ln|\lambda x|. \tag{13}$$

The classical definition of the convolution of two functions f and g is as follows.

DEFINITION 3. Let f and g be functions. Then the *convolution* f * g is defined by

$$(f*g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt,$$
(14)

for all points x for which the integral exists.

It follows easily from the definition that if f * g exists then g * f exists and

$$f * g = g * f, \tag{15}$$

and if (f * g)' and f * g' (or f' * g) exists, then

$$(f * g)' = f * g' (\text{or } f' * g).$$
 (16)

Definition 3 can be extended to define the convolution f * g of two distributions f and g in \mathfrak{D}' with the following definition, see Gel'fand and Shilov [5].

DEFINITION 4. Let f and g be distributions in \mathfrak{D}' . Then the *convolution* f * g is defined by the equation

$$\langle (f * g)(x), \phi \rangle = \langle f(y), \langle g(x), \phi(x+y) \rangle \rangle \tag{17}$$

for arbitrary ϕ in \mathfrak{D} , provided that f and g satisfy either of the following conditions:

- (a) either f or g has bounded support,
- (b) the supports of f and g are bounded on the same side.

It follows that if the convolution f * g exists by this definition then (15) and (16) are satisfied.

In the following, the locally summable functions $\sin_{\pm}(\lambda x)$ and $\cos_{\pm}(\lambda x)$ are defined by

$$\sin_{+}(\lambda x) = H(x)\sin(\lambda x), \qquad \sin_{-}(\lambda x) = H(-x)\sin(\lambda x),
\cos_{+}(\lambda x) = H(x)\cos(\lambda x), \qquad \cos_{-}(\lambda x) = H(-x)\cos(\lambda x). \tag{18}$$

THEOREM 5. If $\lambda, \mu \neq 0$, then the convolution $Si_+(\lambda x) * sin_+(\mu x)$ exists and

$$Si_{+}(\lambda x) * sin_{+}(\mu x) = -\frac{1}{2}\mu^{-1}sin(\mu x) \{Ci_{+}[(\lambda - \mu)x] - Ci_{+}[(\lambda + \mu)x]\}$$

$$+ \mu^{-1}Si_{+}(\lambda x) - \frac{1}{2}\mu^{-1}cos(\mu x) \{Si_{+}[(\lambda - \mu)x] + Si_{+}[(\lambda + \mu)x]\}$$

$$-\frac{1}{2}\mu^{-1}ln\left|\frac{\lambda + \mu}{\lambda - \mu}\right|sin_{+}(\mu x)$$
(19)

if $\lambda \neq \pm \mu$; and

$$\operatorname{Si}_{+}(\lambda x) * \sin_{+}(\lambda x) = \lambda^{-1} \operatorname{Si}_{+}(\lambda x) - \frac{1}{2} \lambda^{-1} \left[\ln \left| \frac{1}{2} \lambda \right| - c \right] \sin_{+}(\lambda x)$$

$$- \frac{1}{2} \lambda^{-1} \cos(\lambda x) \operatorname{Si}_{+}(2\lambda x)$$

$$+ \frac{1}{2} \lambda^{-1} \sin(\lambda x) \left[\operatorname{Ci}_{+}(2\lambda x) - \ln x_{+} \right]$$
(20)

if $\lambda = \pm \mu$.

PROOF. It is obvious that $Si_+(\lambda x) * sin_+(\mu x) = 0$ if x < 0. If x > 0 and $\lambda \neq \pm \mu$, we have

$$Si_{+}(\lambda x) * sin_{+}(\mu x) = \int_{0}^{x} sin[\mu(x-t)] \int_{0}^{t} u^{-1} sin(\lambda u) du dt$$

$$= \int_{0}^{x} u^{-1} sin(\lambda u) \int_{u}^{x} sin[\mu(x-t)] dt du$$

$$= \mu^{-1} \int_{0}^{x} u^{-1} sin(\lambda u) \{1 - cos[\mu(x-u)]\} du \qquad (21)$$

$$= \mu^{-1} Si(\lambda x) - \mu^{-1} I, \qquad (22)$$

where

$$I = \int_{0}^{x} u^{-1} \sin(\lambda u) \cos[\mu(x-u)] du$$

$$= \cos(\mu x) \int_{0}^{x} u^{-1} \sin(\lambda u) \cos(\mu u) du + \sin(\mu x) \int_{0}^{x} u^{-1} \sin(\lambda u) \sin(\mu u) du$$

$$= \frac{1}{2} \cos(\mu x) \int_{0}^{x} u^{-1} \{ \sin[(\lambda - \mu)u] + \sin[(\lambda + \mu)u] \} du$$

$$+ \frac{1}{2} \sin(\mu x) \int_{0}^{x} u^{-1} \{ \cos[(\lambda - \mu)u] - \cos[(\lambda + \mu)u] \} du$$

$$= \frac{1}{2} \cos(\mu x) \{ \sin[(\lambda - \mu)x] + \sin[(\lambda + \mu)x] \}$$

$$+ \frac{1}{2} \sin(\mu x) \{ \sin[(\lambda - \mu)x] - \sin[(\lambda + \mu)x] + \sin[(\lambda + \mu)u] \} du$$

$$= \frac{1}{2} \cos(\mu x) \{ \sin[(\lambda - \mu)x] - \sin[(\lambda + \mu)x] \} du$$

on using Lemma 2; and (19) follows from (22) and (23).

If $\lambda = \pm \mu$, (21) is replaced by

$$\operatorname{Si}_{+}(\lambda x) * \sin_{+}(\lambda x) = \lambda^{-1} \int_{0}^{x} u^{-1} \sin(\lambda u) \{1 - \cos[\lambda(x - u)]\} du$$

$$= \lambda^{-1} \operatorname{Si}(\lambda x) - \lambda^{-1} J,$$
(24)

where

$$J = \int_0^x u^{-1} \sin(\lambda u) \cos\left[\lambda(x - u)\right] du$$

$$= \frac{1}{2} \cos(\lambda x) \int_0^x u^{-1} \sin(2\lambda u) du - \frac{1}{2} \sin(\lambda x) \int_0^x u^{-1} \left[\cos(2\lambda u) - 1\right] du \qquad (25)$$

$$= \frac{1}{2} \cos(\lambda x) \sin(2\lambda x) + \frac{1}{2} \left[\ln|2\lambda x| - c\right] \sin(\lambda x) - \frac{1}{2} \sin(\lambda x) \operatorname{Ci}(2\lambda x)$$

on using Lemma 2; and (20) follows from (24) and (25).

COROLLARY 6. If $\lambda, \mu \neq 0$, then the convolution $Si_+(\lambda x) * cos_+(\mu x)$ exists and

$$Si_{+}(\lambda x) * cos_{+}(\mu x) = \frac{1}{2}\mu^{-1} sin(\mu x) \{Si_{+}[(\lambda - \mu)x] + Si_{+}[(\lambda + \mu)x]\}$$

$$-\frac{1}{2}\mu^{-1} cos(\mu x) \{Ci_{+}[(\lambda - \mu)x] - Ci_{+}[(\lambda + \mu)x]\}$$

$$-\frac{1}{2}\mu^{-1} ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| cos_{+}(\mu x)$$
(26)

if $\lambda \neq \pm \mu$; and

$$\operatorname{Si}_{+}(\lambda x) * \cos_{+}(\lambda x) = \frac{1}{2} \lambda^{-1} \sin(\lambda x) \operatorname{Si}_{+}(2\lambda x) - \frac{1}{2} \lambda^{-1} \left[\ln \left| \frac{1}{2} \lambda \right| - c \right] \cos_{+}(\lambda x) + \frac{1}{2} \lambda^{-1} \cos(\lambda x) \left[\operatorname{Ci}_{+}(2\lambda x) - \ln x_{+} \right]$$

$$(27)$$

if $\lambda = \pm \mu$.

PROOF. It follows from (4), (11), (16), and (19) that

$$\begin{split} \left[\operatorname{Si}_{+}(\lambda x) * \sin_{+}(\mu x)\right]' &= \mu \operatorname{Si}_{+}(\lambda x) * \cos_{+}(\mu x) \\ &= \mu^{-1} \sin(\lambda x) x_{+}^{-1} - \frac{1}{2} \ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| \cos_{+}(\mu x) \\ &- \frac{1}{2} \cos(\mu x) \left\{ \operatorname{Ci}_{+} \left[(\lambda - \mu) x \right] - \operatorname{Ci}_{+} \left[(\lambda + \mu) x \right] \right\} \\ &- \frac{1}{2} \mu^{-1} \sin(\mu x) \left\{ \cos \left[(\lambda - \mu) x \right] - \cos \left[(\lambda + \mu) x \right] \right\} x_{+}^{-1} \\ &- \frac{1}{2} \mu^{-1} \ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| \sin(\mu x) \delta(x) \\ &+ \frac{1}{2} \sin(\mu x) \left\{ \operatorname{Si}_{+} \left[(\lambda - \mu) x \right] + \operatorname{Si}_{+} \left[(\lambda + \mu) x \right] \right\} \\ &- \frac{1}{2} \mu^{-1} \cos(\mu x) \left\{ \sin \left[(\lambda + \mu) x \right] + \sin \left[(\lambda - \mu) x \right] \right\} x_{+}^{-1} \\ &= -\frac{1}{2} \ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| \cos_{+}(\mu x) \\ &- \frac{1}{2} \cos(\mu x) \left\{ \operatorname{Ci}_{+} \left[(\lambda + \mu) x \right] - \operatorname{Ci}_{+} \left[(\lambda - \mu) x \right] \right\} \\ &+ \frac{1}{2} \sin(\mu x) \left\{ \operatorname{Si}_{+} \left[(\lambda + \mu) x \right] + \operatorname{Si}_{+} \left[(\lambda - \mu) x \right] \right\} \end{split}$$

and (26) follows.

If $\lambda = \pm \mu$, it follows from (4), (11), (16), and (20) that

$$\lambda \operatorname{Si}_{+}(\lambda x) * \cos_{+}(\lambda x) = \lambda^{-1} \sin(\lambda x) x_{+}^{-1} - \frac{1}{2} \left[\ln \left| \frac{1}{2} \lambda \right| - c \right] \cos_{+}(\lambda x)$$

$$+ \frac{1}{2} \sin(\lambda x) \operatorname{Si}_{+}(2\lambda x) - \frac{1}{2} \lambda^{-1} \cos(\lambda x) \sin(2\lambda x) x_{+}^{-1}$$

$$+ \frac{1}{2} \cos(\lambda x) \left[\operatorname{Ci}_{+}(2\lambda x) - \ln x_{+} \right]$$

$$+ \frac{1}{2} \lambda^{-1} \sin(\lambda x) \left[\cos(2\lambda x) - 1 \right] x_{+}^{-1}$$

$$= -\frac{1}{2} \left[\ln \left| \frac{1}{2} \lambda \right| - c \right] \cos_{+}(\lambda x) + \frac{1}{2} \sin(\lambda x) \operatorname{Si}_{+}(2\lambda x)$$

$$+ \frac{1}{2} \cos(\lambda x) \left[\operatorname{Ci}_{+}(2\lambda x) - \ln x_{+} \right]$$

$$(29)$$

and (27) follows.

COROLLARY 7. If $\lambda, \mu \neq 0$, then the convolutions $Si_{-}(\lambda x) * sin_{-}(\mu x)$ and $Si_{-}(\lambda x) *$ $\cos_{-}(\mu x)$ exist and

$$\begin{aligned} \mathrm{Si}_{-}(\lambda x) * \sin_{-}(\mu x) &= \frac{1}{2} \mu^{-1} \sin(\mu x) \left\{ \mathrm{Ci}_{-} \left[(\lambda - \mu) x \right] - \mathrm{Ci}_{-} \left[(\lambda + \mu) x \right] \right\} \\ &- \mu^{-1} \mathrm{Si}_{-}(\lambda x) + \frac{1}{2} \mu^{-1} \cos(\mu x) \left\{ \mathrm{Si}_{-} \left[(\lambda - \mu) x \right] + \mathrm{Si}_{-} \left[(\lambda + \mu) x \right] \right\} \\ &+ \frac{1}{2} \mu^{-1} \ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| \sin_{-}(\mu x), \end{aligned}$$

(30)

$$Si_{-}(\lambda x) * cos_{-}(\mu x) = -\frac{1}{2}\mu^{-1}\sin(\mu x) \left\{ Si_{-}[(\lambda - \mu)x] + Si_{-}[(\lambda + \mu)x] \right\}$$

$$+ \frac{1}{2}\mu^{-1}\cos(\mu x) \left\{ Ci_{-}[(\lambda - \mu)x] - Ci_{-}[(\lambda + \mu)x] \right\}$$

$$+ \frac{1}{2}\mu^{-1}\ln\left|\frac{\lambda + \mu}{\lambda - \mu}\right| \sin_{-}(\mu x)$$
(31)

if $\lambda \neq \pm \mu$; and

$$\operatorname{Si}_{-}(\lambda x) * \sin_{-}(\lambda x) = -\lambda^{-1} \operatorname{Si}_{-}(\lambda x) + \frac{1}{2} \lambda^{-1} \left[\ln \left| \frac{1}{2} \lambda \right| - c \right] \sin_{-}(\lambda x)$$

$$+ \frac{1}{2} \lambda^{-1} \cos(\lambda x) \operatorname{Si}_{-}(2\lambda x)$$

$$- \frac{1}{2} \lambda^{-1} \sin(\lambda x) \left[\operatorname{Ci}_{-}(2\lambda x) - \ln x_{-} \right],$$
(32)

$$Si_{-}(\lambda x) * cos_{-}(\lambda x) = -\frac{1}{2}\lambda^{-1}\sin(\lambda x)Si_{-}(2\lambda x) + \frac{1}{2}\lambda^{-1}\left[\ln\left|\frac{1}{2}\lambda\right| - c\right]cos_{-}(\lambda x)$$

$$-\frac{1}{2}\lambda^{-1}\cos(\lambda x)\left[Ci_{-}(2\lambda x) - \ln x_{-}\right]$$
(33)

if $\lambda = \pm \mu$.

PROOF. Equations (30) and (31) follow on replacing x by -x in (19) and (26), respectively. Equations (32) and (33) follow on replacing x by -x in (20) and (27), respectively.

Definition 4 of the convolution is rather restrictive and so a neutrix convolution was introduced in [2]. In order to define the neutrix convolution we, first of all, let τ be a function in $\mathfrak D$ satisfying the following properties:

- (i) $\tau(x) = \tau(-x)$,
- (ii) $0 \le \tau(x) \le 1$,
- (iii) $\tau(x) = 1$ for $|x| \le 1/2$,
- (iv) $\tau(x) = 0$ for $|x| \ge 1$.

The function τ_{ν} is now defined by

$$\tau_{\nu}(x) = \begin{cases}
1, & |x| \le \nu, \\
\tau(\nu^{\nu}x - \nu^{\nu+1}), & x > \nu, \\
\tau(\nu^{\nu}x + \nu^{\nu+1}), & x < -\nu,
\end{cases}$$
(34)

for
$$v > 0$$
.

The following definition of the neutrix convolution was given in [2].

DEFINITION 8. Let f and g be distributions in \mathfrak{D}' and let $f_{\nu} = f\tau_{\nu}$ for $\nu > 0$. Then the *neutrix convolution* $f \otimes g$ is defined as the neutrix limit of the sequence $\{f_{\nu} * g\}$, provided that the limit h exists in the sense that

$$N - \lim_{\nu \to \infty} \langle f_{\nu} * g, \varphi \rangle = \langle h, \varphi \rangle, \tag{35}$$

for all φ in \mathfrak{D} , where N is the neutrix (see van der Corput [7]), having domain N' the positive reals, range N'' the real numbers and with negligible functions finite linear sums of the functions

$$v^{\lambda} \ln^{r-1} v$$
, $\ln^r v$, $(\lambda \neq 0, r = 1, 2, ...)$ (36)

and all functions which converge to zero in the usual sense as ν tends to infinity.

Note that in this definition, the convolution $f_{\nu} * g$ is defined in Gel'fand's and Shilov's sense, the distribution f_{ν} having bounded support.

It is easily seen that any results proved with the original definition hold with the new definition. The following theorem (proved in [2]) therefore holds, showing that the neutrix convolution is a generalization of the convolution.

THEOREM 9. Let f and g be distributions in \mathfrak{D}' satisfying either condition (a) or condition (b) of Definition 4 (Gel'fand's and Shilov's [5]). Then the neutrix convolution $f \otimes g$ exists and

$$f \circledast g = f * g. \tag{37}$$

The next theorem was also proved in [2].

THEOREM 10. Let f and g be distributions in \mathfrak{D}' and suppose that the neutrix convolution $f \cdot g$ exists. Then the neutrix convolution $f \cdot g$ exists and

$$(f \otimes g)' = f \otimes g'. \tag{38}$$

Note, however, that the neutrix convolution $(f \otimes g)'$ is not necessarily equal to $f' \otimes g$.

We now increase the set of negligible functions given here to include finite linear sums of the functions

$$\cos(\lambda \nu)$$
, $\sin(\lambda \nu)$, $(\lambda \neq 0)$. (39)

THEOREM 11. If $\lambda, \mu \neq 0$, then the neutrix convolution $Si_+(\lambda x) \otimes sin(\mu x)$ exists and

$$\operatorname{Si}_{+}(\lambda x) \otimes \sin(\mu x) = -\frac{1}{4}\mu^{-1} \left[\operatorname{sgn}(\lambda + \mu) + \operatorname{sgn}(\lambda - \mu)\right] \pi \cos(\mu x)$$

$$-\frac{1}{2}\mu^{-1} \ln \left|\frac{\lambda + \mu}{\lambda - \mu}\right| \sin(\mu x)$$
(40)

if $\lambda \neq \pm \mu$; and

$$\operatorname{Si}_{+}(\lambda x) \otimes \sin(\lambda x) = -\frac{1}{4}\lambda^{-1}\operatorname{sgn}\lambda \cdot \pi \cos(\lambda x) + \frac{1}{2}\lambda^{-1}[c - \ln|2\lambda|]\sin(\lambda x)$$

$$(41)$$

if $\lambda = \pm \mu$.

PROOF. We put $[Si_+(\lambda x)]_{\nu} = Si_+(\lambda x)\tau_{\nu}(x)$. Then the convolution $[Si_+(\lambda x)]_{\nu} * sin(\mu x)$ exists by Definition 3 and

$$[\operatorname{Si}_{+}(\lambda x)]_{\nu} * \sin(\mu x) = \int_{0}^{\nu} \operatorname{Si}_{+}(\lambda t) \sin[\mu(x-t)] dt$$

$$+ \int_{\nu}^{\nu+\nu^{-\nu}} \operatorname{Si}_{+}(\lambda t) \sin[\mu(x-t)] \tau_{\nu}(t) dt$$

$$= I_{1} + I_{2}, \tag{42}$$

where it is easily seen that

$$\lim_{n \to \infty} I_2 = 0. \tag{43}$$

Further,

$$I_{1} = \int_{0}^{\nu} u^{-1} \sin(\lambda u) \int_{u}^{\nu} \sin[\mu(x-t)] dt du$$

$$= \mu^{-1} \int_{0}^{\nu} u^{-1} \sin(\lambda u) \{\cos[\mu(x-\nu)] - \cos[\mu(x-u)]\} du$$

$$= \mu^{-1} \cos[\mu(x-\nu)] \operatorname{Si}(\lambda \nu)$$

$$- \frac{1}{2} \mu^{-1} \cos(\mu x) \int_{0}^{\nu} u^{-1} \{\sin[(\lambda + \mu)u] + \sin[(\lambda - \mu)u]\} du$$

$$+ \frac{1}{2} \mu^{-1} \sin(\mu x) \int_{0}^{\nu} u^{-1} \{\cos[(\lambda + \mu)u] - \cos[(\lambda - \mu)u]\} du$$

$$= \mu^{-1} \cos[\mu(x-\nu)] \operatorname{Si}(\lambda \nu) - \frac{1}{2} \mu^{-1} \cos(\mu x) \{\operatorname{Si}[(\lambda + \mu)\nu] + \operatorname{Si}[(\lambda - \mu)\nu]\}$$

$$+ \frac{1}{2} \mu^{-1} \sin(\mu x) \left\{ \operatorname{Ci}[(\lambda + \mu)\nu] - \operatorname{Ci}[(\lambda - \mu)\nu] - \ln\left|\frac{\lambda + \mu}{\lambda - \mu}\right| \right\}$$

on using Lemma 2. It follows that

$$N_{\nu \to \infty}^{-\lim} I_1 = -\frac{1}{4} \mu^{-1} \left[\operatorname{sgn}(\lambda + \mu) + \operatorname{sgn}(\lambda - \mu) \right] \pi \cos(\mu x) - \frac{1}{2} \mu^{-1} \ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| \sin(\mu x)$$
(45)

on using Lemma 1. Equation (40) now follows from (42), (43), and (45) . If $\lambda = \pm \mu$, we have

$$[\operatorname{Si}_{+}(\lambda x)]_{\nu} * \sin(\lambda x) = \int_{0}^{\nu} \operatorname{Si}_{+}(\lambda t) \sin[\lambda(x-t)] dt + \int_{\nu}^{\nu+\nu^{-\nu}} \operatorname{Si}_{+}(\lambda t) \sin[\lambda(x-t)] \tau_{\nu}(t) dt$$

$$= J_{1} + J_{2}, \tag{46}$$

where it is easily seen that

$$\lim_{n \to \infty} J_2 = 0. \tag{47}$$

Further,

$$J_{1} = \int_{0}^{\nu} u^{-1} \sin(\lambda u) \int_{u}^{\nu} \sin[\lambda(x-t)] dt du$$

$$= \lambda^{-1} \int_{0}^{\nu} u^{-1} \sin(\lambda u) \{\cos[\lambda(x-\nu)] - \cos[\lambda(x-u)]\} du$$

$$= \lambda^{-1} \cos[\lambda(x-\nu)] \operatorname{Si}(\lambda \nu)$$

$$- \frac{1}{2} \lambda^{-1} \cos(\lambda x) \int_{0}^{\nu} u^{-1} \sin(2\lambda u) du$$

$$+ \frac{1}{2} \lambda^{-1} \sin(\lambda x) \int_{0}^{\nu} u^{-1} [\cos(2\lambda u) - 1] du$$

$$= \lambda^{-1} \cos[\lambda(x-\nu)] \operatorname{Si}(\lambda \nu) - \frac{1}{2} \lambda^{-1} \cos(\lambda x) \operatorname{Si}(2\lambda \nu)$$

$$+ \frac{1}{2} \lambda^{-1} \sin(\lambda x) [c + \operatorname{Ci}(2\lambda \nu) - \ln|2\lambda \nu|]$$
(48)

on using Lemma 2. It follows that

$$N_{\substack{\nu \to \infty \\ \nu \to \infty}} J_1 = -\frac{1}{4} \lambda^{-1} \operatorname{sgn} \lambda \cdot \pi \cos(\lambda x) + \frac{1}{2} \lambda^{-1} [c - \ln|2\lambda|] \sin(\lambda x)$$
 (49)

on using Lemma 1. Equation (41) now follows from (46), (47), and (49). \Box

COROLLARY 12. If $\lambda, \mu \neq 0$, then the neutrix convolution $Si_+(\lambda x) \otimes cos(\mu x)$ exists and

$$\operatorname{Si}_{+}(\lambda x) \otimes \cos(\mu x) = \frac{1}{4} \pi \mu^{-1} \left[\operatorname{sgn}(\lambda + \mu) + \operatorname{sgn}(\lambda - \mu) \right] \sin(\mu x)$$

$$- \frac{1}{2} \mu^{-1} \ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| \cos(\mu x)$$
(50)

if $\lambda \neq \pm \mu$; and

$$\operatorname{Si}_{+}(\lambda x) \otimes \cos(\lambda x) = \frac{1}{4} \lambda^{-1} \operatorname{sgn} \lambda \cdot \pi \sin(\lambda x) + \frac{1}{2} \lambda^{-1} [c - \ln|2\lambda|] \cos(\lambda x) \tag{51}$$

if $\lambda = \pm \mu$.

PROOF. It follows from (38) and (40) that

$$\begin{aligned} \left[\operatorname{Si}_{+}(\lambda x) \otimes \sin(\mu x)\right]' &= \mu \operatorname{Si}_{+}(\lambda x) \otimes \cos(\mu x) \\ &= \frac{1}{4} \pi \left[\operatorname{sgn}(\lambda + \mu) + \operatorname{sgn}(\lambda - \mu)\right] \sin(\mu x) \\ &- \frac{1}{2} \ln \left|\frac{\lambda + \mu}{\lambda - \mu}\right| \cos(\mu x) \end{aligned}$$
(52)

and (50) follows.

If $\lambda = \pm \mu$, it follows from (38) and (41) that

$$\lambda \operatorname{Si}_{+}(\lambda x) \otimes \cos(\lambda x) = \frac{1}{4} \operatorname{sgn} \lambda \cdot \pi \sin(\lambda x) + \frac{1}{2} \left[c - \ln|2\lambda| \right] \cos(\lambda x) \tag{53}$$

and (51) follows.

COROLLARY 13. If $\lambda, \mu \neq 0$, then the neutrix convolutions $Si_{-}(\lambda x) \otimes sin(\mu x)$ and $Si_{-}(\lambda x) \otimes cos(\mu x)$ exist and

$$\operatorname{Si}_{-}(\lambda x) \otimes \sin(\mu x) = -\frac{1}{4}\pi\mu^{-1} \left[\operatorname{sgn}(\lambda + \mu) + \operatorname{sgn}(\lambda - \mu)\right] \cos(\mu x) + \frac{1}{2}\mu^{-1} \ln \left|\frac{\lambda + \mu}{\lambda - \mu}\right| \sin(\mu x),$$
(54)

$$\operatorname{Si}_{-}(\lambda x) \otimes \cos(\mu x) = \frac{1}{4} \pi \mu^{-1} \left[\operatorname{sgn}(\lambda + \mu) + \operatorname{sgn}(\lambda - \mu) \right] \sin(\mu x)$$

$$+ \frac{1}{2} \mu^{-1} \ln \left| \frac{\lambda + \mu}{\lambda - \mu} \right| \cos(\mu x)$$
(55)

if $\lambda \neq \pm \mu$; and

$$\operatorname{Si}_{-}(\lambda x) \otimes \sin(\lambda x) = \frac{1}{4} \lambda^{-1} \operatorname{sgn} \lambda \cdot \pi \cos(\lambda x) - \frac{1}{2} \lambda^{-1} [c - \ln|2\lambda|] \sin(\lambda x),$$

$$\operatorname{Si}_{-}(\lambda x) \otimes \cos(\lambda x) = \frac{1}{4} \lambda^{-1} \operatorname{sgn} \lambda \cdot \pi \sin(\lambda x) - \frac{1}{2} \lambda^{-1} [c - \ln|2\lambda|] \cos(\lambda x)$$
(56)

if $\lambda = \pm \mu$.

PROOF. Equations (54) and (55) follow on replacing x by -x in (40) and (50), respectively; and (56) follow on replacing x by -x in (41) and (51), respectively.

The final neutrix convolutions follow easily from the above results:

$$\operatorname{Si}(\lambda x) \otimes \sin(\mu x) = 0, \quad \operatorname{Si}(\lambda x) \otimes \cos(\mu x) = 0$$
 (57)

if $\lambda \neq \pm \mu$; and

$$\operatorname{Si}(\lambda x) \otimes \sin(\lambda x) = 0, \quad \operatorname{Si}(\lambda x) \otimes \cos(\lambda x) = 0$$
 (58)

if $\lambda = \pm \mu$.

REFERENCES

- [1] F. Al Sirehy and B. Fisher, On the sine integral, J. Nat. Sci. Math. 39 (1999), no. 2, 123-139.
- [2] B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17 (1987), no. 1, 119–135.
- [3] B. Fisher and F. Al-Sirehy, On the cosine integral, Integral Transform. Spec. Funct. 8 (1999), no. 1-2, 31-42.
- [4] B. Fisher and C. K. Li, On the cosine and sine integrals, Int. J. Appl. Math. 7 (2001), no. 4, 419-437.
- [5] I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. I: Properties and Operations, Academic Press, New York, 1964.

- [6] I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry, Oliver and Boyd, London, 1956.
- [7] J. G. Van der Corput, *Introduction to the neutrix calculus*, J. Analyse Math. 7 (1959/1960), 281–399.

BRIAN FISHER: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, LEICESTER UNIVERSITY, LEICESTER, LEI 7RH, ENGLAND

Current address: Department of Mathematical Sciences, Faculty of Computer Sciences and Engineering, De Montfort University, The Gateway, Leicester, LE1 9BH, England

E-mail address: fbr@le.ac.uk

FATMA AL-SIREHY: KING ABDULAZIZ UNIVERSITY, P.O. BOX 32477, JEDDAH, SAUDI ARABIA *E-mail address*: fatma2@email.com