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ON THE SINE INTEGRAL AND THE CONVOLUTION
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The sine integral Si(Ax) and the cosine integral Ci(Ax) and their associated functions
Siy (Ax), Si—(Ax), Ciy (Ax), Ci— (Ax) are defined as locally summable functions on the real
line. Some convolutions of these functions and sin(ux), sin. (ux), and sin_ (ux) are found.
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The sine integral Si(x) is defined by
X
J u'sinudu, (1)
0

(see Sneddon [6]). This integral is convergent for all x. More generally, for all A # 0,
we define Si(Ax) by
Ax

Si(Ax) = J

X
u lsinudu = J u tsin(Au)du; (2)
0 0

and we define Si, (Ax) and Si_(Ax) by
Siy (Ax) = H(x)Si(Ax), Si_(Ax) = H(—x)Si(Ax), (3)

(see [1]).
It is easily proved that

[Si, (Ax)] = sin(Ax)x;'. 4)

We need the following lemma which was proved in [1].

LEMMA 1. IfA =+ 0, then

J u lsin(Au)du = %sgn?\-n. (5)
0

The cosine integral Ci(x) is defined for x > 0 by

Ci(x) = —J ulcosudu, (6)
X
(see Sneddon [6]). This integral is divergent for x < 0; but in [3], Ci(Ax) was defined
as a locally summable function on the real line by

00

Ci(Ax) = —J ufcosu-H(l-u)]du+H(1l-Ax)In|Ax]|, (7)

Ax
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where H denotes Heaviside’s function. In particular,

00

Ci(x):—J ufcosu—H(1—u)]du+H(1-x)In|x|. (8)

X

It was proved in [4] that the cosine integral is an even function. We can therefore
define Ci(Ax) by

00 00

ulcosudu = —J ulcos(Au)du, A,x =0, 9)
[x]

Ci(Ax) = — Jl

Ax|

simplifying the definition given in [3].
The locally summable functions Ci; (Ax) and Ci- (Ax) are now defined for A = 0 by

Cii (Ax) =H(x)Ci(Ax), Ci_(Ax) =H(—x)Ci(Ax). (10)
It was proved in [3] that
[Ci (Ax)]" = cos(Ax)x;! — (¢ —In|A])S(x), (11)
where
C:J:u‘l[cosu—H(l—u)]du. (12)

We also need the following lemma which was also proved in [4].

LEMMA 2. Ifx > 0, then

X
J u~ ' cos(Au) —1]du = c +Ci(Ax) —In|Ax|. (13)
0

The classical definition of the convolution of two functions f and g is as follows.
DEFINITION 3. Let f and g be functions. Then the convolution f * g is defined by
(Fra0 = [ fogx-var, a4
for all points x for which the integral exists.
It follows easily from the definition that if f * g exists then g x f exists and
f*g=gx*f, (15)
and if (f*xg) and f* g’ (or f’ * g) exists, then
(f*g) =f*g'(or f'*g). (16)

Definition 3 can be extended to define the convolution f * g of two distributions f
and g in 9" with the following definition, see Gel’fand and Shilov [5].
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DEFINITION 4. Let f and g be distributions in @’. Then the convolution f x g is
defined by the equation

(f*xg)(x), ) ={(f(¥),(g(x),p(x+))) (17)

for arbitrary ¢ in &, provided that f and g satisfy either of the following conditions:

(a) either f or g has bounded support,

(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f x g exists by this definition then (15) and (16)
are satisfied.

In the following, the locally summable functions sin. (Ax) and cos.(Ax) are de-
fined by

sin, (Ax) = H(x)sin(Ax), sin_ (Ax) = H(—x) sin(Ax),

18
cos, (Ax) = H(x) cos(Ax), cos_(Ax) = H(—x) cos(Ax). (1%

THEOREM 5. If A,u + 0, then the convolution Si, (Ax) * sin, (ux) exists and

Si, (Ax) *sin, (ux) = —%u’l sin(ux){Ciy [(A—p)x] - Ciy [(A+p)x]}

+u Sy (Ax) — %u’l cos(ux){Siy [(A—p)x]+Siy [(A+p)x]}

1 ‘A+u .
2” In 77\—11 sin, (ux)
(19)
if A + =u; and
) ) s 1., 1 .
Siy (Ax) xsin. (Ax) = A Sl+(2\x)—§?\ In E)\ —c | siny (Ax)
—%A’lcos(Ax)Sh(ZAx) (20)

+ %7\’1 sin(Ax)[ Ciy (2Ax) —Inx, |

ifA==u.

PROOF. It is obvious that Si; (Ax) *sin, (ux) =0if x <0.If x > 0 and A = +u, we
have

X t
Si. (Ax) * sin, (ux) :J sin[u(x—t)]J u lsin(Au)dudt
0 0

X X
:J u’lsin(Au)J sin[u(x —t)]dtdu
0 u

:uflj:uflsin(i\u){l—cos[u(x—u)]}du (21)

=p 1 Si(Ax) —pu ', (22)
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where

I= J:u‘l sin(Au) cos [u(x —u)]du

X X
= cos(ux) J u 'sin(Au) cos(pu)du + sin(px) J u'sin(Au) sin(uu)du
0 0

_1 cos(ux) un’l{sin[(i\fu)u] +sin[(A+p)ultdu
’ 0 23)

1 sin(ux) J:u‘l {cos[(A—p)u]—cos[(A+p)ultdu

1 . .
Ecos(ux){&[(?\—u)x] +Si[(A+u)x]}
+%sin(ux){Ci[(/\—u)x] Ci[(A+p)x] +ln’ o H»
on using Lemma 2; and (19) follows from (22) and (23).

If A = +pu, (21) is replaced by

Si, (Ax) ksing (Ax) =A~! JX u~lsin(Au) {1 —cos[A(x —u)]}du
0 (24)

=A"1Si(Ax)—A"1),

where

J= JX u~lsin(Au) cos[A(x —u)]du

0
cos(2Au) —1]du (25)

% os(Ax)J “lsin(2Au)du — lsm(?\x)J
= %COS(AX) Si(2Ax) + = [ln [2Ax| —c]sin(Ax) — E sin(Ax) Ci(2Ax)
O

on using Lemma 2; and (20) follows from (24) and (25).

COROLLARY 6. If A,u = 0, then the convolution Si. (Ax) * cos, (ux) exists and

Siy (Ax) * cosy (ux) = =p~tsin(ux) {Siy [(A —p)x] +Siy [(A+pu)x]}

ptcos(ux) {Ciy [(A—p)x]-Ci. [A+mx]}  (26)

2
14 ‘2‘“"
2u In A—p cos, (ux)

if A+ =u; and

Si. (Ax) % coss (Ax) = %A‘lsin()\x)Sh(Z?\x)—%)\‘ [ ‘27\‘ —c]cosm\x)
(27)

+ %?\‘1 cos(Ax)[Ciy (2Ax) —Inx. |

ifA==u.
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PROOF. It follows from (4), (11), (16), and (19) that

[Siy (Ax)*sin, (ux)] = uSi; (Ax) * cos, (ux)

=utsin(Ax)x;! - —1

/\ ‘ cos (ux)

- %cos(ux){Ci+ [(A=p)x]-Ciy [(A+u)x]}

- %u‘l sin(ux){cos[(A—pu)x] —cos[(A+pu)x]}xi!

1

_ A+ul| .
_ =1 arr
2u ln‘)\_“ sin(ux)o(x)

1 (28)
+5 sin(ux){Si; [(A—p)x]+Siy [(A+u)x]}
- %u’l cos(ux){sin[(A+pu)x]+sin[(A—p)x]}x;?

1
=—pn '

g ‘ COoS4 (Ux)

- %cos(ux){Ci+ [(A+p)x]-Ciy [(A—p)x]}

+ % sin(ux){Si; [(A+u)x]+Siy [(A—p)x]}

and (26) follows.
If A = xp, it follows from (4), (11), (16), and (20) that

ASi, (Ax) % cos: (Ax) = A~ tsin(Ax)x7! - % [ln ‘ %)\ —c] cos. (Ax)

+ % sin(Ax) Siy (2Ax) — %A’l cos(Ax) sin(2Ax)x;t

+ = cos(Ax)[Ciy (2Ax) —Inx. |

—

(29)

— N

+§A—1sin(2\x)[cos(22\x)—1]x-1
[ ‘22\’ —C] cos+(2\x)+—sm(/\x)51+(22\x)
+%cos(Ax)[Ci+(22\x)—lnx+]

and (27) follows. O

COROLLARY 7. IfA,u + 0, then the convolutions Si_ (Ax) xsin_ (ux) and Si_ (Ax) *
cos_ (ux) exist and

Si_(Ax)*xsin_(ux) = %u‘l sin(ux){Ci_ [(A-—p)x]-Ci_ [(A+pu)x]}

—uiSio(Ax) + %u’l cos(ux) {Si- [(A—p)x]+Si- [(A+p)x]}

A+l .
‘ A sin_ (ux),

+%u‘1ln
(30)



370 B. FISHER AND F. AL-SIREHY

Si_(Ax) *xcos_(ux) = flu’lsin(ux){Si_ [(A=p)x]+Si- [(A+p)x]}

2
+%u’ICOS(MX){Ci—[(Afu)X]*Ci-[(Mu)X]} (31)
1 A
+ Eu‘lln ‘ ﬁ ’ sin_ (ux)

if A+ xu; and
. . e 1, 1 .
Si_(Ax)*ksin_(Ax) = -A Sl,(Ax)+§/\ In Ez\ —c|sin_(Ax)
+%/\‘1cos()\x)Si,(2/\x) (32)

- %/\“ sin(Ax)[Ci_(2Ax) —Inx_],

Si_ (Ax) *cos_(Ax) = —%A’l sin(Ax) Si_ (2Ax) + %A’l [ln ‘ %/\‘ —c] cos_(Ax)
. (33)
- E/\‘lcos()\x)[Ci, (2Ax) —Inx_]

ifA==u.

PrROOF. Equations (30) and (31) follow on replacing x by —x in (19) and (26),
respectively. Equations (32) and (33) follow on replacing x by —x in (20) and (27),
respectively.

Definition 4 of the convolution is rather restrictive and so a neutrix convolution
was introduced in [2]. In order to define the neutrix convolution we, first of all, let T
be a function in & satisfying the following properties:

i) T(x)=1(-x),
() 0=s1(x) =<1,
(iii) T(x)=1for x| <1/2,
@iv) T(x) =0 for |x| = 1.
The function T, is now defined by

1, x| <v,
() =4T(vWx-vt), x>v, (34)
T(VWx+vV*Hh), x < -v,
for v > 0. O
The following definition of the neutrix convolution was given in [2].

DEFINITION 8. Let f and g be distributions in &’ and let f, = fT, for v > 0. Then
the neutrix convolution f ® g is defined as the neutrix limit of the sequence {f, x g},
provided that the limit h exists in the sense that

N-—-lim (f, *g,9) = (h,@), (35)
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for all @ in %, where N is the neutrix (see van der Corput [7]), having domain N’ the
positive reals, range N’’ the real numbers and with negligible functions finite linear
sums of the functions

vim™lv, In"v, (A#0,r=12,...) (36)
and all functions which converge to zero in the usual sense as v tends to infinity.

Note that in this definition, the convolution f, * g is defined in Gel'fand’s and
Shilov’s sense, the distribution f, having bounded support.

It is easily seen that any results proved with the original definition hold with the
new definition. The following theorem (proved in [2]) therefore holds, showing that
the neutrix convolution is a generalization of the convolution.

THEOREM 9. Let f and g be distributions in 9’ satisfying either condition (a) or
condition (b) of Definition 4 (Gel’fand’s and Shilov’s [5]). Then the neutrix convolution
f®g exists and

feg=fxg. (37)
The next theorem was also proved in [2].

THEOREM 10. Let f and g be distributions in %' and suppose that the neutrix con-
volution f ® g exists. Then the neutrix convolution f ® g’ exists and

(feg) =feg'. (38)
Note, however, that the neutrix convolution (f ® g)’ is not necessarily equal to
freg.
We now increase the set of negligible functions given here to include finite linear
sums of the functions

cos(Av), sin(Av), (A=0). (39)

THEOREM 11. If A, u =+ 0, then the neutrix convolution Si, (Ax) ® sin(ux) exists and

Si, (Ax) ®sin(ux) = — 1 u [ sgn(A+p) +sgn(A — ) | cos (ux)

4
1 A+ 40)
i m [ A T g
2;1 ln’)\_u sin(ux)
if A+ =u; and
Si, (Ax) @sin(Ax) = —%/\’1 sgnA - 7T cos(Ax)
(41)

+ %)\‘1 [c—In|2A|]sin(Ax)

ifA==u.
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PROOF. We put [Si; (Ax)], = Si; (Ax)T,(x). Then the convolution [Si; (Ax)], *
sin(ux) exists by Definition 3 and

[Siy(Ax)], *sin(ux) = LV Si, (At)sin[u(x —t)]dt

+J(:+V7v Siy (At)sin[u(x —t)]Ty (t)dt (42)
=1 +1>,
where it is easily seen that
11115101012 =0. (43)

Further,
I = JV sm()\u)J sin[u(x—t)]dtdu
=y f “tsin(Au) {cos[u(x—v)] —cos[u(x—u)]}du
=pu~tcos[u(x—v)]Si(Av)
_%uflcos(ux)Jovufl{sin[wwu)u]+sm[<A—u)u]}du 4a)
+%u’lsin(umLvu’l{COS[(Mu)u]*COS[(?\fu)u]}du

=utcos[u(x—v)]Si(Av) — %u’lcos(ux){Si[(A+u)v] +Si[(A—p)v]}

1 A
+§u’1sin(ux){Ci[(A+u)v] Ci[(A—p)v]-In 2\+Z }

on using Lemma 2. It follows that

N-limI; = flu’l[sgn(AJru)+sgn(2\7u)]1'rcos(ux)flu’lln Atz sin(ux)

V—oo 4 2 A
(45)
on using Lemma 1. Equation (40) now follows from (42), (43), and (45) .
If A = +u, we have
4
[Sis (Ax)], *sin(Ax) = J Siy (At)sin[A(x —t)]dt
0
v+vV
+J Si. (Af) sin [A(x — ) |7 (£)dt (46)
v

=J1+J2
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where it is easily seen that

lim J, = 0.

n—oo

Further,

\4

T = Jvu’lsin(Au)J sin[A(x—t)]dtdu

0 u
=A"! J;u‘] sin(Au){cos[A(x —v)] —cos[A(x —u)]}du
=Atcos[A(x—Vv)]Si(Av)

v
—%A‘lcos(AX)J u~'sin(2Au)du
0
1 v
+§2\’1sin(Ax)J u~ ! cos(2Au) —1]du
0
=A‘lcos[/\(x—v)]Si(/\v)—%/\‘lcos()\x)Si(Mv)

+ %)\‘1 sin(Ax)[c+Ci(2Av) —In|2Av]]
on using Lemma 2. It follows that
N\:lim]l = —%A‘l sgnA - 1 cos(Ax) + %)\‘1 [c—1n|2A[]sin(Ax)

on using Lemma 1. Equation (41) now follows from (46), (47), and (49).

373

(47)

(48)

(49)

a

COROLLARY 12. If A,u + 0, then the neutrix convolution Si, (Ax) ® cos(ux) exists

and
Sii (Ax) ®cos(ux) = %Tru‘l[sgn(AJru) +sgn(A—pu)]sin(ux)
- %u‘lln ‘ H ’ cos(ux)
if A+ =u; and
Si, (Ax) ®cos(Ax) = %A’l sgnA - rsin(Ax) + %A’l[c—lnIZAl]cos(Ax)
ifA==u.

PROOF. It follows from (38) and (40) that

[Si, (Ax) @sin(ux)] = uSi, (Ax) ® cos(ux)

= %W[ sgn(A + p) +sgn(A — )| sin(ux)

1 A+pu
_Eln’Af

cos(ux)

and (50) follows.

(50)

(51)

(52)
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If A = +p, it follows from (38) and (41) that
ASiL (Ax) ®cos(Ax) = %sgn?\ 1T sin(Ax) + % [c —In|2A]] cos(Ax) (53)

and (51) follows. O

COROLLARY 13. If A,u + 0, then the neutrix convolutions Si_ (Ax) ® sin(ux) and
Si_(Ax)®cos(ux) exist and

Si_(Ax)®sin(ux) = —%ﬂu_l [sgn(A+p) +sgn(A—p)]cos(ux)

(54)
+ 1 “ln ‘ A+p sin(ux)
oM A—u ’
Si_(Ax)®cos(ux) = iTT/J_l [sgn(A+pu) +sgn(A—p)]sin(ux)
55
+l _1IH‘M‘COS( x) )
o A H
if A = +u; and
Si_(Ax) ®sin(Ax) = %?\‘1 sgnA - 71 cos(Ax) — %/\‘1 [c—In|2A|]sin(Ax),
1 1 (56)
Si_(Ax) ®cos(Ax) = ZNI sgnA - rsin(Ax) — EA’l [c—1In|2A|] cos(Ax)
ifA==u.
PROOF. Equations (54) and (55) follow on replacing x by —x in (40) and (50), re-
spectively; and (56) follow on replacing x by —x in (41) and (51), respectively. a
The final neutrix convolutions follow easily from the above results:
Si(Ax)®sin(ux) =0, Si(Ax)®cos(ux) =0 (57)
if A = +u; and
Si(Ax) ®sin(Ax) =0, Si(Ax)®cos(Ax) =0 (58)
if A==+p.
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