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1. Introduction. Recently, Ume [3] improved the fixed point theorems in a com-

plete metric space using the concept of w-distance, introduced by Kada, Suzuki, and

Takahashi [2], and more general contractive mappings than quasi-contractive map-

pings.

In this paper, using the concept of w-distance, we first prove common fixed point

theorems for multivalued mappings in complete metric spaces, then these theorems

are used to improve Ćirić’s fixed point theorem [1], Kada-Suzuki-Takahashi’s fixed

point theorem [2], and Ume’s fixed point theorem [3].

2. Preliminaries. Throughout, we denote by N the set of all positive integers and

by R the set of all real numbers.

Definition 2.1 (see [2]). Let (X,d) be a metric space, then a function p : X×X →
[0,∞) is called a w-distance on X if the following are satisfied:

(1) p(x,z)≤ p(x,y)+p(y,z) for all x,y,z ∈X;

(2) for any x ∈X, p(x,·) :X → [0,∞) is lower semicontinuous;

(3) for any ε > 0, there exists δ > 0 such that p(z,x) ≤ δ and p(z,y) ≤ δ imply

d(x,y)≤ ε.
Definition 2.2. Let (X,d) be a metric space with a w-distance p, then

(1) for any x ∈ X and A ⊆ X, d(x,A) := inf{d(x,y) : y ∈ A} and d(A,x) :=
inf{d(y,x) :y ∈A};

(2) for any x ∈ X and A ⊆ X, p(x,A) := inf{p(x,y) : y ∈ A} and p(A,x) :=
inf{p(y,x) :y ∈A};

(3) for any A,B ⊆X, p(A,B) := inf{p(x,y) : x ∈A, y ∈ B};
(4) CBp(X)= {A |A is nonempty closed subset of X and supx,y∈Ap(x,y) <∞}.
The following lemmas are fundamental.

Lemma 2.3 (see [2]). Let X be a metric space with a metric d, let p be a w-distance

on X. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be sequences in [0,∞)
converging to 0, and let x,y,z ∈X. Then the following hold:
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(1) if p(xn,y) ≤ αn and p(xn,z) ≤ βn for any n ∈ N, then y = z. In particular, if

p(x,y)= 0 and p(x,z)= 0, then y = z;

(2) if p(xn,yn)≤αn and p(xn,z)≤ βn for any n∈N, then {yn} converges to z;

(3) if p(xn,xm)≤αn for anyn,m∈Nwithm>n, then {xn} is a Cauchy sequence;

(4) if p(y,xn)≤αn for any n∈N, then {xn} is a Cauchy sequence.

Lemma 2.4 (see [3]). Let X be a metric space with a metric d, let p be a w-distance

on X, and let T be a mapping of X into itself satisfying

p(Tx,Ty)≤ q ·max
{
p(x,y),p(x,Tx),p(y,Ty),p(x,Ty),p(y,Tx)

}
(2.1)

for all x,y ∈X and some q ∈ [0,1). Then

(1) for each x ∈X, n∈N, and i,j ∈N with i,j ≤n,

p
(
T ix,T jx

)≤ q ·δ(O(x,n)); (2.2)

(2) for each x ∈X and n∈N, there exist k,l∈N with k,l≤n such that

δ
(
O(x,n)

)=max
{
p(x,x),p

(
x,Tkx

)
,p
(
T lx,x

)}
; (2.3)

(3) for each x ∈X,

δ
(
O(x,∞))≤ 1

1−q
{
p(x,x)+p(x,Tx)+p(Tx,x)}; (2.4)

(4) for each x ∈X, {Tnx}∞n=1 is a Cauchy sequence.

3. Main results

Theorem 3.1. Let X be a complete metric space with a metric d and let p be a

w-distance on X. Suppose that S and T are two mappings of X into CBp(X) and ϕ :

X×X → [0,∞) is a mapping such that

max
{
p
(
u1,u2

)
,p
(
v1,v2

)}≤ q ·ϕ(x,y) (3.1)

for all nonempty subsets A, B of X, u1 ∈ SA, u2 ∈ S2A, v1 ∈ TB, v2 ∈ T 2B, x ∈ A,

y ∈ B, and some q ∈ [0,1),

sup
{

sup
(

ϕ(x,y)
min

[
p(x,SA),p(y,TB)

] : x ∈A, y ∈ B
)

:A,B ⊆X
}
<

1
q
, (3.2)

inf
{
p(y,u)+p(x,Sx)+p(y,Ty) : x,y ∈X}> 0, (3.3)

for every u∈X with u ∉ Su or u ∉ Tu, where SAmeans
⋃
a∈ASa. Then S and T have

a common fixed point in X.

Proof. Let

β= sup
{

sup
(

ϕ(x,y)
min

[
p(x,SA),p(y,TB)

] : x ∈A, y ∈ B
)

:A, B ⊆X
}
, (3.4)
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and k = βq. Define xn+1 ∈ Sxn and yn+1 ∈ Tyn for all n ∈ N. Then xn ∈ Sxn−1,

xn+1 ∈ S2xn−1, yn ∈ Tyn−1, and yn+1 ∈ T 2yn−1. From (3.1) and (3.2), we have

p
(
xn,xn+1

)≤ kp(xn−1,xn
)≤ ··· ≤ kn−1p

(
x1,x2

)
, (3.5)

p
(
yn,yn+1

)≤ kp(yn−1,yn
)≤ ··· ≤ kn−1p

(
y1,y2

)
, (3.6)

for all n ∈ N and some k ∈ [0,1). Let n and m be any positive integers such that

n<m. Then, from (3.6), we obtain

p
(
yn,ym

)≤ p(yn,yn+1
)+···+p(ym−1,ym

)

=
m−n−1∑
i=0

p
(
yn+i,yn+i+1

)

≤
m−n−1∑
i=0

kn+i−1p
(
y1,y2

)

≤ kn−1

(1−k)p
(
y1,y2

)
.

(3.7)

By Lemma 2.3, {yn} is a Cauchy sequence. Since X is complete, {yn} converges to

u∈X. Then, since p(yn,·) is lower semicontinuous, from (3.7) we have

p
(
yn,u

)≤ lim
m→∞ infp

(
yn,ym

)≤ kn−1

(1−k)p
(
y1,y2

)
. (3.8)

Suppose that u ∉ Su or u ∉ Tu. Then, by (3.3), (3.5), (3.6), and (3.8), we have

0< inf
{
p(y,u)+p(x,Sx)+p(y,Ty) : x,y ∈X}

≤ inf
{
p
(
yn,u

)+p(xn,xn+1
)+p(yn,yn+1

)
:n∈N}

≤ inf
{
kn−1

(1−k)p
(
y1,y2

)+kn−1p
(
x1,x2

)+kn−1p
(
y1,y2

)
:n∈N

}

=
{

2−k
(1−k)p

(
y1,y2

)+p(x1,x2
)}

inf
{
kn−1 :n∈N}

= 0.

(3.9)

This is a contradiction. Therefore we have u∈ Su and u∈ Tu.

Theorem 3.2. Let X be a complete metric space with a metric d and let p be a

w-distance on X. Suppose that S and T are two mappings of X into CBp(X) and ϕ :

X×X → [0,∞) is a mapping such that

max
{
p
(
u1,u2

)
,p
(
v1,v2

)}≤ q ·ϕ(x,y) (3.10)

for all x,y ∈X, u1 ∈ Sx, u2 ∈ S2x, v1 ∈ Ty , v2 ∈ T 2y , and some q ∈ [0,1),

sup
{

sup
(

ϕ(x,y)
min

[
p(x,Sx),p(y,Ty)

] : x ∈A, y ∈ B
)

:A,B ⊆X
}
<

1
q
, (3.11)

and (3.3) is satisfied. Then S and T have a common fixed point in X.
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Proof. By a method similar to that in the proof of Theorem 3.1, the result follows.

Theorem 3.3. Let X be a complete metric space with a metric d and let p be a

w-distance on X. Suppose that T is a mapping of X into CBp(X) and ψ : X → [0,∞) is

a mapping such that

p
(
u1,u2

)≤ q ·ψ(x) (3.12)

for all x ∈X, u1 ∈ Tx, u2 ∈ T 2x and some q ∈ [0,1),

sup
{
ψ(x)
p(x,Tx)

: x ∈X
}
<

1
q
,

inf
{
p(x,u)+p(x,Tx) : x ∈X}> 0,

(3.13)

for every u∈X with u ∉ Tu. Then T has a fixed point in X.

Proof. By a method similar to that in the proof of Theorem 3.1, the result follows.

Theorem 3.4. Let X be a complete metric space with a metric d and let p be a

w-distance on X. Suppose that S and T are self-mapping of X and ϕ : X×X → [0,∞)
is a mapping such that

max
{
p
(
Sx,S2x

)
,p
(
Ty,T 2y

)}≤ q ·ϕ(x,y) (3.14)

for all x,y ∈X and some q ∈ [0,1),

sup
{

ϕ(x,y)
min

[
p(x,Sx),p(y,Ty)

] : x,y ∈X
}
<

1
q
,

inf
{
p(y,u)+p(x,Sx)+p(y,Ty) : x,y ∈X}> 0,

(3.15)

for every u∈X with u≠ Su or u≠ Tu. Then S and T have a common fixed point in X.

Proof. By a method similar to that in the proof of Theorem 3.1, the result follows.

From Theorem 3.1, we have the following corollary.

Corollary 3.5. Let X be a complete metric space with a metric d and let p be

a w-distance on X. Suppose that S and T are two mappings of X into CBp(X) and

ϕ :X×X → [0,∞) is a mapping such that

max
{

sup
[
p
(
u1,u2

)
:u1 ∈ Sx, u2 ∈ S2x

]
,

sup
[
p
(
v1,v2

)
: v1 ∈ Tx, v2 ∈ T 2x

]}≤ q ·ϕ(x,y) (3.16)

for all x,y ∈X and some q ∈ [0,1), and that (3.3) and (3.11) are satisfied. Then S and

T have a common fixed point in X.
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From Theorem 3.3, we have the following corollaries.

Corollary 3.6. Let X be a complete metric space with a metric d and let p be a

w-distance on X. Suppose that T is a mapping of X into CBp(X) and ψ : X → [0,∞) is

a mapping such that

sup
[
p
(
u1,u2

)
:u1 ∈ Tx, u2 ∈ T 2x

]≤ q ·ψ(x) (3.17)

for all x ∈ X and some q ∈ [0,1), and that (3.13) is satisfied. Then T has a fixed point

in X.

Corollary 3.7. Let X be a complete metric space with a metric d and let p be a

w-distance on X. Suppose that T is a self-mapping of X andψ :X → [0,∞) is a mapping

such that

p
(
Tx,T 2x

)≤ q ·ψ(x) (3.18)

for all x ∈X and some q ∈ [0,1),

sup

{
ψ(x)
p(x,Tx)

: x ∈X
}
<

1
q
,

inf
{
p(x,u)+p(x,Tx) : x ∈X}> 0,

(3.19)

for every u∈X with u≠ Tu. Then T has a fixed point in X.

From Corollary 3.7, we have the following corollaries.

Corollary 3.8 (see [3]). Let X be a complete metric space with a metric d and let

p be a w-distance on X. Suppose that T is a self-mapping of X such that

p(Tx,Ty)≤ q ·max
{
p(x,y),p(x,Tx),p(y,Ty),p(x,Ty),p(y,Tx)

}
(3.20)

for all x,y ∈X and some q ∈ [0,1), and that

inf
{
p(x,u)+p(x,Tx) : x ∈X}> 0 (3.21)

for every u∈X with u≠ Tu. Then T has a unique fixed point in X.

Proof. By (3.20) and Lemma 2.4(3), we have

sup
{
p
(
T ix,T jx

) | i, j ∈N∪{0}}<∞ (3.22)

for every x ∈X. Thus we may define a function r :X×X → [0,∞) by

r(x,y)=max
{

sup
[
p
(
T ix,T jx

) | i, j ∈N∪{0}],p(x,y)} (3.23)

for every x,y ∈X. Clearly, r is aw-distance on X. Let x be a given element of X, then,

by using Lemma 2.4(1), (3.20), and (3.23), we have

r
(
Tx,T 2x

)= sup
{
p
(
T ix,T jx

) | i, j ∈N}
≤ q ·sup

{
p
(
T ix,T jx

) | i, j ∈N∪{0}}
= q ·r(x,Tx).

(3.24)



324 JEONG SHEOK UME ET AL.

By (3.21) and (3.23), we obtain

inf
{
r(x,u)+r(x,Tx) : x ∈X}> 0 (3.25)

for every u∈X with u≠ Tu. From (3.24), (3.25), and Corollary 3.7, T has a fixed point

in X. By (3.20) and Lemma 2.4, it is clear that the fixed point of T is unique.

Corollary 3.9 (see [2]). Let X be a complete metric space, let p be aw-distance on

X, and let T be a mapping from X into itself. Suppose that there exists q ∈ [0,1) such

that

p
(
Tx,T 2x

)≤ q ·p(x,Tx) (3.26)

for every x ∈X and that

inf
{
p(x,y)+p(x,Tx) : x ∈X}> 0 (3.27)

for every y ∈X with y ≠ Ty . Then T has a fixed point in X.

Proof. Define ψ :X → [0,∞) by

ψ(x)= p(x,Tx) (3.28)

for all x ∈ X. Thus the conditions of Corollary 3.7 are satisfied. Hence T has a fixed

point in X.

From Corollary 3.8, we have the following corollary.

Corollary 3.10 (see [1]). Let X be a complete metric space with a metric d and let

T be a mapping from X into itself. Suppose that T is a quasicontraction, that is, there

exists q ∈ [0,1) such that

d(Tx,Ty)≤ q ·max
{
d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
(3.29)

for every x,y ∈X. Then T has a unique fixed point in X.

Proof. It is clear that the metric d is a w-distance and

inf
{
d(x,y)+d(x,Tx) : x ∈X}> 0 (3.30)

for every y ∈X with y ≠ Ty . Thus, by Corollary 3.8 or 3.9, T has a unique fixed point

in X.
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