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1. Introduction. The classical Hardy inequality [3] states that: for f(x)≥ 0, p > 1,

1/p+1/q = 1, and 0<
∫∞
0 fp(x)dx <∞,

∫∞
0

[
1
x

∫ x
0
f(t)dt

]p
dx < qp

∫∞
0
fp(t)dt, (1.1)

where q = p/(p−1) is the best possible constant.

The dual form of (1.1) is as follows: if 0<
∫∞
0 (xf(x))pdx <∞, then

∫∞
0

(∫∞
x
f(t)dt

)p
dx < pp

∫∞
0

(
tf (t)

)pdt, (1.2)

where the constant pp in (1.2) is still best possible.

Bicheng et al. [2] gave some new generalizations of (1.1) which can be stated as

follows:

∫ b
a

(
1
x

∫ x
a
f(t)dt

)p
dx < qp

[
1−

(
a
b

)1/q]p ∫ b
a
fp(t)dt; (1.3)

∫∞
a

(
1
x

∫ x
a
f(t)dt

)p
dx < qp

∫∞
a

[
1−θp(t)

]
fp(t)dt

(
0< θp(t) < 1

)
; (1.4)

∫ b
0

(
1
x

∫ x
0
f(t)dt

)p
dx < qp

∫ b
0

[
1−

(
t
b

)1/q]
fp(t)dt, (1.5)

where θp(t)= (1/p)
∑∞
k=1

(
p
k+1

)
(−1)k−1(a/t)k/q > 0 for t > a > 0, and θp(a)= 1/q.

Recently, Becheng and Debnath [1] gave improvement of (1.3) and some generaliza-

tions of (1.2):

∫ b
a

(
1
x

∫ x
a
f(t)dt

)p
dx < qpηp(a,b)

∫ b
a
fp(t)dt;

∫∞
a

(∫∞
x
f(t)dt

)p
dx < pp

∫∞
a

[
1−

(
a
t

)1/p](
tf (t)

)pdt;
∫ b

0

(∫ b
x
f(t)dt

)p
dx < pp

∫ b
0
µp(t)

(
tf (t)

)pdt,

(1.6)
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where the constants ηp(a,b) = maxa≤t≤b{(1/q)t1/q
∫ b
t x−1−1/q[1− (a/x)1/q]p−1dx},

µp(t)= (1/p){1−(t/b)1/p}p(b/t)1/p .

In this paper, we show some new improvements and generalizations of the inequal-

ities (1.1) and (1.2).

2. Main results

Lemma 2.1. Let a≥ 0, p > 1, 1/p+1/q = 1−1/r , f ≥ 0, r > 1, and 0<
∫∞
a fp(t)dt <

∞. Then, there exists a real number x0 ∈ (a,∞) such that, for any x > x0, the following

inequality is true:

(∫ x
a
f(t)dt

)p
<
(

pq(p−1)
(p+q)(p−1)−p

)p−1(
1− 1

r

)p−1

×
(
x1−1/(1−1/r)q(p−1)−a1−1/(1−1/r)q(p−1)

)p−1
∫ x
a
t1/(1−1/r)qfp(t)dt.

(2.1)

Proof. By Hölder’s inequality, we have

(∫ x
a
f(t)dt

)p
=
(∫ x

a
t1/(1−1/r)pqf (t)t−1/(1−1/r)pqdt

)p

≤
∫ x
a
t1/(1−1/r)qfp(t)dt

(∫ x
a

(
t−1/(1−1/r)pq

)p/(p−1)
dt
)p−1

=
(

pq(p−1)
(p+q)(p−1)−p

)p−1(
1− 1

r

)p−1

×
(
x1−1/(1−1/r)q(p−1)−a1−1/(1−1/r)q(p−1)

)p−1
∫ x
a
t1/(1−1/r)qfp(t)dt.

(2.2)

We need to show that there exists a real number x0 ∈ (a,∞), such that (2.2) does

not assume equality for any x > x0. Otherwise, there exists x = xn ∈ (a,∞), where

n= 1,2,3, . . . ,xn ↑ ∞, such that (2.2) becomes an equality. By the same argument, there

exists a real number c > 0, and an integer N, such that for n>N,

(
t1/(1−1/r)pqf (t)

)p = c(t−1/(1−1/r)pq
)p/(p−1)

a.e. in
[
a,xn

]
. (2.3)

Hence

∫ xn
a
fp(t)dt =

∫ xn
a
c
t−1/(1−1/r)q(p−1)

t1/(1−1/r)q dt

=
∫ xn
a
ct−p/(1−1/r)q(p−1)dt �→∞ as n �→∞.

(2.4)

This is a contradiction to the fact that 0<
∫∞
a fp(t)dt <∞. Hence, (2.1) holds true and

the proof is complete.
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Lemma 2.2. Let b > 0, p > 1, 1/p + 1/q = 1 − 1/r , f ≥ 0, r > 1, and let 0 <∫ b
0 tp−1+1/(1−1/r)f p(t)dt < ∞. Then, there exists a real number x0 ∈ (0,b) such that,

for any x ∈ (0,x0), the following inequality is true:

(∫ b
x
f(t)dt

)p
<
((

1− 1
r

)
p
)p−1(

x−1/(1−1/r)p−b−1/(1−1/r)p
)p−1

×
∫ b
x
tp−1+(p−1)/(1−1/r)pfp(t)dt.

(2.5)

Proof. For any x ∈ (0,b), by Hölder’s inequality, we have

(∫ b
x
f(t)dt

)p
=
[∫ b

x
t(1+(1−1/r)p)(p−1)/(1−1/r)p2

f(t)t−(1+(1−1/r)p)(p−1)/(1−1/r)p2
dt
]p

≤
∫ b
x
t(1+(1−1/r)p)(p−1)/(1−1/r)pfp(t)dt

(∫ b
x
t−(1+(1−1/r)p)/(1−1/r)pdt

)p−1

=
((

1− 1
r

)
p
)p−1(

x−1/(1−1/r)p−b−1/(1−1/r)p
)p−1

×
∫ b
x
tp−1+(p−1)/(1−1/r)pfp(t)dt.

(2.6)

We need to show that there exists a real number x0 ∈ (0,b), such that (2.6) does not

assume equality for any x ∈ (0,x0). Otherwise, there exists x = xn ∈ (0,b), where

n= 1,2,3, . . . ,xn ↓ 0, such that (2.6) becomes an equality. Then there exist cn and dn
which are not always zero, such that (see [4, page 29])

cn
[
t(1+(1−1/r)p)(p−1)/(1−1/r)p2

f(t)
]p

= dn
[
t−(1+(1−1/r)p)(p−1)/(1−1/r)p2

]p/(p−1)
a.e. in

[
xn,b

]
.

(2.7)

Since f(t) ≠ 0 a.e. in (0,b), there exists an integer N such that, for n > N, f(t) ≠ 0

a.e. in (0,xn). Thus, for both cn = c ≠ 0 and dn = d≠ 0 for n>N,

∫ b
0
tp−1+1/(1−1/r)f p(t)dt = lim

n→∞

∫ b
xn

t−(1+1/(1−1/r)p)

t1−(1+1/(1−1/r)p) dt =
d
c

lim
n→∞

∫ b
xn

dt
t
=∞. (2.8)

This contradicts the fact that 0 <
∫ b
0 tp−1+1/(1−1/r)f p(t)dt < ∞. Hence, (2.5) is valid

and this completes the proof of the lemma.

Lemma 2.3. Let a > 0, p > 1, 1/p + 1/q = 1 − 1/r , f ≥ 0, r > 1, and 0 <∫∞
a tp−1+1/(1−1/r)f p(t)dt <∞. Then, there exists a real number x0 ∈ (a,∞) such that,

for any x ∈ (a,x0), the following inequality is true:

(∫∞
x
f(t)dt

)p
<
((

1− 1
r

)
p
)p−1

x−(p−1)/(1−1/r)p
∫∞
x
tp−1+(p−1)/(1−1/r)pfp(t)dt.

(2.9)
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Proof. For any x ∈ (a,∞), by Hölder’s inequality, we have

(∫∞
x
f(t)dt

)p
≤
((

1− 1
r

)
p
)p−1

x−(p−1)/(1−1/r)p
∫∞
x
tp−1+(p−1)/(1−1/r)pfp(t)dt.

(2.10)

We show that there exists a real number x0 ∈ (a,∞), such that (2.10) does not as-

sume equality for any x ∈ (a,x0). Otherwise, there exists x = xn ∈ (a,∞), where

n = 1,2,3, . . . ,xn ↓ a, such that (2.10) becomes an equality. By the same argument

there exist a real number c > 0, and an integer N, such that for n>N,

[
t(1+(1−1/r)p)(p−1)/(1−1/r)p2

f(t)
]p

= c
[
t−(1+(1−1/r)p)(p−1)/(1−1/r)p2

]p/(p−1)
a.e. in

[
xn,∞

)
,

(2.11)

and hence
∫∞
a tp−1+1/(1−1/r)f p(t)dt = c limn→∞

∫∞
xn(dt/t)=∞. This contradicts the fact

that 0<
∫∞
a tp−1+1/(1−1/r)f p(t)dt <∞. Hence (2.9) is valid and this completes the proof

of the lemma.

Theorem 2.4. Let 0 < a < b, p > 1, 1/p+1/q = 1−1/r , f ≥ 0, r > 1, and 0 <∫∞
a fp(t)dt <∞. Then

∫ b
a

(
1
x

∫ x
a
f(t)dt

)p
dx <

(
pq(p−1)

(p+q)(p−1)−p
)p(

1− 1
r

)p
η(a,b)

∫ b
a
fp(t)dt, (2.12)

where the constant

η(a,b)= max
a≤t≤b

{
(p+q)(p−1)−p
pq(p−1)(1−1/r)

t1/(1−1/r)q

×
∫ b
t
x−1−1/(1−1/r)q

[
1−

(
a
x

)1−1/(1−1/r)q(p−1)]p−1

dx
}
,

η(a,b) <
(p+q)(p−1)−p

p(p−1)

[
1−

(
a
b

)1−1/(1−1/r)q(p−1)]p
.

(2.13)

Proof. In view of the proof of Lemma 2.1, we obtain

∫ b
a

(
1
x

∫ x
a
f(t)dt

)p
dx

<
(

pq(p−1)
(p+q)(p−1)−p

)p−1(
1− 1

r

)p−1

×
∫ b
a

{∫ b
t
x−1−1/(1−1/r)q

[
1−

(
a
x

)1−1/(1−1/r)q(p−1)]p−1

dx
}
t1/(1−1/r)qfp(t)dt

=
(

pq(p−1)
(p+q)(p−1)−p

)p(
1− 1

r

)p ∫ b
a
g(t)fp(t)dt,

(2.14)
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where the weight function g(t) is defined by

g(t) := (p+q)(p−1)−p
pq(p−1)(1−1/r)

t1/(1−1/r)q

×
∫ b
t
x−1−1/(1−1/r)q

[
1−

(
a
x

)1−1/(1−1/r)q(p−1)]p−1

dx, t ∈ [a,b].
(2.15)

Setting η(a,b) := maxa≤t≤b g(t), since g(t) is a nonconstant continuous function,

then by (2.14) we have (2.12). Since g(b)= 0, and for any t ∈ [a,b),

g(t) <
(p+q)(p−1)−p
pq(p−1)(1−1/r)

t1/(1−1/r)q
∫ b
t
x−1−1/(1−1/r)q

[
1−

(
a
b

)1−1/(1−1/r)q(p−1)
]p−1

dx

= (p+q)(p−1)−p
pq(p−1)

[
1−

(
a
b

)1−1/(1−1/r)q(p−1)
]p−1[

1−
(
t
b

)1/(1−1/r)q]

≤ (p+q)(p−1)−p
pq(p−1)

[
1−

(
a
b

)1−1/(1−1/r)q(p−1)
]p−1[

1−
(
a
b

)1/(1−1/r)q]

<
(p+q)(p−1)−p

pq(p−1)

[
1−

(
a
b

)1−1/(1−1/r)q(p−1)
]p
.

(2.16)

This completes the proof.

Theorem 2.5. Let a > 0, p > 1, 1/p + 1/q = 1 − 1/r , f ≥ 0, r > 1, and 0 <∫∞
a (tf (t))pdt <∞, 0<

∫∞
a tp−1+1/(1+1/r)f p(t)dt <∞. Then

∫∞
a

(∫∞
x
f(t)dt

)p
dx <

((
1− 1

r

)
p
)p r
r −p

∫∞
a

[
1−

(
a
t

)(r−p)/(r−1)p](
tf (t)

)pdt.
(2.17)

Proof. Applying (2.9), we have

∫∞
a

(∫∞
x
f(t)dt

)p
dx

<
((

1− 1
r

)
p
)p−1∫∞

a
x−(p−1)/(1−1/r)p

∫∞
x
tp−1+∗(p−1)/(1−1/r)pfp(t)dtdx

=
((

1− 1
r

)
p
)p−1∫∞

a

(∫ t
a
x−(p−1)/(1−1/r)pdx

)
tp−1+(p−1)/(1−1/r)pfp(t)dt

=
((

1− 1
r

)
p
)p r
r −p

∫∞
a

[
1−

(
a
t

)(r−p)/(r−1)p](
tf (t)

)pdt.

(2.18)

Hence, (2.17) is valid. This completes the proof of the theorem.

Theorem 2.6. Let b > 0, p > 1, 1/p + 1/q = 1 − 1/r , f ≥ 0, r > 1, and 0 <∫ b
0 (tf (t))pdt <∞, 0<

∫ b
0 tp−1+1/(1−1/r)f p(t)dt <∞. Then

∫ b
0

(∫ b
x
f(t)dt

)p
dx <

((
1− 1

r

)
p
)p ∫ b

0
µ(t)

(
tf (t)

)pdt, (2.19)
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where µ(t) := 1/(1−1/r)p{∫ t0 x−(p−1)/(1−1/r)p[1−(x/b)1/(1−1/r)p]p−1dx}t(p−r)/(r−1)p,
t ∈ (0,b].

Proof. Applying (2.5), we have

∫ b
0

(∫ b
x
f(t)dt

)p
dx <

((
1− 1

r

)
p
)p−1∫ b

0

(
x−1/(1−1/r)p−b−1/(1−1/r)p

)p−1

×
∫ b
x
tp−1+(p−1)/(1−1/r)pfp(t)dtdx

=
((

1−1
r

)
p
)p−1 ∫ b

0

(∫ t
0
x−(p−1)(1−1/r)p

[
1−
(
x
b

)1/(1−1/r)p]p−1

dx
)

×t(p−r)/(r−1)p(tf (t))pdt
=
((

1− 1
r

)
p
)p ∫ b

0
µ(t)

(
tf (t)

)pdt,
(2.20)

where µ(t) := 1/(1−1/r)p{∫ t0 x−(p−1)/(1−1/r)p[1−(x/b)1/(1−1/r)p]p−1dx}t(p−r)/(r−1)p,
t ∈ (0,b]. This proves (2.19) and the proof of the theorem is complete.

Remark 2.7. Let r →∞, (2.1) changes into [2, (2.3)]. Hence, (2.1) is a generalization

of [2, (2.3)].

Remark 2.8. Let r →∞, (2.5) and (2.9) change into [1, (3.1) and (3.5)], respectively.

Hence (2.5) and (2.9) is generalization of [1, (3.1) and (3.5)], respectively.

Remark 2.9. Let r → ∞, (2.12), (2.17), and (2.19) change into [1, (3), (4), and (5)],

respectively. Hence, (2.12), (2.17), and (2.19) is generalization of [1, (3), (4), and (5)],

respectively.
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