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Let (X,∆) be a 4-dimensional log variety which is proper over the field of complex numbers
and with only divisorial log terminal singularities. The log canonical divisor KX +∆ is
semiample, if it is numerically effective (NEF) and the Iitaka dimension κ(X,KX +∆) is
strictly positive. For the proof, we use Fujino’s abundance theorem for semi-log canonical
threefolds.
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1. Introduction. In this paper, every variety is proper over the field C of complex

numbers. We follow the notation and terminology of [11].

Let X be a normal algebraic variety and let ∆=∑di∆i be aQ-divisor with 0≤ di ≤ 1

on X such that the log canonical divisor KX+∆ is Q-Cartier. We call (X,∆) a log pair.

Let D be a numerically effective (NEF) Q-Cartier Q-divisor on X. We define the nu-

merical Iitaka dimension ν(X,D) := max{e;(De,S) > 0 for some subvariety S of di-

mension e on X}. The divisor D is abundant if the Iitaka dimension κ(X,D) equals

ν(X,D). If, for some positive integer m, the divisor mD is Cartier and the linear sys-

tem |mD| is free from base points, D is said to be semiample.

For a birational morphism f : Y → X between normal algebraic varieties and for

a divisor E on X, the symbol f−1∗ E expresses the strict transform of E by f , and

f−1(E) expresses the set-theoretical inverse image. A resolution µ : Y → X is said to

be a log resolution of the log pair (X,∆) if the support of the divisor µ−1∗ ∆+
∑{E;E

is a µ-exceptional prime divisor} is with only simple normal crossings. The log pair

(X,∆) is log terminal if there exists a log resolution µ : Y → X such that KY +µ−1∗ ∆=
µ∗(KX +∆)+

∑
aiEi with ai > −1. Moreover, if the exceptional locus Exc(µ) consists

of divisors, (X,∆) is said to be divisorial log terminal (DLT). Szabó [16] proved that the

notions of DLT and wklt in [15] are equivalent. In the case where (X,∆) is log terminal

and �∆� = 0, we say that (X,∆) is Kawamata log terminal (KLT).

We note that if (X,∆) is KLT then it is DLT. In the Iitaka classification theory of open

algebraic varieties, one embeds a smooth affine variety U in some smooth projective

varietyX such thatX\U Supp(∆), where∆ is a reduced simple normal crossing divisor,

and studies the log pair (X,∆). In this case (X,∆) is not KLT but DLT. Moreover, it

is known that we have to work allowing the Q-factorial DLT singularities, to execute

the log minimal model program for open algebraic varieties (see [9]). Therefore, it is

valuable to extend theorems proved in the case of KLT pairs to the case of DLT pairs.

Now, concerning the log minimal model program, we review the following famous

conjecture.
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Log abundance conjecture 1.1 (cf. [10]). Assume thatX is projective and (X,∆)
is DLT. If KX+∆ is NEF, then KX+∆ is semiample.

This conjecture claims that the concept of “log minimal” (i.e., the log canonical

divisor is NEF) should be not only numerical but also geometric. Kawamata [7] and

Fujita [5] proved the conjecture in dimX = 2 and Keel, Matsuki, and McKernan [10]

proved it in dimX = 3. (The assumption concerning singularities in their papers is

that (X,∆) is log canonical, which is more general than DLT.) Moreover, Fujino proved

the following theorem.

Theorem 1.2 (see [3, Theorem 3.1]). Assume that (X,∆) is DLT and dimX = 4. If

KX+∆ is NEF and big, then KX+∆ is semiample.

The following two theorems, due to Kawamata, are helpful to deal with the conjec-

ture.

Theorem 1.3 (see [8, Theorem 6.1]). Assume that (X,∆) is KLT and KX+∆ is NEF.

If KX+∆ is abundant, then it is semiample.

Theorem 1.4 (see [8, Theorem 7.3], cf. [10, Lemma 5.6]). Assume that (X,∆) is KLT

andKX+∆ is NEF. If κ(X,KX+∆) > 0 and the log minimal model and the log abundance

conjectures hold in dimension dimX−κ(X,KX+∆), then KX+∆ is semiample.

In this paper, we try to generalize the above-mentioned theorems and obtain the

following main theorem.

Theorem 1.5. Assume that (X,∆) is DLT and dimX = 4. If KX +∆ is NEF and

κ(X,KX+∆) > 0, then KX+∆ is semiample.

We prove the main theorem (Theorem 1.5) along the lines in the proofs of Theorems

1.2 and 1.3, using Fujino’s abundance theorem for semi-log canonical threefolds which

are not necessarily irreducible. (For the definition of the concept “SDLT” appearing

below, see Definition 2.7 in Section 2.)

Theorem 1.6 (see [2]). Let (S,Θ) be an SDLT threefold. If KS+Θ is NEF, then KS+Θ
is semiample.

Remark 1.7. If the log minimal model and the log abundance conjectures hold in

dimension less than or equal to n−1, and Theorem 1.6 holds in dimension n−1, then

Theorem 1.5 holds in dimension n.

2. Preliminaries. In this section, we state notions and results needed in the proof

of Theorem 1.5. The next two propositions are from the theories of the Kodaira-Iitaka

dimension and the minimal model, respectively.

Proposition 2.1 (see [6, Theorem 10.3]). Let D be an effective divisor on a smooth

variety Y . Suppose that the rational map Φ|D| : Y → Z is a morphism between algebraic

varieties and that the rational function field Rat(Φ|mD|(Y)) is isomorphic to Rat(Z) for

all positive integerm. Then Rat(Z) is algebraically closed in Rat(Y) and κ(W,D|W)= 0

for a “general” fiber of Φ|D|.
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Proposition 2.2 (see [9, Section 5-1]). Assume that (Xlm,∆lm) is a log minimal

model for a Q-factorial, DLT projective variety (X,∆). Then, every common resolution

X
g←����������������������������������������� Y h

�����������������������������������������→Xlm satisfies the condition that

KY +g−1
∗ ∆+E ≥ g∗

(
KX+∆

)≥ h∗(KXlm+∆lm), (2.1)

where E is the reduced divisor composed of the g-exceptional prime divisors.

The following is a vanishing theorem of Kollár-type.

Theorem 2.3 (see [12, Theorem 10.13], [8, Theorem 3.2], [1, Section 3.5]). Let f :

X → Y be a surjective morphism from a smooth projective varietyX to a normal variety

Y . Let L be a divisor on X and D an effective divisor on X such that f(D)≠ Y . Assume

that (X,∆) is KLT and L−D− (KX +∆) is Q-linearly equivalent to f∗M where M is a

NEF and big Q-Cartier Q-divisor on Y . Then the homomorphisms Hi(X,�X(L−D))→
Hi(X,�X(L)) are injective for all i.

When we work on the non-KLT locus �∆� of a log terminal pair (X,∆), we need the

following lemma.

Lemma 2.4 (cf. [6, Proposition 1.43]). Let S be a reduced scheme and � an invertible

sheaf on S. Then, the restriction mapH0(S,�)→H0(U,�) is injective for all open dense

subset U of S.

The following lemma is used to manage cases where Theorem 2.3 cannot be applied

(see [10, Section 7]).

Lemma 2.5 (cf. [4, Section 1.20]). Let f : S → Z be a surjective morphism between

normal varieties and HZ a Cartier divisor on Z . If f∗HZ is semiample, then so is HZ .

The set Strata(D) defined below is the set of non-KLT centers for a smooth pair (Y ,D).

Definition 2.6. Let D =∑l
i=1Di be a reduced simple normal crossing divisor on a

smooth variety Y . We set Strata(D) := {Γ ;1 ≤ i1 < i2 < ··· < ik ≤ l,Γ is an irreducible

component of Di1∩Di2∩···∩Dik ≠∅}.
When we manage the non-KLT locus �∆� of a DLT pair (X,∆), we need the following

notion.

Definition 2.7 (see [2, Definition 1.1]). Let S be a reduced S2 scheme which is

pure n-dimensional and normal crossing in dimension 1. Let Θ be an effective Q-Weil

divisor such thatKS+Θ isQ-Cartier. Let S =⋃Si be the decomposition into irreducible

components. The pair (S,Θ) is semi-divisorial log terminal (SDLT) if Si is normal and

(Si,Θ|Si) is DLT for all i.

Proposition 2.8 (see [2, Remark 1.2.(3)], [15, Section 3.2.3], [13, Corollary 5.52]).

If (X,∆) is DLT, then (�∆�,Diff(∆−�∆�)) is SDLT.

3. Proof of the main theorm (Theorem 1.5). The following proposition is used to

imply the abundance of some log canonical divisor from its mobility.
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Proposition 3.1 (see [8, Theorem 7.3], [10, Lemma 5.6]). Let (X,∆) be a variety

with only log canonical singularities such that KX +∆ is NEF and κ(X,KX +∆) > 0. If

the log minimal model and the log abundance conjectures hold in dimension dimX−
κ(X,KX+∆), then κ(X,KX+∆)= ν(X,KX+∆).

In the literature (see [8, Theorem 7.3]), this is proved for KLT pairs. However, the

proof is valid for log canonical pairs also. Thus, in the proof below we note only the

parts where we have to be careful in reading [8, Proof of Theorem 7.3].

Proof. (See [8, Proof of Theorem 7.3].) By Proposition 2.1, we have a diagram

X µ←���������������������������������������� Y f
������������������������������������������→ Z (3.1)

with the following properties:

(a) Y and Z are smooth projective varieties. Moreover, Y is a log resolution of

(X,∆);
(b) µ is birational and f is surjective. The morphism f satisfies that dimZ = κ(X,

KX+∆) and f∗�Y = �Z ;

(c) KY +µ−1∗ ∆+E = µ∗(KX +∆)+Eµ , where E is the reduced divisor composed of

the µ-exceptional prime divisors and Eµ is an effective Q-divisor;

(d) for a general fiber W = Yz of f , KY |W =KW and κ(W,KW +(µ−1∗ ∆+E)|W)= 0.

We note that W is smooth and Supp((µ−1∗ ∆+ E)|W) is with only simple normal

crossings.

We apply the log minimal model program to (W,(µ−1∗ ∆+E)|W) and obtain a log min-

imal model (Wlm,∆lm), where KWlm+∆lm ∼Q 0 from the log abundance. We consider a

common resolution W ρ←���������������������������������������� W ′ σ
�����������������������������������������������→Wlm of W and Wlm such that W ′ is projective. From

Proposition 2.2,

ρ∗
(
KW +

(
µ−1
∗ ∆+E

)|W )= σ∗(KWlm+∆lm)+Eσ ∼Q Eσ (3.2)

for some σ -exceptional effective Q-divisor Eσ . Thus, we have the relation

ρ∗
(
µ∗
(
KX+∆

)|W )= ρ∗(KW +(µ−1
∗ ∆+E

)|W −Eµ|W )∼Q Eσ −ρ∗(Eµ|W ). (3.3)

We put E+−E− := Eσ −ρ∗(Eµ|W), where E+ and E− are effective Q-divisors that have

no common irreducible components. Here, E+ is σ -exceptional.

This paragraph is due to an argument in Miyaoka [14, Proposition IV 2.4]. Put e :=
dimW ′ and c := the codimension ofσ(E+) inWlm. We take general membersA1,A2, . . . ,
Ae−c ∈ |A| and H1,H2, . . . ,Hc−2 ∈ |H| where A and H are very ample divisors on Wlm
and W ′, respectively. Set

S =
(e−c⋂
i=1

σ−1(Ai)
)
∩
(c−2⋂
i=1

Hi

)
. (3.4)

Taking into account the argument above, we proceed along the lines in [8, Proof of

Theorem 7.3]. Then we have the fact that ρ∗(µ∗(KX +∆)|W) is Q-linearly trivial and

so is µ∗(KX+∆)|W . From this, the assertion follows.
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In the following, we cope with the base points that lie on the non-KLT locus �∆�.
Proposition 3.2. Let (X,∆) be a log terminal variety and H a NEF Q-Cartier Q-

divisor such thatH−(KX+∆) is NEF and abundant. Assume that ν(X,aH−(KX+∆))=
ν(X,H− (KX +∆)) and κ(X,aH− (KX +∆)) ≥ 0 for some a ∈ Q with a > 1. If H|�∆�
is semiample, then Bs|mH| ∩ �∆� = ∅ for some positive integer m with mH being

Cartier. (Here Bs|mH| denotes the base locus of |mH|.)
Proof. From an argument in [8, Proof of Theorem 6.1] we have a diagram

X µ←���������������������������������������� Y f
������������������������������������������→ Z (3.5)

with the following properties:

(a) Y and Z are smooth projective varieties. Moreover, Y is a log resolution of

(X,∆);
(b) µ is birational and f is surjective with the property that f∗�Y = �Z ;

(c) µ∗(H−(KX+∆))∼Q f∗M0 for some NEF and big Q-divisor M0;

(d) µ∗H ∼Q f∗H0 for some NEF Q-divisor H0.

We define rational numbers ai by KY = µ∗(KX+∆)+
∑
aiEi. We may assume that H0

and H are Cartier.

We put

S := ⌊∆⌋, E :=
∑
ai>0

⌈
ai
⌉
Ei, S′ :=

∑
ai=−1

Ei. (3.6)

We note that, mµ∗H +E− S′ − (KY +
∑{−ai}Ei) = (m−1)µ∗H +µ∗(H − (KX +∆)),

which is Q-linearly equivalent to the inverse image of a NEF and big Q-divisor on Z .

There are two cases.

Case 1 (f(S′)≠ Z). In this case we use Fujino’s argument [3, Section 2]. By Theorem

2.3 we have an injection

H1(Y ,�Y (mµ∗H+E−S′)) �→H1(Y ,�Y (mµ∗H+E)). (3.7)

Then we consider the commutative diagram

H0
(
Y ,�Y

(
mµ∗H+E)) surjective

H0
(
S′,�S′

(
mµ∗H+E)) 0

H0
(
Y ,�Y

(
mµ∗H

))



H0
(
S′,�S′

(
mµ∗H

))
i

H0
(
X,�X(mH)

)



s
H0
(
S,�S(mH)

)
.

j

(3.8)

The homomorphism i is injective from Lemma 2.4 and the fact that E and S′ have no

common irreducible component. The homomorphism j is injective from Lemma 2.4

and the fact that S′ → S is surjective. Thus, the homomorphism s is surjective from

the diagram (3.8). Consequently, |mH||S = |mH|S|.
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Case 2 (f(S′)= Z). In this case we use an argument in [10, Section 7]. There exists

an irreducible component S′′ of S′ such that f(S′′) = Z . Because H|S is semiample

and µ∗H ∼Q f∗H0, f∗H0|S′′ is semiample. Consequently, the Q-divisor H0 also is

semiample from Lemma 2.5.

We generalize Kawamata’s result [8, Theorem 6.1] (see also Theorem 1.3) concerning

the semiampleness for KLT pairs to the case of log terminal pairs in the following form.

Proposition 3.3. Assume that (X,∆) is log terminal. Let H be a NEF Q-Cartier

Q-divisor on X with the following properties:

(1) H−(KX+∆) is NEF and abundant;

(2) ν(X,aH−(KX+∆))= ν(X,H−(KX+∆)) and κ(X,aH−(KX+∆))≥ 0 for some

a∈Q with a> 1.

If, for some positive integer p1, the divisor p1H is Cartier and Bs|p1H|∩�∆� =∅, then

H is semiample.

In the proof below we proceed along the lines in [8, Proof of Theorem 6.1] and thus

omit the parts which are parallel. However, we have to be very delicate in dealing with

the non-KLT locus �∆�.
Proof. From [8, Theorem 6.1], we may assume that �∆� ≠ 0. Therefore, the con-

dition that Bs |p1H| ∩ �∆� = ∅ implies that Bs|p1H| ≠ X. Thus, |p1tH| ≠ ∅ for all

t ∈N>0 (where N>0 denotes the set of all positive integers).

We have smooth projective varieties Y and Z and morphisms X µ←���������������������������������������� Y f
������������������������������������������→ Z with

the following properties:

(1) µ is birational and f is surjective;

(2) f∗�Y = �Z ;

(3) µ∗(H−(KX+∆))∼Q f∗M0 for some NEF and big Q-divisorM0 (where the sym-

bol ∼Q expresses the Q-linear equivalence);

(4) µ∗H ∼Q f∗H0 for some NEF Q-divisor H0.

We may assume that H0 and H are Cartier and f∗H0 and µ∗H are linearly equivalent.

Putting Λ(m) := Bs|mH|, we may assume that Λ(p1) ≠∅ (otherwise we immedi-

ately obtain the assertion). By repetition of blowing-ups over Y , we may replace Y and

get a simple normal crossing divisor F =∑i∈I Fi on Y such that

(5) µ∗|p1H| = |L|+
∑
i∈I riFi and |L| is base point free.

Then, by replacingZ and Y we have L∼Q f∗L0 for someQ-divisor L0, because

ν
(
Y ,µ∗

(
aH−(KX+∆)))≥ ν

(
Y ,
(
(a−1)
p1

)
L+µ∗(H−(KX+∆))

)

≥ ν(Y ,µ∗(H−(KX+∆)))
(3.9)

from the argument in [8, Proof of Proposition 2.1]. We note that

Λ
(
p1
)= µ

( ⋃
ri≠0

Fi

)
. (3.10)
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We have an effective divisor M1 such that M0−δM1 is ample for all δ ∈ Q
with 0< δ� 1. By further repetition of blowing-ups over Y , we may replace Y
and get the following properties:

(6) KY = µ∗(KX+∆)+
∑
i∈I aiFi;

(7) f∗M1 =
∑
i∈I biFi.

We set

c :=min
ri≠0

ai+1−δbi
ri

. (3.11)

Note that, if ai = −1 then µ(Fi) ⊂ �∆� and that if µ(Fi) ⊂ �∆� then ri = 0 from the

assumption of the theorem. Thus, by taking δ small enough, we may assume that c > 0

and that, if Fi �⊂ µ−1(�∆�), then ai+1−δbi > 0 (even if bi ≠ 0). Set I0 := {i ∈ I; ai+
1−δbi = cri, ri ≠ 0} and {Zα} := {f(Γ);Γ ∈ Strata(

∑
i∈I0 Fi)}. Let Z1 be a minimal

element of {Zα} with respect to the inclusion relation. We note that, Z1 ≠ Z . Because

M0−δM1 is ample, for some q ∈N>0, there exists a memberM2 ∈ |q(M0−δM1)| such

that Z1 ⊂M2 and Zα �⊂M2 for all α≠ 1.

We would like to show that we may assume that Supp(f∗M2)⊂ F . Then, we inves-

tigate the variation of the numbers ai+1−δbi and the set I0 under the blowing-up

σ : Y ′ → Y with permissible smooth center C with respect to F . We get a simple normal

crossing divisor F ′ =∑i∈I′ F ′i on Y ′ (where I′ = I∪{0}) with the following properties:

F ′0 = σ−1(C),

KY ′ = σ∗µ∗
(
KX+∆

)+∑
i∈I′

a′iF
′
i ,

σ∗
(∑
i∈I
riFi

)
=
∑
i∈I′

r ′i F
′
i ,

σ∗f∗M1 =
∑
i∈I′

b′iF
′
i .

(3.12)

We set I′0 := {i ∈ I′; a′i+1−δb′i = cr ′i , r ′i ≠ 0}. Let Fi1 , . . . ,Fiu be the irreducible com-

ponents of F that contain C . Let F ′ij be the strict transform of Fij by σ . We note that

σ∗
(
KY −

u∑
j=1

aij Fij

)
=KY ′ −

(
codimY C−1

)
F ′0−

u∑
j=1

aij
(
F ′ij +F ′0

)
. (3.13)

Thus, a′0 = (codimY C−1)+∑u
j=1aij . Therefore,

a′0+1≥
u∑
j=1

(
aij +1

)
, (3.14)

where the equality holds if and only if u = codimY C . We note also that r ′0 =
∑u
j=1 rij

and b′0 =
∑u
j=1bij .

Claim 3.4. If F ′0 �⊂ (µσ)−1(�∆�), then a′0+1−δb′0 ≥ cr ′0. The equality holds if and

only if codimY C =u and ij ∈ I0 for all j.
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Proof of Claim 3.4. First we note the inequality

a′0+1−δb′0 ≥
u∑
j=1

(
aij +1−δbij

)
, (3.15)

where the equality holds if and only if codimY C =u. Because Fij �⊂ µ−1(�∆�), we have

aij +1−δbij > 0. Here if rij ≠ 0 then aij +1−δbij ≥ crij , from the definition of c. On

the other hand, if rij = 0 then aij +1−δbij > crij . Now we note the inequality

u∑
j=1

(
aij +1−δbij

)≥ u∑
j=1

crij , (3.16)

where the equality holds if and only if rij ≠ 0 and aij +1−δbij = crij (i.e., ij ∈ I0) for

all j. Here
∑u
j=1 crij = cr ′0.

Claim 3.5. If ij ∈ I0 for all j and C ∈ Strata(
∑u
j=1Fij ), then I′0 = I0∪{0}. Otherwise,

I′0 = I0.

Proof of Claim 3.5. Note that, codimY C = u if and only if C ∈ Strata(
∑u
j=1Fij ).

Thus, Claim 3.4 implies the assertion, because if F ′0 ⊂ (µσ)−1(�∆�) then r ′0 = 0.

Claim 3.6. We have an equation

min
r ′i≠0

a′i+1−δb′i
r ′i

= c. (3.17)

Proof of Claim 3.6. In the case where r ′0 ≠ 0, we have F ′0 �⊂ (µσ)−1(�∆�). Thus,

Claim 3.4 implies the assertion.

Claim 3.7. If F ′0 �⊂ (µσ)−1(�∆�), then a′0+1−δb′0 > 0.

Proof of Claim 3.7. In this case, a′0+1 > 0. If b′0 ≠ 0, then C ⊂ f∗M1, so u ≠ 0.

Thus, a′0+1−δb′0 ≥
∑u
j=1(aij +1−δbij ) > 0 because all Fij �⊂ µ−1(�∆�).

By virtue of Claims 3.5, 3.6, and 3.7, we may assume that f∗M2 =
∑
i∈I siFi where

F =∑i∈I Fi is a simple normal crossing divisor. We put

c′ := min
µ(Fi)�⊂�∆�

ai+1−δbi
ri+δ′si (3.18)

and I1 := {i∈ I; ai+1−δbi = c′(ri+δ′si), µ(Fi) �⊂ �∆�}, for a rational number δ′ with

0< δ′ � δ.

Claim 3.8. We have a relation I1 ⊂ I0.

Proof of Claim 3.8. Because if µ(Fi) �⊂ �∆� thenai+1−δbi > 0, in the case where

ri = 0 the divisor Fi does not attain the minimum in (3.18).

Claim 3.9. There exists a member j ∈ I0 such that sj > 0.

Proof of Claim 3.9. The condition that Z1 ⊂ M2 implies that, for some j ∈ I,
sj > 0 and Fj contains an element Γ ∈ Strata(

∑
i∈I0 Fi). Here j ∈ I0, because F is with

only simple normal crossings.
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Claim 3.10. We have an inequality si > 0 for all i∈ I1.

Proof of Claim 3.10. Claims 3.8 and 3.9 and the formula (3.18) imply the

assertion.

Claim 3.11. We have a relation f(Γ)= Z1 for all Γ ∈ Strata(
∑
i∈I1 Fi).

Proof of Claim 3.11. From Claim 3.10, f(Γ) ⊂ M2. The condition that Zα �⊂ M2

for all α ≠ 1 implies the fact that f(Γ) ≠ Zα for all α ≠ 1. Thus, f(Γ) = Z1 from

Claim 3.8.

Now we set N :=mµ∗H+∑i∈I(−c′(ri+δ′si)+ai−δbi)Fi−KY for an integer m ≥
c′p1+1. Then,

N = c′
(
−
∑
i∈I
riFi

)
+mµ∗H−µ∗(KX+∆)−δ∑

i∈I
biFi−c′δ′

∑
i∈I
siFi

∼Q c′
(
L−p1µ∗H

)+mµ∗H−µ∗H+f∗(M0−δM1
)−c′δ′∑

i∈I
siFi

∼Q c′f∗L0+
(
m−(c′p1+1

))
µ∗H+(1−c′δ′q)f∗(M0−δM1

)
.

(3.19)

Because µ∗H and f∗H0 are linearly equivalent, N is Q-linearly equivalent to the pull-

back of an ample Q-divisor on Z . We put

A :=
∑

i∈I\I1, µ(Fi)�⊂�∆�

(−c′(ri+δ′si)+ai−δbi)Fi,
B1 :=

∑
i∈I1

Fi,

C :=
∑

µ(Fi)⊂�∆�

(−c′(ri+δ′si)+ai−δbi)Fi.
(3.20)

Then,
∑
i∈I(−c′(ri +δ′si)+ai −δbi)Fi = A− B1 +C . We express �C� := −B2 + B3 in

effective divisors B2 and B3 without common irreducible components. Here, we note

that f(B1+B2)≠ Z , from Claim 3.11 and from the fact that the locus f−1(Bs|p1H0|)=
µ−1(Λ(p1))≠∅ and the locus µ−1(�∆�) are mutually disjoint. Note also that, �A� and

B3 are µ-exceptional effective divisors because if ai > 0 then Fi is µ-exceptional.

By Theorem 2.3, the homomorphism

H1

(
Y ,�Y

(
mµ∗H+

∑
i∈I

⌈(−c′(ri+δ′si)+ai−δbi)⌉Fi
))

�→H1(Y ,�Y (mµ∗H+�A�+B3
)) (3.21)

is injective because f(B1+B2)≠ Z . Hence

H0(Y ,�Y (mµ∗H+�A�+B3
))

�→H0(B1,�B1

(
mµ∗H+�A�+B3

))⊕H0(B2,�B2

(
mµ∗H+�A�+B3

)) (3.22)
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is surjective, because B1∩B2 =∅ from Claim 3.8. Here

H0(B1,�B1

(
mµ∗H+�A�+B3

))
H0(B1,�B1

(
mµ∗H+�A�)) (3.23)

because B1 ∩ B3 = ∅ from Claim 3.8. We note that Supp(A|B1) is with only simple

normal crossings and �A|B1� is effective. Because mµ∗H|B1 +A|B1 −KB1 = N|B1 , we

obtain a positive integer p2 such that

H0(B1,�B1

(
p2tµ∗H+�A�

))
≠ 0 (3.24)

for all t � 0, from Claim 3.11 and [8, Theorem 5.1]. Consequently, the assertion of

Proposition 3.3 follows.

Proof of Theorem 1.5. Because κ(X,KX + ∆) > 0, we have κ(X,KX + ∆) =
ν(X,KX+∆) from the log minimal model and the log abundance theorems in dimen-

sion less than or equal 3 (see [10, 15] and Proposition 3.1). We note that, (KX+∆)|�∆� is

semiample from Proposition 2.8 and Theorem 1.6. Thus, Proposition 3.2 implies that

Bs|m(KX +∆)| ∩ �∆� =∅ for some m ∈ N>0 with m(KX +∆) being Cartier. Conse-

quently, Proposition 3.3 gives the assertion.
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