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HARDY-LITTLEWOOD TYPE INEQUALITIES
FOR LAGUERRE SERIES
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Let {c;} be a null sequence of bounded variation. We give appreciate smoothness and
growth conditions on {c;} to obtain the pointwise convergence as well as L”-convergence
of Laguerre series > c jéﬁj‘?. Then, we prove a Hardy-Littlewood type inequality f6’° [f(t)|"dt <
CX5olejl"j1=712 for certain v < 1, where f is the limit function of 3. cj£%. Moreover, we
show that if f(x) ~ > ¢ J-SE? isin L", » = 1, we have the converse Hardy-Littlewood type
inequality X7 ICJ-IVJ_'B <ClIf@)"dt forr =1 and B < —7/2.

2000 Mathematics Subject Classification: 42C10, 42C15.

1. Introduction. Given complex numbers {c;} jez satisfying > |c;|"(]j]+1)" 2 < oo
for some v > 2, Hardy and Littlewood [4] (see also [14, Theorem 3.19, page 109])
proved in 1926 that ¢,’s are the Fourier coefficients of an f in L", and
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21 .
JO Fo"dt <A, S e (1i1+1) (1.1)

j=—o

Also, they proved that if f(x) ~ > c;e¥* isin L", 1 <7 < 2, then

00

21T
> 1cj;7(|j|+1)7*zsA,J0 | £(t)|"dt. (1.2)

j=—o0

Later on, Paley [10] (see also [14, Theorem 5.1, page 121]) extended Hardy and Little-
wood’s results to general systems of orthonormal and uniformly bounded functions
over an interval. In this paper, we concentrate on the Laguerre system, and prove the
similar inequalities

J | f()|"dt<C> |ej|"j17"? for certain ¥ <1,
0 :
j=0

(1.3)

2. |CJ|YJTBSCJ |£(t)|"dt forr =1, 3<7g,
=0 0

where £ means max{&,1}.
For a > —1, the Laguerre polynomials of type a are defined by the formula
1 an

Lﬁ(t) :Etiaetﬁ(lﬂpraeit), n:O,l,Z,.... (1.4)
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Each L% is a polynomial of degree n, whose explicit expression is

no_ 1)k
e =y &0 (”*“)tk. (1.5)

oy kb \n-k

The Laguerre polynomials form a complete orthogonal system in L?(R*,t%e~tdt).
Hence, if we define %% (t) by

a _ L —t/2¢al27a
:en(t)_,/r(n+a+l)e £Y2L9 (1), (1.6)

then they form an orthonormal basis in L?(R*,dt) with the inner product (f,g) =
Iy” f()g(t)dt.

A number of authors have studied the problems of pointwise convergence and
mean convergence for different types of Laguerre series. Of particular interest are
the results of Askey and Wainger [1], Chen and Lin [2], Dlugosz [3], Muckenhoupt
[7, 8, 9], and Stempak [11, 12, 13]. However, all of them started at a given function f
to get the Laguerre coefficients {c;}, and proved the pointwise convergence or mean
convergence of the series > ¢ jﬁf?. In this paper, we start from {c;} satisfying

00

> |Arc; | jPrRTYA < oo, 1.7)
j=0
lc;|jr/2 4 (log ) " =0(1) asj— oo, (1.8)

for some p € N and € > 0, and prove the pointwise convergence of Laguerre series
2.cj%7. Here, APc; denotes the finite-order difference

Al¢j=cj, APcj=AP7lci—AP7lci forp eN. (1.9)

Then, we strengthen the assumptions on {c;} such that the Laguerre series > ¢ jifj?
converges not only pointwise but also in L"-metric. In addition, we obtain the Hardy-
Littlewood type inequalities.

THEOREM 1.1. Leta = 0. Assume that {c;: j = 0} satisfies

Z |APc|"jT2 < (1.10)
lc; !Jz“ 324 = 0(1) as j — oo, (1.11)

forsomep €N, e > 0, andr <min{1,4/(1+2p)}. Then, the Laguerre series ZCJZSB?(t)
converges to f € L"(R*) pointwise and in L" -metric, where

00

ft) =e /22 Z APD;)LS (1) (1.12)

andbj=cjjl/T(j+a+1).
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COROLLARY 1.2. Under the same assumptions of Theorem 1.1, there is a constant
C independent of f such that

J FO7dt<CS || j (1.13)

0 s

We also prove the above converse inequality in the following theorem.

THEOREM 1.3. Leta > 0.If f € L"(R"), ¥ > 1, then there is a constant C independent
of f, such that

ZlcjlyfﬁsCL | f(t)|"dt Vﬂ<—g, (1.14)
j=0

where c; = [ f ()£ (t)dt.

REMARK 1.4. For 1 <r <4/3, we can find a B < —r/2 such that 8 > v — 2. Thus,
Theorem 1.3 improves Paley’s result for Laguerre system {58;‘}. Moreover, Kanjin [5]
showed that, for f(t) ~ Z;’o:()ng?(t) in HY(R*), X7cj(j+1)"" < Cll fll g1 g+, which
is the special case of Theorem 1.3 for ¥ =1 and § = —1.

In the next section, we first give some estimates of Laguerre functions and talk
about the pointwise convergence and L"-convergence of Laguerre series. Then we
prove Corollary 1.2 and Theorem 1.3 in Section 3. Finally, we mention that C, possibly
with subscripts, denotes a constant which may stand for a different number from one
appearance to another.

2. Pointwise convergence and mean convergence. It is known that the Laguerre
functions satisfy the estimates

VCt“/Zv“”, ifOstsl;
v
Ct’1/4\/71/4, ifl <t$%;
EHGIES v (2.1)
~1/4(1,1/3 -1/4 LoV 3v.
Cv (vIB+t-v]) , 1fE<ts7,
Ce™t, if?%}<t<oo,

where v =4j+2a+2, and both C and y are positive constants independent of j and
t (cf. [1, 9]). Hence, by a straightforward calculation, we have

|L3?‘(t) | < Cet/2p=0/2-1/4 jo2-1/4(1 4 $)1/6 (2.2)

forall j>0,allt>0,and x =a,a+1,...,a+p. Also,

[Tl rar < o @3
0
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forr/2+pr <2,v #4,a>-2/r,and all j = 0. In particular, | %%}, g+ < Cjl="/2 for
0<r<4,a>-2/r,and all j = 0. As to = 4, it follows from [6, Lemma 1] that, for
a=0,

O (jlr-1/2), for1l <r <4,
151 1 ey = O (G172 (log ) 1I7), for v = 4; =
o(j~1r), for v > 4.

Let 5, (t) denote the partial sums of Laguerre series defined by

n

sn(t) = > c; L5 (t). (2.5)

Setbj=cj/jl/T'(j+a+1). Then

n
sn(t) = e /2t42 Y b;Le(t). (2.6)
j=0

For t > 0 and n € N, the well-known equation
LYH(E) =LY (1) = L, (D) 2.7)

and the summation by parts yield
n
sn(t) = e /22 ( > (Ab)LYH () + bML““(t)) (2.8)

Repeating the same process, we get

n p-1
Sn(t) _ eft/Zta/Z Z (Apbj a+10(t) +eft/2ta/2 Z Ajanrl) a+J+l(t)
j=0 =0 (2.9)

=L (t)+1(1).

Using the inequality 1 —/1—y <y for y € [0,1], we have

j! jl a -
Ak Ji < J < —a/2-1 f 1<k<
‘ ( I"(j+a+1)>‘<Cp\/l"(j+a+1)j+a+1<ac”] orl=k=p,

(2.10)

which with Leibniz’s rule implies
J!
rh. | = AP s [
A7 D] ‘A (CJ F(j+a+1))‘

P 1
(j+p) ) a1 (PY(nin 2.11)
= [(j+p+a+1) |a7¢;| +Capi” lzo i A%

sCap{f’“/zlA” |+ 1(}_421%71\@\)}-
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Thus,

IL(t)| < Cape™ ”zt“/ZZ{ I T 1(, max |ck|)}|L?”’(t)|.
i=0 Jj<k<j+p-1

(2.12)
Condition (1.8) says that the inequality |c;|j7/?>~1/4 < C(log j) '€ holds for all j’s with
sufficiently large C. Hence, conditions (1.7), (1.8), and estimate (2.2) yield

n

IRCIETSS SLJT—a/2|ApCJ_| +J=-a/z-1( max |Ck|>} Hat+p)/2-1/4
=0 Jj<k<j+p-1

n

<G > JPEVA AP+ > FY max kPP g

=0 jo  Jsksitpol (2.13)
saf el st

€
j=0 Jj= 0oJ (10 )

<o VneN.

On the other hand, (1.8), (2.2), and the equality

i /.
Ay = ({)(—1)%% (2.14)

i=0
imply

J

p-1 .
[L2(8)] < e /2t Z {Z ( )(n+1+w a2 lcmm\}lL““”(t)\

< Cap Z {Z <l>(1’l+l+l) D=L o gy | £ U022 ”4(1+t)”6} (2.15)

i=0
p-1
<Ca,,,sup{kf’/2 1/4’6 ’} Zt G+D/2e= 1/4(1+t)1/6
j=0

— 0 asn — oo.

Hence, s, (t) converges pointwise to

00

f(t)=e t?gar? Z APD;)LS (1) (2.16)

provided (1.7) and (1.8) hold. Hence, we have the following lemma.

LEMMA 2.1. Let a = 0. Assume that {c; : j = 0} satisfies conditions (1.7) and (1.8).
Then, the Laguerre series Zcﬁﬁ?(t) converges pointwise to the function f (t) in (2.16),
teR*.
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Now we are ready to prove Theorem 1.1. Sincev <l and r/2+pr <2,p/2—-1/4 <
2/v —3/2 which says that (1.11) is stronger than (1.8). Also, we have

M

0

(|AaPc;| 720" < > |Are |72 (2.17)
J Jj=0

Thus, condition (1.10) yields

(|AaPc; | P24 < o, (2.18)

T

0

J

which implies the validity of (1.7) since £" < £!. By Lemma 2.1, we get the pointwise
convergence.

To finish the proof of Theorem 1.1, we still need to check its L"-convergence. From
(2.9) and inequality

lg+hI7 <llgli+lRrI; foro<r=<1, (2.19)

we have

L)|sn<w-—f<w|*dt5; s Jg [et2¢al2 | (APD;) LY ()|} it

j=n+1

Pl e _ . (2.20)
+zj{wWWuwmmﬁWHmym
j=0"0
=13+ 14.
The definition of 55?, (1.10), (1.11), (2.3), and (2.11) give us
I;<Cap ;j“/ZAvijjW/ZJ [t (1) | dt
j=n+1 0
< 1 R
<C (N’c'+'* max c ) T
w 3 (18r] 407 max o) s
— 0 asn— oo,
(2.21)
p-1 00 3
I4 < Cup z |1’l“/2Ajbn+1 |Vn(j+1)r/2j |t7(j+1)/2$ﬁ+J+l(t) lrdt
‘ 0
Jj=0

<Cap max |cx| mt77?

n<k<n+p

— 0 asn — oo.

Hence, Theorem 1.1 follows immediately.

3. Proofs of Hardy-Littlewood type inequalities. From the previous arguments,
conditions (1.10) and (1.11) imply that the series > ¢ JéE‘}(t) converges pointwise and
in L"-metric to f(t). We show the Hardy-Littlewood type inequalities as follows.
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PROOF OF COROLLARY 1.2. The hypotheses of Corollary 1.2, the monotone con-
vergence theorem, (2.4), and (2.19) can be used to show that

J, rwra-];

<> e IVL | 9(t) | dt 3.1)
j=0

’
dt

> ¢ (t)
j=0

<C Y el jrR
Jj=0
O
PROOF OF THEOREM 1.3. Let f € L"(R*),r > 1,and ¢j = [y f(OL(t)dt. Holder’s
inequality and (2.4) yield

1" = | [ Foswa s

([ s l"dt)Wff”

<

iy 3.2
ClLENG oy 7771278, for » > % (3-2)

- - - 4

< C||f\|fvm+)j‘”3+ﬁ(logj)l/s, for v = 3

ClLENG 7, for v < g

where 1/v +1/r" =1.Since B < —7r/2 implies r /v —7v/2+ B < —1,

> el PP < CIfIy. (3.3)
Jj=0 0
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