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One of the ways of transforming hypersurfaces in Riemannian manifold is to move their
points along some lines. In Bonnet construction of geodesic normal shift, these points
move along geodesic lines. Normality of shift means that moving hypersurface keeps or-
thogonality to the trajectories of all its points. Geodesic lines correspond to the motion of
free particles if the points of hypersurface are treated as physical entities obeying Newton’s
second law. An attempt to introduce some external force F acting on the points of moving
hypersurface in Bonnet construction leads to the theory of dynamical systems admitting
a normal shift. As appears in this theory, the force field F of dynamical system should
satisfy some system of partial differential equations. Recently, this system of equations
was integrated, and explicit formula for F was obtained. But this formula is local. The main
goal of this paper is to reveal global geometric structures associated with local expressions
for F given by explicit formula.
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1. Introduction. Let M be a Riemannian manifold of the dimension n. Newtonian

dynamical system in M is determined in local coordinates by n ordinary differential

equations (ODEs),

ẍk+
n∑
i=1

n∑
j=1

Γ kijẋ
iẋj = Fk(x1, . . . ,xn,ẋ1, . . . , ẋn

)
, (1.1)

where k = 1, . . . ,n. Here Γ kij = Γ kij(x1, . . . ,xn) are components of metric connection,

while Fk are components of force vector F. They determine force field of dynamical

system (1.1). Let S be a hypersurface inM and let p ∈ S. Consider the following initial

data for the system (1.1):

xk|t=0 = xk(p), ẋk|t=0 = ν(p)·nk(p). (1.2)

Here nk(p) are the components of the unit normal vector n to S at the point p. The

initial data (1.2) determine the trajectory starting from the point p in the direction

of the normal vector n(p). The quantity ν(p) in (1.2) is introduced to determine the

modulus of initial velocity for such trajectory.
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We choose and fix some point p0 ∈ S, then consider a smooth function ν(p) defined

in some neighborhood of the point p0. Let

ν
(
p0
)= ν0 ≠ 0. (1.3)

Then in some (possibly smaller) neighborhood of p0, this function ν(p) does not

vanish and hence takes values of some definite sign. Upon restricting ν(p) to such

neighborhood, we use it to determine the initial velocity in (1.2). As a result, we obtain

a family of trajectories of dynamical system (1.1). Displacement of points of hyper-

surface S along these trajectories determines shift maps ft : S → St . Relying upon the

theorem on smooth dependence on initial data for the system of ODEs (see [15, 20]),

we can assume that the shift maps ft : S′ → S′t are defined in some neighborhood S′ of

the point p0 on S for all values of the parameter t in some interval (−ε,+ε) on the real

axisR. At the cost of further restriction of the interval (−ε,+ε), we can make the maps

ft : S′ → S′t diffeomorphisms and make their images S′t smooth hypersurfaces, disjoint

union of which fills some neighborhood of the point p0 in M . Moreover, at the cost of

the restriction of the neighborhood S′ and the range of the parameter t, we can reach

the situation in which shift trajectories would cross hypersurfaces St transversally at

all points of mutual intersection. For such a case we state the following definitions.

Definition 1.1. The shift ft : S′ → S′t of some part S′ of the hypersurface S along

trajectories of Newtonian dynamical system (1.1) is called a normal shift if all hyper-

surfaces S′t arising in the process of shifting are perpendicular to the trajectories of

this shift.

Definition 1.2. Newtonian dynamical system (1.1) with force field F is called a

system admitting normal shift in strong sense if for any hypersurface S in M , for any

point p0 ∈ S, and for any real number ν0 ≠ 0, we can find a neighborhood S′ of the

point p0 on S, and a smooth function ν(p), which does not vanish in S′ and which is

normalized by condition (1.3), such that the shift ft : S′ → S′t , defined by this function,

is a normal shift in the sense of Definition 1.1.

First, we used the definition without the normalizing condition (1.3) for the function

ν(p). Such definition is called the normality condition. Definition 1.2 strengthens this

condition making it more restrictive with respect to the choice of force field F of the

dynamical system (1.1). Therefore it is called strong normality condition.

Definitions 1.1 and 1.2 form the base of the theory of dynamical systems admitting

the normal shift. This theory was constructed in [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 22, 24, 26, 27, 28, 29, 30]. The results of these papers were used in preparing

theses [3, 31].

As it was shown in [31], Newtonian dynamical systems admitting the normal shift

of hypersurfaces in Riemannian manifolds of the dimension n � 3 can be effectively

described. The force field of such systems is given by the explicit formula

Fk = h(W)NkWv
−v

n∑
i=1

∇iW
Wv

(
2NiNk−δik

)
, (1.4)
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which contains one arbitrary function of one variable h = h(w) and one arbitrary

function of (n+1) variables W =W(x1, . . . ,xn,v) restricted by the natural condition

Wv = ∂W∂v ≠ 0. (1.5)

The components of the gradient ∇W in formula (1.4) are the partial derivatives

∇iW = ∂W
∂xi

. (1.6)

Here Ni and Nk are the components of the unit vector N directed along the velocity

vector:

Ni = v
i

|v| , Nk = vk|v| . (1.7)

Note that v in (1.5) and (1.6) is treated as independent variable being (n+1)th argu-

ment of the function W(x1, . . . ,xn,v). But in formula (1.4) it designates modulus of

the velocity vector. Therefore, upon calculating partial derivatives and upon substi-

tuting (1.5), (1.6), and (1.7) into (1.4), the independent variable v should be replaced

by |v|.

2. The problem of globalization. If we fix a pair of functions (h,W), then (1.4)

uniquely determines the force field F of Newtonian dynamical system (1.1). However,

fixing force field (1.4), we cannot uniquely determine the corresponding pair of func-

tions (h,W). In particular, global force field F can be represented by different pairs

of functions in different local maps forming an atlas of the manifold M . This leads

to a problem of describing global geometric structures associated with such a way

of defining force field F. This problem was formulated by Kozlov and Romanovsky

when I was reporting my thesis [31] in the seminar of Netsvetaev at Saint-Petersburg

department of Steklov Mathematical Institute December (2000).

There is another problem of globalization concerning the process of normal shift of

some particular hypersurface S along trajectories of dynamical system (1.4). We will

call it second problem of globalization, though, historically, it arises earlier than the

first one. The second problem was formulated by Mishchenko when I was reporting,

thesis in the seminar of the Chair of higher geometry and topology at Moscow State

University December (2000). It is expedient to deal with the second problem of glob-

alization only upon solving the first one. Therefore we will consider it in a separate

paper.

3. Some general remarks on formula (1.4) and on the theory of Newtonian dy-

namical systems. Our further consideration will be based mainly on formula (1.4).

However, passing from Definitions 1.1 and 1.2 directly to formula (1.4), we omit a sub-

stantial amount of the theory. In this section, we sketch in brief this omitted part of

the theory and characterize our approach to Newtonian dynamical systems in whole.

First of all, note that the systems of second-order ODEs describing dynamics on

manifolds appear not only in Newtonian mechanics, but also in [33, 34] for example.

In the general case, when the manifold is not equipped with Riemannian metric, they
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are written as

ẍk = Φ(x1, . . . ,xn,ẋ1, . . . , ẋn
)
, k= 1, . . . ,n. (3.1)

Equation (3.1) can be written in the form of first-order ODEs

ẋk = vk, v̇k = Φ(x1, . . . ,xn,v1, . . . , v̇n
)
. (3.2)

In this form they describe the dynamics in the tangent bundle TM corresponding to

the following vector field:

Φ = v1 · ∂
∂x1

+···+vn · ∂
∂xn

+Φ1 · ∂
∂v1

+···+Φn · ∂
∂vn

. (3.3)

In our case, when M is a Riemannian manifold, there is a canonical map identifying

tangent space Tq(TM) with direct sum of two copies of tangent space Tp(M), where

p =π(q) and π : TM →M is a projection of TM onto the base M ,

Tq(TM) �→ Tp(M)⊕Tp(M). (3.4)

Applying this map to vector (3.3), we obtain two vectors in Tp(M): the first is the

vector of velocity v=π∗(Φ) represented by the formula

v= v1 · ∂
∂x1

+···+vn · ∂
∂xn

=
n∑
k=1

vk · ∂
∂xk

(3.5)

and the second is the force vector F. It is represented by the formula

F=
n∑
k=1

(
Φk+

n∑
i=1

n∑
j=1

Γ ijkv
ivj

)
· ∂
∂xk

. (3.6)

The components of this vector (3.6) are used when we write (1.1). The map (3.4) arises

in various papers, in particular, it was used by Anosov in [1], which is very famous in

the theory of dynamical systems.

Vectors (3.5) and (3.6) are tangent to M , but they depend on the point q ∈ TM .

Therefore they do not form vector fields in M . They form sections of pullback vector

bundle π∗(T 1
0M) induced by the map π : TM →M . In [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 22, 24, 26, 27, 28, 29, 30] and in theses [3, 31], such sections are called extended

vector fields in M , while sections of the pullback tensor bundle π∗(T rs M) are called

extended tensor fields of type (r ,s).
We denote by �(TM) the ring of smooth functions in TM . The set of all smooth

extended tensor fields form a graded algebra over this ring. It is called the extended

algebra of tensor fields in M . If M is a Riemannian manifold, then we can define two

covariant differentiations in the extended algebra of tensor fields. The first is given

by the following explicit formula in local coordinates:

∇mXi1···irj1···js =
∂Xi1···irj1···js
∂xm

−
n∑
a=1

n∑
b=1

vaΓbma
∂Xi1···irj1···js
∂vb

+
r∑
k=1

n∑
ak=1

Γ ikmakX
i1···ak···ir
j1···js −

s∑
k=1

n∑
bk=1

ΓbkmjkX
i1...ir
j1···bk···js .

(3.7)
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The second covariant differentiation ∇̃ is given by much simpler formula,

∇̃mXi1···irj1···js =
∂Xi1···irj1···js
∂vm

. (3.8)

Note that (3.8) does not depend on the presence of Riemannian metric in M . This

means that covariant differentiation ∇̃ is defined for arbitrary smooth manifold M . It

is called canonical vertical covariant differentiation. It is also called velocity covariant

differentiation or velocity gradient. The first covariant differentiation∇ introduced by

(3.7) is called space covariant differentiation or space gradient.

As an introduction to the theory of extended tensor fields see [31, Chapters III and

IV]. Slightly different way of constructing such fields is used by Sharafutdinov in [21].

But, as noted by Dairbekov, both theories are isomorphic to each other.

Now we return to strong normality condition formulated in Definition 1.2. This con-

dition is quite transparent from a geometrical point of view, but we need an effective

criterion to check if it is satisfied for a given Newtonian dynamical system. Such cri-

terion is formulated in terms of the so-called normality equations. First the following

is the system of weak normality equations:

n∑
i=1

(
v−1Fi+

n∑
j=1

∇̃i
(
NjFj

))
Pik = 0,

n∑
i=1

n∑
j=1

(∇iFj+∇jFi−2v−2FiFj
)
NjPik

+
n∑
i=1

n∑
j=1

(
Fj∇̃jFi
v

−
n∑
r=1

NrNj∇̃jFr
v

Fi

)
Pik = 0

(3.9)

that was derived in [6, 7]. Later in [4, 5] additional normality equations were derived

n∑
i=1

n∑
j=1

PiεP
j
σ

( n∑
m=1

Nm
Fi∇̃mFj
v

−∇iFj
)

=
n∑
i=1

n∑
j=1

PiεP
j
σ

( n∑
m=1

Nm
Fj∇̃mFi
v

−∇jFi
)
,

n∑
i=1

n∑
j=1

Pjσ ∇̃jFiPεi =
n∑
i=1

n∑
j=1

n∑
m=1

Pjm∇̃jFiPmi
n−1

Pεσ .

(3.10)

Normality equations (3.9) and (3.10) are written in terms of covariant derivatives (3.7)

and (3.8). Components of unit vector N in them are given by (1.7), while Pik are com-

ponents orthogonal projector onto the hyperplane perpendicular to the vector of ve-

locity. They are given by the formula

Pik = δik−NiNk. (3.11)

The relation between normality equations and Definition 1.2 is established by the

following theorem proved in [31, Chapter V].
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Theorem 3.1. Newtonian dynamical system in Riemannian manifoldM admits nor-

mal shift of hypersurfaces in the sense of Definition 1.2 if and only if its force field F

satisfies both systems of normality equations (3.9) and (3.10) at all points q = (p,v) of

the tangent bundle TM , where v = |v|≠ 0.

The next step in exploring the structure of dynamical systems admitting normal

shift of hypersurfaces was made in [12], where it was found that each solution of

normality equations (3.9) and (3.10) is determined by some extended scalar field A:

Fk =ANk−|v|
n∑
i=1

Pik∇̃iA. (3.12)

Formula (3.12) is called scalar ansatz. Substituting (3.12) into the normality equa-

tions (3.9) and (3.10), we reduce them to the equations for the scalar function A =
A(x1, . . . ,xn,v1, . . . ,vn). By further efforts in [31, Chapter VII], these reduced equa-

tions were solved and formula (1.4) was derived.

4. Scalar ansatz and gauge transformations. Consider the projection of the force

vector (1.4) onto the direction of the velocity vector. This projection can be calculated

as a scalar product of vectors F and N:

A= (F |N)=
n∑
k=1

FkNk. (4.1)

Substituting (1.4) into (4.1), we get the following expression for A:

A= h(W)
Wv

− v
Wv
(∇W |N). (4.2)

A very important point is that the scalar field A in formulas (4.1) and (4.2) is the same

field as in (3.12). Therefore force fields (1.4) can be recovered by corresponding scalar

fields A. This recovery is given by scalar ansatz (3.12). Note that in (4.2) we apply

covariant derivative (3.7) to extended scalar field W . But the scalar field W depends

on the components of the velocity vector v only through its dependence on v , where

v = |v|. For such field W formula (3.7) reduces to (1.6).

Formulas (4.1) and (3.12) set up a one-to-one correspondence between vector fields

F of the form (1.4) and scalar fields A of the form (4.2). Formula (4.2) uniquely deter-

mines the scalar fieldA by the pair of functions (h,W). But the inverse correspondence

is not univalent. This is confirmed by the existence of gauge transformations,

W
(
x1, . . . ,xn,v

)
�→ ρ(W(x1, . . . ,xn,v

))
,

h(w) �→ h(ρ−1(w)
)·ρ′(ρ−1(w)

)
,

(4.3)

with one arbitrary function of one variable ρ = ρ(w). Transformations (4.3) change h
and W , but they do not change the scalar field A.

We investigate which part of information on h and W can be recovered by A. Sup-

pose that the point p ∈M is fixed. The dependence of A on the direction of velocity

vector at the point p is determined by the term N in the scalar product (∇W | N).
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Therefore if we change v by −v, the first summand in (4.2) remains unchanged, while

the second changes in sign. Hence

h(W)
Wv

= A(v)+A(−v)
2

,
(∇W |N)
Wv

= A(−v)−A(v)
2|v| . (4.4)

Keeping the value of v = |v| unchanged, we can change the direction of vector N. This

allows us to determine each component of vector ∇W/Wv . Thus by A we can recover

the scalar h(W)/Wv and the vector ∇W/Wv .

Let p be a point of the manifold M . Suppose that the field A is determined by two

pairs of functions (h,W) and (h̃,W̃ ) in some neighborhood of p. Then

h(W)
Wv

= h̃
(
W̃
)

W̃v
,

∇W
Wv

= ∇W̃
W̃v

. (4.5)

More precisely, we should note that functions W and W̃ are determined in some do-

main U in a Cartesian product M×R+, where by R+ we denote the set of positive real

numbers. Second relationship in (4.5) means that the complete gradients of these two

functions in U are collinear:

gradW ‖ gradW̃ . (4.6)

The conditionsWv ≠ 0 and W̃v ≠ 0 mean that both gradients in (4.6) are nonzero. This

situation is described by the following lemma.

Lemma 4.1. If the gradient of one smooth function f(x1, . . . ,xn) is nonzero in some

domain U ⊂Rn and the gradient of another smooth function g(x1, . . . ,xn) is collinear

to it in U , then functions f and g are functionally dependent in U . This means that for

each point p ∈U , we can find some neighborhood O(p) and a smooth function of one

variable ρ(y) such that g = ρ◦f in O(p).

Lemma 4.1 is a purely local fact following from the theory of implicit functions

(see [16, 18]). But, in spite of this, it is relevant, since it describes the structure of

nonuniqueness in inverse correspondence for (h,W)→A.

Theorem 4.2. Suppose that two pairs of functions (h,W) and (h̃,W̃ ), defined in

some domain U ⊂M×R+, determine the same force field F of the form (1.4). Then for

each point q ∈ U , we can find some neighborhood O(q) and a smooth function of one

variable ρ(y) such that (h,W) and (h̃,W̃ ) are bound by the gauge transformation (4.3)

in O(q).

5. Projectivization of cotangent bundle. Denote by � the Cartesian product

M ×R+. Let �∗� be the cotangent bundle for �. If we take the pair of functions

h and W , which determine the force field F of the form (1.4), then we see that the

derivatives

∇1W,∇2, . . . ,∇nW,Ww (5.1)

constitute the set of components of differential 1-form ω = dW . The domain, where

this 1-form is defined, should not coincide with the whole manifold �. Hence, we have
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a local section of the bundle �∗�. The second summand in formula (1.4) does not

contain the components of differential form ω by themselves, rather, it contains the

quotients

bi =−∇iWWv =− ωi
ωn+1

. (5.2)

We pass to quotients of fibers of cotangent bundle �∗� by the action of multiplicative

group of real numbers ω → α ·ω. In other words, we replace linear spaces �∗
q (�)

over the points q ∈� by corresponding projective spaces �∗
q (�). As a result we get

projectivized cotangent bundle �∗�. This is locally trivial bundle �∗�, standard fiber

of which is an n-dimensional projective space RPn (see the definitions in [17] or [19]).

Fibers of projective bundle �∗� are parameterized by the components of covectors

ω taken up to an arbitrary numeric factor:

α·ω1,α·ω2, . . . ,α·ωn,α·ωn+1. (5.3)

If ωn+1 ≠ 0, then we can choose numeric factor α = 1/ωn+1. Then from (5.3) we

obtain −b1,−b2, . . . ,−bn,1. This means that quantities bi from (5.2) are the local co-

ordinates in one of the affine maps in projective fiber of the bundle �∗�. We turn

back to the problem of globalization formulated in Section 2. From formulas (4.5) we

derive the following proposition.

Lemma 5.1. Each force field F of the form (1.4) determines some global section σ of

projectivized cotangent bundle �∗�.

But not all global sections of the bundle �∗� can be obtained in this way. There is

a restriction. The matter is that on the level of cotangent bundle �∗�, our section σ
in Lemma 5.1 is represented by closed differential forms ω, which possibly may be

defined only locally. We study how this fact is reflected on the level of the projective

bundle �∗�. In order to recover components of the form ω in (5.3) by b1,b2, . . . ,bn,

we should take a proper factor ϕ =ωn+1. Then

ωi =

−biϕ for i= 1, . . . ,n,

ϕ for i=n+1.
(5.4)

Closedness of the form ω is written in the form of the following relationships:

∂ωi
∂xj

− ∂ωj
∂xi

= 0. (5.5)

Here we denote v = xn+1. This is natural, since � = M ×R+. Substituting (5.4) into

(5.5), for i � n and j � n we get

∂bi
∂xj

ϕ+ ∂ϕ
∂xj

bi = ∂bj∂xiϕ+
∂ϕ
∂xi

bj. (5.6)
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From the same relationships (5.5) for the case i � n and j =n+1 we derive

∂ϕ
∂xi

=−∂bi
∂v
ϕ− ∂ϕ

∂v
bi. (5.7)

Now we substitute the derivatives ∂ϕ/∂xi and ∂ϕ/∂xj , calculated according to (5.7),

into (5.6). As a result we obtain the equations free of ϕ:

(
∂
∂xj

+bj ∂∂v
)
bi =

(
∂
∂xi

+bi ∂∂v
)
bj. (5.8)

Note that formulas (5.8) are already known (see [31, Chapter VII, Section 4]). However,

the geometric interpretation of quantities bi in [31] was quite different.

Lemma 5.2. Each force field F of the form (1.4) determines some global section σ of

the bundle �∗� with components satisfying (5.8).

Equation (5.8) above arises as a necessary condition for the existence of closed

differential 1-formω corresponding to the section of projective bundle �∗�. But it is

a sufficient condition for the existence of such 1-form as well (certainly, only for local

existence). We prove this fact. In order to integrate (5.7) we use the auxiliary system

of Pfaff equations,

∂V
∂xi

= bi
(
x1, . . . ,xn,V

)
, i= 1, . . . ,n. (5.9)

The relationships (5.8) are exactly the compatibility conditions for (5.9). Remember

that the variables x1, . . . ,xn,v are local coordinates in the manifold � =M×R+, while

the first n of them are local coordinates in M . Fix some point p0 ∈M . Without loss of

generality, we can assume that local coordinates of the point p0 are equal to zero. For

compatible system of Pfaff equations (5.9) we set up the following Cauchy problem at

the point p0:

V |x1=···=xn=0 =w. (5.10)

Thereby we take w > 0. The solution of Cauchy problem (5.10) for (5.9) does exist

and it is unique in some neighborhood of the point p0. It is a smooth function of

coordinates x1, . . . ,xn and parameter w,

v = V(x1, . . . ,xn,w
)
. (5.11)

For x1 = ··· = xn = 0 due to (5.10), we have V(0, . . . ,0,w)=w. Therefore

∂V
∂w

|x1=···=xn=0 = 1. (5.12)
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Consider the set of points q = (p0,v) in �. They form a linear ruling in Cartesian

product � =M×R+. Denote it by l0 = l(p0). Equality (5.12) means that for any point

q0 ∈ l0, there is some neighborhood of this point, where we have local coordinates

y1, . . . ,yn,w related to the initial coordinates x1, . . . ,xn,v as

xi =yi, i= 1, . . . ,n,

v = V(y1, . . . ,yn,w
)
.

(5.13)

Back transfer to initial coordinates is determined by the function W(x1, . . . ,xn,v):

yi = xi, i= 1, . . . ,n,

w =W(x1, . . . ,xn,v
)
.

(5.14)

Function W(x1, . . . ,xn,v) is calculated implicitly from the relationship (5.11) consid-

ered as the equation with respect to w.

We use (5.13) and (5.14) to simplify (5.7). Instead of the functionϕ(x1, . . . ,xn,v) in

these equations, we introduce another function,

ψ
(
y1, . . . ,yn,w

)=ϕ(y1, . . . ,yn,V
(
y1, . . . ,yn,w

))
. (5.15)

Equation (5.7) is reduced to the following equation for function (5.15):

∂ψ
∂yi

=−Biψ. (5.16)

The quantities Bi are expressed through the derivatives of the function V :

Bi = 1
Z
∂Z
∂yi

, Z = ∂V
∂w
. (5.17)

It is easy to see that (5.16) is a system of Pfaff equations, that is compatible due

to (5.17). Moreover, it is explicitly integrable. General solution of (5.16) is given by the

following explicit formula:

ψ= C(w)
Z
(
y1, . . . ,yn,w

) . (5.18)

Here C(w) is an arbitrary smooth function of one variable. Now we use the local

invertibility of the relationship (5.15):

ϕ
(
x1, . . . ,xn,v

)=ψ(x1, . . . ,xn,W
(
x1, . . . ,xn,v

))
. (5.19)

From (5.18) and (5.19) we derive a general solution for the system of (5.7),

ϕ = C(W)·Wv, Wv = ∂W∂v . (5.20)
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Similar to force field F in formula (1.4), it is determined by two functions C(w) and

W(x1, . . . ,xn,v), the latter one satisfying condition (1.5). This coincidence is not oc-

casional. From (5.9) and from (5.19) for bi, we derive the relationship

bi =−∇iWWv , (5.21)

being of the same form as (5.2). Certainly, the function W in (5.21) obtained by in-

verting local change of variables (5.13) should not coincide with the initial function

W in (5.2). The relation of these two functions is characterized by Theorem 4.2. The

calculations we have just made result in the following lemma, sharpening Lemma 5.2.

Lemma 5.3. The relationships (5.8) form a necessary and sufficient condition for

global section σ of projectivized cotangent bundle �∗� given by its components b1, . . . ,
bn in local coordinates to be related to some force field F of the form (1.4).

6. Involutive distributions. Relying upon Lemmas 5.2 and 5.3, now we consider

some global section σ of projectivized cotangent bundle �∗� that satisfies (5.8). We

reveal invariant meaning of these equations. For this purpose we consider the vector

fields

Li = ∂
∂xi

+bi ∂∂v , i= 1, . . . ,n, (6.1)

and some differential 1-formωwith components (5.4). Values of vector fields (6.1) are

linearly independent at each point of the domain, where they are defined. These values

belong to the kernel of the formω for any choice of functionϕ in (5.4). Equation (5.8)

is exactly the commutation conditions for vector fields (6.1):

[
Li,Lj

]= 0. (6.2)

Note that global sections of the bundle �∗� are in a one-to-one correspondence with

n-dimensional distributions in the manifold �, whose dimension is equal to n+1.

Indeed, in the neighborhood of each point q ∈�, the section σ of the bundle �∗� is

determined by some 1-formω fixed up to a scalar factorϕ. But the kernelU = Kerω⊂
�q(�) does not depend on this factor. Therefore we have global n-dimensional dis-

tribution U = Kerσ . And conversely, if n-dimensional distribution U is given, then in

the neighborhood of each point q ∈ �, we have 1-form ω such that U = Kerω. The

form ω defines local section of the bundle �∗� in the neighborhood of the point q.

The fact that the formω is determined by U uniquely up to a scalar factor means that

local sections of the bundle �∗� are glued into one global section σ of this bundle.

Condition (6.2) means that the distribution U = Kerσ is involutive (see [17]). In this

case, in the neighborhood of each point q ∈� the section σ can be represented by a

closed 1-form ω. We introduce the following terminology.

Definition 6.1. The section σ of projectivized cotangent bundle �∗� is called

closed if the corresponding distribution U = Kerσ in � is involutive.
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For the sections σ related to force fields (1.4), the manifold � is a Cartesian product

M×R+. In this case, we have a restriction expressed by condition (1.5). It can be written

as ωn+1 ≠ 0. Therefore we have the following lemma.

Lemma 6.2. Global section σ of projectivized cotangent bundle �∗� with base man-

ifold � =M×R+ satisfies condition (1.5) if and only if the corresponding distribution

U = Kerσ is transversal to linear rulings of cylinder M×R+.

For the sake of brevity we will write the condition stated in Lemma 6.2 as

Kerσ =U �R+. (6.3)

The results of Lemmas 5.2, 5.3, and 6.2 can be summarized in the following lemma.

Lemma 6.3. Each force field F of the form (1.4) determines some closed global sec-

tion σ of projectivized cotangent bundle �∗� over the base manifold � =M×R+ such

that it satisfies the additional condition (6.3). And conversely, each such section of the

bundle �∗� corresponds to some force field F of the form (1.4).

7. Normalizing vector fields. Up to now we studied only the second summand in

formula (4.2). And we have found that it gives rise to geometric structures mentioned

in Lemma 6.3. Now we consider first summand in (4.2). Denote by a the following

quotient:

a= h(W)
Wv

. (7.1)

The function a = a(x1, . . . ,xn,v) in (7.1) is invariant with respect to gauge transfor-

mations (4.3). Due to (4.5) it can be continued through the region of overlapping of two

maps, in which force field F is determined by two different pairs of functions (h,W)
and (h̃,W̃ ). But, in spite of this fact, it would be wrong to interpret a as a scalar

field on �. The matter is that in local coordinates, for which formula (1.4) holds, the

variable v plays exclusive role related with the expansion of � into the Cartesian

product M×R+. Due to this reason we derive differential equations for the function

a = a(x1, . . . ,xn,v). We apply one of the differential operators (6.1) to a. This yields

that (
∂
∂xi

+bi ∂∂v
)
a= h′(W)∇iW +biWv

Wv
− h(W)
Wv

∇iWv+biWvv
Wv

. (7.2)

If we take into account (5.2), then this relationship can be transformed into

(
∂
∂xi

+bi ∂∂v
)
a= ∂bi

∂v
a. (7.3)

Note that (7.3) are also already known (see [31, Chapter VII, Section 4]). Formula (1.4)

was derived as a result of integrating (5.8) and (7.3). Following [31], we append the

vector fields (6.1) by the following one:

Ln+1 = a ∂∂v . (7.4)
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Equations (7.3) are equivalent to the following commutation relationships:

[
Li,Ln+1

]= 0, i= 1, . . . ,n. (7.5)

Now we give invariant (coordinate-free) interpretation for the relationships (7.5).

Vector fields (6.1) by themselves have no invariant interpretation. But their linear

span at each point q coincides with n-dimensional subspace Uq ⊂ �q(�) defined by

distribution U = Kerσ . Consider one-dimensional quotient spaces,

Ωq = �q(�)
Uq

. (7.6)

They are glued into one-dimensional vector bundle Ω� over the base manifold � =
M × R+. Let x1, . . . ,xn,v be local coordinates in � not necessarily related to the

structure of Cartesian product M ×R+, but such that the vector ∂/∂v is transver-

sal to Uq. Then vectors (6.1) form the base in the subspace Uq, while elements of the

quotient space (7.6) are cosets of subspace Uq represented by vectors (7.4)

a= ClU
(
a·∂
∂v

)
. (7.7)

Sections of one-dimensional vector bundle Ω� in such local coordinates can be asso-

ciated with functions a(x1, . . . ,xn,v) or with the vector fields

X= a(x1, . . . ,xn,v
)· ∂
∂v
. (7.8)

Definition 7.1. Vector field X is called normalizing field for smooth distribution

U if for any vector field Y belonging to U the commutator [X,Y] is also in U .

Let X be normalizing vector field for involutive distribution U and let Y be in U .

Then X+Y is also normalizing vector field for U . Thus we can define normalizing

sections of the bundle Ω� obtained by passing to the quotient of tangent bundle ��

by distribution U .

Definition 7.2. Section s of quotient bundle Ω� = ��/U is called normalizing

section if in the neighborhood of each point q ∈� it is represented by some normal-

izing vector field for the distribution U .

Now we can formulate the main result of this paper, characterizing global geometric

structures associated with formula (1.4) for the force field F. The following theorem

follows from all what was said above.

Theorem 7.3. Defining Newtonian dynamical system admitting the normal shift in

Riemannian manifold M of the dimension n� 3 is equivalent to defining closed global

section σ for projectivized cotangent bundle �∗� with base � =M×R+, satisfying the

condition Kerσ �R+, and to defining normalizing global section s for one-dimensional

quotient bundle Ω� =��/U , where U = Kerσ .
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8. Integration of geometric structures. Formulating Theorem 7.3, we have made a

step forward in understanding global geometry associated with formula (1.4) for the

force field F. But as far as the effectiveness of calculation in coordinates is concerned,

we came back to a situation, in which scalar field A is expressed by the formula

A= a+
n∑
i=1

bivi, (8.1)

where quantities a and b1, . . . ,bn should be found as solutions of (5.8) and (7.3). For-

mula (4.2) was more effective. Therefore we have a natural question: can one integrate

(5.8) and (7.3) globally and find the pair of functions (h,W) that would define scalar

field A by formula (4.2) and force field F by formula (1.4) on the whole manifold �?

According to Theorem 7.3, each force field F of Newtonian dynamical system admit-

ting the normal shift is related to some unique closed global section σ of the bundle

�∗�. If such section is generated by the closed global section ω of the cotangent

bundle �∗�, then we can construct the function W =W(q) on � by integrating the

1-form ω along the curve binding the point q with some fixed point q0 on �:

W(q)=
∫ q
q0

ω. (8.2)

Formula (8.2) yields the functionW(q) that possibly can be multivalued, since the first

homotopy groupπ1(�) of manifold � can be nontrivial. This ambiguity is admissible.

It can be eliminated by passing to the universal covering of �.

Apart from σ , each force field F of Newtonian dynamical system admitting the nor-

mal shift determines some section of quotient bundle Ω� =��/U , where U = Kerσ .

We use the structure of Cartesian product M×R+ of �. This yields the vector field E

directed along linear rulings in �. If x1, . . . ,xn are local coordinates in M and if v is

natural variable ranging in positive semiaxis R+, then in local coordinates x1, . . . ,xn,v
in � this field is given by formula E = ∂/∂v . According to Theorem 7.3, we have

U = Kerσ �R+, that is, U � E. Therefore the section s of the bundle Ω� can be repre-

sented by the vector field

X= a·E. (8.3)

This representation is unique, the coefficient a is a scalar field (a function) on �.

The condition that s is a normalizing section with respect to U in local coordinates

x1, . . . ,xn,v is expressed by (7.3) for the function a. It is easy to check that if a satis-

fies (7.3), then the functionϕ = 1/a satisfies (5.7). Hence, if section s is nonzero at all

points q ∈�, then we can use ϕ = 1/a as proper integrating factor in formula (5.4)

determining the components of the closed 1-form ω. Contracting this form with the

vector field (8.3), we get

ω(X)= C(ω⊗X)= 1. (8.4)

The section σ of the bundle �∗� determines the 1-form ω up to a scalar factor,

formula (5.4) fixes this factor within the domain of local coordinates x1, . . . ,xn,v ,
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while condition (8.4) shows that 1-forms defined locally by this procedure are glued

into one global closed 1-form ω. Substituting its components into (8.1), we get

A= 1
ωn+1

−
n∑
i=1

ωivi

ωn+1
. (8.5)

Scalar field (8.5) corresponds to the force field F with components

Fk = Nk
ωn+1

−v
n∑
i=1

ωi
ωn+1

(
2NiNk−δik

)
, (8.6)

Theorem 8.1. If the section s of the quotient bundle Ω� = ��/U corresponding

to the force field F of the Newtonian dynamical system admitting the normal shift is

nonzero at all points q ∈� =M×R+, then there is a global closed 1-formω determining

F according to formula (8.6).

In [31], it was noted that if the function h(w) in formula (1.4) is nonzero, then, up

to the gauge transformation (4.3), we can take it identically equal to unity. There, this

fact was understood as purely local. Theorem 8.1 shows that it is valid in the global

situation too.

9. Absence of topological obstructions. It is well known that some geometric

structures cannot be realized in manifolds with nontrivial topology. Thus, on the

sphere S2, there are no smooth vector fields without critical points, where they vanish.

For geometric structures from Theorem 7.3 we have no such obstructions. Indeed, on

any manifold M there is a smooth function w =w(p) which is not identically zero.

Let W(p,v) = w(p)+v , where v ∈ R+. It is obvious that the function W(p,v) on

Cartesian product M×R+ satisfies condition (1.5). This function defines some global

force field F of the form (1.4) and all geometric structures from Theorem 7.3 as well.
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