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The complete convergence for pairwise negative quadrant dependent (PNQD) random variables is
studied. So far there has not been the generalmoment inequality for PNQD sequence, and therefore
the study of the limit theory for PNQD sequence is very difficult and challenging. We establish a
collection that contains relationship to overcome the difficulties that there is no general moment
inequality. Sufficient and necessary conditions of complete convergence for weighted sums of
PNQD random variables are obtained. Our results generalize and improve those on complete
convergence theorems previously obtained by Baum and Katz (1965) and Wu (2002).

1. Introduction and Lemmas

Random variables X and Y are said to be negative quadrant dependent (NQD) if

P
(
X ≤ x, Y ≤ y

) ≤ P(X ≤ x)P
(
Y ≤ y

)
, (1.1)

for all x, y ∈ R. A sequence of random variables {Xn;n ≥ 1} is said to be pairwise negative
quadrant dependent (PNQD) if every pair of random variables in the sequence is NQD.
This definition was introduced by Lehmann [1]. Obviously, PNQD sequence includes many
negatively associated sequences, and pairwise independent random sequence is the most
special case.

In many mathematics and mechanic models, a PNQD assumption among the random
variables in the models is more reasonable than an independence assumption. PNQD
series have received more and more attention recently because of their wide applications
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in mathematics and mechanic models, percolation theory, and reliability theory. Many
statisticians have investigated PNQD series with interest and have established a series of
useful results. For example, Matula [2], Li and Yang [3], and Wu and Jiang [4] obtained the
strong law of large numbers, Wang et al. [5] obtained the Marcinkiewicz’s weak law of large
numbers, Wu [6] obtained the strong convergence properties of Jamison weighted sums, the
three-series theorem, and complete convergence theorem, and Li and Wang [7] obtained
the central limit theorem. It is interesting for us to extend the limit theorems to the case of
PNQD series. However, so far there has not been the general moment inequality for PNQD
sequence, and therefore the study of the limit theory for PNQD sequence is very difficult
and challenging. In the above-mentioned conclusions, only the Kolmogorov-type strong law
of large numbers obtained by Matula [2, Theorem 1] and Baum and Katz-type complete
convergence theorem obtained by Wu [6, Theorem 4] achieve the corresponding conclusions
of independent cases, and the rest did not achieve the optimal results of independent cases.

Complete convergence is one of the most important problems in probability theory.
Recent results of the complete convergence can be found in Wu [6], Chen and Wang [8], and
Li et al. [9]. In this paper, we establish a collection that contains relationship to overcome
the difficulties that there is no the general moment inequality and obtain the complete
convergence theorem for weighted sums of PNQD sequence, which extend and improve the
corresponding results of Baum and Katz [10] and Wu [6].

Lemma 1.1 (see [1]). Let X and Y be NQD random variables. Then

(i) cov(X, Y ) ≤ 0,

(ii) P(X > x, Y > y) ≤ P(X > x)P(Y > y), for all x, y ∈ R,

(iii) if f and g are Borel functions, both of which being monotone increasing (or both are
monotone decreasing), then f(X) and g(Y ) are NQD.

Lemma 1.2 (see [6, Lemma 2]). Let {Xn;n ≥ 1} be a sequence of PNQD random variables with
EXn = 0, EX2

n < ∞, Tj(k)=̂
∑j+k

i=j+1 Xi, j ≥ 0. Then

E
(
Tj(k)

)2 ≤
j+k∑

i=j+1

EX2
i ,

Emax
1≤k≤n

(
Tj(k)

)2 ≤ 4 log2n

log2 2

j+n∑

i=j+1

EX2
i .

(1.2)

Lemma 1.3 (see [2, Lemma 1]). (i) If
∑∞

n=1 P(An) < ∞, then P(An; i.o.) = 0.
(ii) if P(AkAm) ≤ P(Ak)P(Am), k /=m, and

∑∞
n=1 P(An) = ∞, then P(An; i.o.) = 1.

Lemma 1.4. Let {Xn;n ≥ 1} be a sequence of PNQD random variables. Then for any x ≥ 0, there
exists a positive constant c such that for all n ≥ 1,

(
1 − P

(
max
1≤k≤n

|Xk| > x

))2 n∑

k=1

P(|Xk| > x) ≤ cP

(
max
1≤k≤n

|Xk| > x

)
. (1.3)

Proof. We can prove the Lemma by Lemma A.6 of Zhang and Wen [11].



Journal of Applied Mathematics 3

2. Main Results and the Proof

In the following, the symbol c stands for a generic positive constant which may differ from
one place to another. Let an � bn (an � bn) denote that there exists a constant c > 0 such that
an ≤ cbn (an ≥ cbn) for all sufficiently large n, and let Xi ≺ X (Xi 	 X) denote that there exists
a constant c > 0 such that P(|Xi| > x) ≤ cP(|X| > x) (P(|Xi| > x) ≥ cP(|X| > x)) for all i ≥ 1
and x > 0.

Theorem 2.1. Let {Xn;n ≥ 1} be a sequence of PNQD random variables with Xi ≺ X. Let {ank; k ≤
n, n ≥ 1} be a sequence of real numbers such that

|ank| � n−α, ∀k ≤ n, n ≥ 1. (2.1)

Let for αp > 1, 0 < p < 2, α > 0, and EXi = 0, for α ≤ 1. If

E|X|p < ∞, (2.2)

then

∞∑

n=1

nαp−2P
(
max
1≤k≤n

|Snk| > ε

)
< ∞, ∀ε > 0, (2.3)

where Snk =
∑k

i=1 aniXi.

Theorem 2.2. Let {Xn;n ≥ 1} be a sequence of PNQD random variables with Xi 	 X. Let {ank; k ≤
n, n ≥ 1} be a sequence of real numbers such that |ank| � n−α, for all k ≤ n, n ≥ 1. Let for
α > 0, αp > 1, 0 < p < 2. If (2.3) holds, then (2.2) holds.

Remark 2.3. Taking ani = n−α, for all i ≤ n, n ≥ 1 in Theorem 2.1, then

∞∑

n=1

nαp−2P
(
max
1≤k≤n

|Snk| > ε

)
=

∞∑

n=1

nαp−2P

(

max
1≤k≤n

n−α
∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣
> ε

)

=
∞∑

n=1

nαp−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣
> εnα

)

.

(2.4)

Hence, Theorem 4 in Wu [6] is a particular case of our Theorem 2.1.

Remark 2.4. When {Xn;n ≥ 1} is i.i.d. and ani = n−α, for all i ≤ n, n ≥ 1, then Theorems 2.1
and 2.2 become Baum and Katz [10] complete convergence theorem. Hence, our Theorems
2.1 and 2.2 improve and extend the well-known Baum and Katz theorem.
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Proof of Theorem 2.1. Without loss of generality, assume that ank > 0 for k ≤ n, n ≥ 1. Let q > 0
such that (1 + (1/αp))/2 < q < 1. For all i ≤ n, let

Yni = − a−1
ni n

α(q−1)I
(
aniXi < −nα(q−1)

)
+XiI

(
ani|Xi| ≤ nα(q−1)

)

+ a−1
ni n

α(q−1)I
(
aniXi > nα(q−1)

)
,

Unk =
k∑

i=1

aniYni.

(2.5)

Write

An =
n⋃

j=1

(∣∣anjXj

∣∣ ≥ ε
)
,

Bn =
⋃

1≤i<j≤n

((
aniXi > nα(q−1), anjXj > nα(q−1)

)⋃(
aniXi < −nα(q−1), anjXj < −nα(q−1)

))
.

(2.6)

Firstly, we prove that

(
max
1≤k≤n

|Snk| < 6ε
)

⊇ Ac
n

⋂(
max
1≤k≤n

|Unk| < 2ε
)⋂

Bc
n

=
n⋂

j=1

(∣∣anjXj

∣∣ < ε
)⋂

(
max
1≤k≤n

|Unk| < 2ε
)⋂

⋂

1≤i<j≤n

[((
aniXi ≤ nα(q−1)

)⋃(
anjXj ≤ nα(q−1)

))

⋂((
aniXi ≥ −nα(q−1)

)⋃(
anjXj ≥ −nα(q−1)

))]

=̂Dn.

(2.7)

For any ω ∈ Dn, we have

∣∣anjXj

∣∣ < ε,
∣∣anjYnj

∣∣ ≤ ∣∣anjXj

∣∣ < ε, ∀1 ≤ j ≤ n, max
1≤k≤n

|Unk| < 2ε, (2.8)

and for any 1 ≤ i < j ≤ n,

aniXi ≤ nα(q−1), or anjXj ≤ nα(q−1),

aniXi ≥ −nα(q−1), or anjXj ≥ −nα(q−1).
(2.9)
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Hence

a=̂�
{
i; 1 ≤ i ≤ n, aniXi(ω) > nα(q−1)

}
≤ 1,

b=̂�
{
i; 1 ≤ i ≤ n, aniXi(ω) < −nα(q−1)

}
≤ 1,

(2.10)

where the symbol �A denotes the number of elements in the set A.
When a = b = 0, then |aniXi(ω)| ≤ nα(q−1) for any 1 ≤ i ≤ n; thus, Yni(ω) = Xi(ω), and

therefore by (2.8),

max
1≤k≤n

|Snk| = max
1≤k≤n

|Unk| < 2ε < 6ε. (2.11)

When a = 1, b = 0 (or a = 0, b = 1), then there exists only an i0: 1 ≤ i0 ≤ n such that
ani0Xi0(ω) > nα(q−1) (or ani0Xi0(ω) < −nα(q−1)), the remaining j, |anjXnj(ω)| ≤ nα(q−1); thus,
Xj(ω) = Ynj(ω). If 1 ≤ k ≤ i0 − 1, then Snk(ω) = Unk(ω). If i0 ≤ k ≤ n, then by (2.8),

max
1≤k≤n

|Snk(ω)| = max
1≤k≤n

∣∣∣∣∣∣

∑

1≤i≤k,i /= i0

aniXi(ω) + ani0Xi0(ω)

∣∣∣∣∣∣

= max
1≤k≤n

∣∣∣∣∣

k∑

i=1

aniYni(ω) − an0Yni0(ω) + ani0Xi0(ω)

∣∣∣∣∣

≤ max
1≤k≤n

∣∣∣∣∣

k∑

i=1

aniYni(ω)

∣∣∣∣∣
+ |ani0Yni0(ω)| + |ani0Xi0(ω)|

< 2ε + ε + ε < 6ε.

(2.12)

When a = b = 1, then there exist 1 ≤ i1, i2 ≤ n such that ani1Xi1(ω) >
nα(q−1), ani2Xi2(ω) < −nα(q−1), the remaining j, |anjXj(ω)| ≤ nα(q−1); thus, Xj(ω) = Ynj(ω).
Without loss of generality, assume that i1 ≤ i2. If 1 ≤ k ≤ i1 − 1, then Snk(ω) = Unk(ω); if
i1 ≤ k < i2, then by (2.8),

max
1≤k≤n

|Snk(ω)| ≤ max
1≤k≤n

|Unk(ω)| + |ani1Yni1(ω)| + |ani1Xi1(ω)|

< 2ε + ε + ε < 6ε.
(2.13)

If k ≥ i2, then by (2.8),

max
1≤k≤n

|Snk(ω)| = max
1≤k≤n

∣∣∣∣∣∣

∑

1≤i≤k,i /= i1,i2

aniXi(ω) + ani1Xi1(ω) + ani2Xi2(ω)

∣∣∣∣∣∣

≤ max
1≤k≤n

|Unk(ω)| + |ani1Yni1(ω)| + |ani2Yni2(ω)|
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+ |ani1Xi1(ω)| + |ani2Xi2(ω)|
< 6ε.

(2.14)

Hence, (2.7) holds, that is:

(
max
1≤k≤n

|Snk| ≥ 6ε
)

⊆ An

⋃(
max
1≤k≤n

|Unk| ≥ 2ε
)⋃

Bn. (2.15)

Therefore, in order to prove (2.3), we only need to prove that

∞∑

n=1

nαp−2P(An) < ∞, (2.16)

∞∑

n=1

nαp−2P(Bn) < ∞, (2.17)

∞∑

n=1

nαp−2P
(
max
1≤k≤n

|Unk| ≥ 2ε
)

< ∞, ∀ε > 0. (2.18)

By (2.1), (2.2), Xi ≺ X, and αp > 1,

∞∑

n=1

nαp−2P(An) ≤
∞∑

n=1

nαp−2
n∑

j=1

P
(∣∣anjXj

∣∣ ≥ ε
)

≤
∞∑

n=1

nαp−2
n∑

j=1

P
(∣∣Xj

∣∣ ≥ εa−1
nj ≥ εcnα

)

�
∞∑

n=1

nαp−1P(|X| ≥ εcnα)

=
∞∑

n=1

nαp−1
∞∑

j=n

P
(
εcjα ≤ |X| < εc

(
j + 1

)α)

=
∞∑

j=1

j∑

n=1

nαp−1P
(
εcjα ≤ |X| < εc

(
j + 1

)α)

≤
∞∑

j=1

jαpP
(
εcjα ≤ |X| < εc

(
j + 1

)α)

� E|X|p < ∞.

(2.19)

That is, (2.16) holds.
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By Lemma 1.1(ii), Xi ≺ X, and the definition of q, αp(1 − 2q) < −1,

∞∑

n=1

nαp−2P(Bn) ≤
∞∑

n=1

nαp−2 ∑

1≤i<j≤n

(
P
(
aniXi > nα(q−1)

)
P
(
anjXj > nα(q−1)

)

+ P
(
aniXi < −nα(q−1)

)
P
(
anjXj < −nα(q−1)

))

�
∞∑

n=1

nαpP 2(|X| > cnαq) ≤
∞∑

n=1

nαpn−2αpq(E|X|p)2

�
∞∑

n=1

nαp(1−2q) < ∞.

(2.20)

That is, (2.17) holds.
In order to prove (2.18), firstly, we prove that

max
1≤k≤n

|EUnk| = max
1≤k≤n

∣∣∣∣∣
E

k∑

i=1

aniYni

∣∣∣∣∣
−→ 0, n −→ ∞. (2.21)

(i) When α ≤ 1, then p > 1/α ≥ 1; from EXi = 0 and the definition of q, we have
q < 1, αpq > αp + 1 − αpq = 1 + αp(1 − q) > 1 :

max
1≤k≤n

∣∣∣∣∣
E

k∑

i=1

aniYni

∣∣∣∣∣

≤
n∑

i=1

ani|EYni| =
n∑

i=1

ani|E(Xi − Yni)|

≤
n∑

i=1

ani

{
E
∣∣∣Xi + a−1

ni n
α(q−1)

∣∣∣I(aniXi<−nα(q−1)) + E
∣∣∣Xi − a−1

ni n
α(q−1)

∣∣∣I(aniXi>nα(q−1))

}

�
n∑

i=1

aniE|Xi|I(|aniXi|>nα(q−1)) ≤
n∑

i=1

aniE|Xi|
(
ani|Xi|
nα(q−1)

)p−1

=
n∑

i=1

a
p

niE|Xi|pnα(1−q)(p−1)

� n−αp+1+αp−α−αpq+αq = n−(αpq−1)−α(1−q)

−→ 0, n −→ ∞.

(2.22)

(ii)When α > 1, and p ≥ 1, then E|X| < ∞ from (2.2), thus,

max
1≤k≤n

∣∣∣∣∣
E

k∑

i=1

aniYni

∣∣∣∣∣
≤

n∑

i=1

aniE|X| � n−α+1 −→ 0, n −→ ∞. (2.23)
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(iii)When α > 1, and p < 1, by −(αp−1)−α(1−q)(1−p) < 0, and −α(1−q)−(αpq−1) < 0,
we get

max
1≤k≤n

∣
∣
∣
∣
∣
E

k∑

i=1

aniYni

∣
∣
∣
∣
∣
≤

n∑

i=1

ani

(
E|Xi|I(ani|Xi|≤nα(q−1)) + a−1

ni n
α(q−1)P

(
|aniXi| > nα(q−1)

))

≤
n∑

i=1

a
p

niE|Xi|p|aniXi|1−pI(ani|Xi|≤nα(q−1)) +
n∑

i=1

nα(q−1)ap

nin
−αp(q−1)E|Xi|p

� n−(αp−1)−α(1−p)(1−q) + n−α(1−q)−(αpq−1) −→ 0.

(2.24)

Hence, (2.21) holds; that is, for any ε > 0, we have max1≤k≤n|EUnk| < ε for all sufficiently large
n. Thus,

P

(
max
1≤j≤n

∣∣Unj

∣∣ ≥ 2ε
)

≤ P

(
max
1≤j≤n

∣∣Unj − EUnj

∣∣ > ε

)
. (2.25)

Let Ỹni = Yni − EYni. Obviously, Yni is monotonic on Xi. By Lemma 1.1(iii), {Yni;n ≥
1, i ≤ n} is also a sequence of PNQD random variables with EỸni = 0, by Lemma 1.2 and
−1 − α(1 − q)(2 − p) < −1:

∞∑

n=1

nαp−2P
(
max
1≤j≤n

∣∣Unj − EUnj

∣∣ > ε

)

�
∞∑

n=1

nαp−2log2n
n∑

j=1

Ea2
njY

2
nj

�
∞∑

n=1

nαp−2log2n
n∑

j=1

(
Ea2

njX
2
j I(anj |Xj |≤nα(q−1)) + n2α(q−1)P

(
anj

∣∣Xj

∣∣ > nα(q−1)
))

≤
∞∑

n=1

nαp−2log2n
n∑

j=1

(
E
∣∣anjXj

∣∣pnα(q−1)(2−p) + n2α(q−1)−αp(q−1)E
∣∣anjXj

∣∣p
)

�
∞∑

n=1

(
nαp−1−αp+α(q−1)(2−p) + n−1+αp−αpq+2αq−2α

)
log2n

= 2
∞∑

n=1

n−1−α(1−q)(2−p)log2n

< ∞.

(2.26)

This completes the proof of Theorem 2.1.
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Proof of Theorem 2.2. Noting that max1≤k≤n|ankXk| ≤ 2max1≤k≤n|Snk| and |ank| � n−α, from
(2.3),

∞∑

n=1

nαp−2P
(
max
1≤k≤n

|Xk| > εnα

)
< ∞, ∀ε > 0. (2.27)

Thus, by αp − 2 > −1, we get

∞∑

j=1

P

(
max
1≤k≤2j

|Xk| > ε2α(j+1)
)

�
∞∑

n=1

n−1P
(
max
1≤k≤n

|Xk| > εnα

)
< ∞, ∀ε > 0. (2.28)

This implies that

max
2m−1≤n≤2m

P

(
max
1≤j≤n

∣∣Xj

∣∣ > ε22αnα

)
≤ P

(
max
1≤j≤2m

∣∣Xj

∣∣ > ε2α(m+1)
)

−→ 0. (2.29)

Hence, for all sufficiently large n,

P

(
max
1≤j≤n

∣∣Xj

∣∣ > ε22αnα

)
<

1
2
. (2.30)

By Lemma 1.4,

n∑

k=1

P(|Xk| > εnα) ≤ 4cP
(
max
1≤k≤n

|Xk| > εnα

)
, ∀ε > 0, (2.31)

which together with (2.27),

∞∑

n=1

nαp−2
n∑

k=1

P(|Xk| > εnα) < ∞, ∀ε > 0. (2.32)

By Xk 	 X, we obtain

E|X|p �
∞∑

n=1

nαp−1P(|X| > εnα) < ∞. (2.33)

This completes the proof of Theorem 2.2.
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