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The Bonferroni mean (BM) was introduced by Bonferroni six decades ago but has been a
hot research topic recently since its usefulness of the aggregation techniques. The desirable
characteristic of the BM is its capability to capture the interrelationship between input arguments.
However, the classical BM andGBM ignore theweight vector of aggregated arguments, the general
weighted BM (WBM) has not the reducibility, and the revised generalized weighted BM (GWBM)
cannot reflect the interrelationship between the individual criterion and other criteria. To deal
with these issues, in this paper, we propose the normalized weighted Bonferroni mean (NWBM)
and the generalized normalized weighted Bonferroni mean (GNWBM) and study their desirable
properties, such as reducibility, idempotency, monotonicity, and boundedness. Furthermore,
we investigate the NWBM and GNWBM operators under the intuitionistic fuzzy environment
which is more common phenomenon in modern life and develop two new intuitionistic fuzzy
aggregation operators based on the NWBM and GNWBM, that is, the intuitionistic fuzzy
normalized weighted Bonferroni mean (IFNWBM) and the generalized intuitionistic fuzzy
normalizedweighted Bonferronimean (GIFNWBM). Finally, based on the GIFNWBM,we propose
an approach to multicriteria decision making under the intuitionistic fuzzy environment, and a
practical example is provided to illustrate our results.

1. Introduction

Multicriteria decision making is the pervasive phenomenon in modern life, which is to select
the best or optimal alternative from several alternatives or to get their ranking by aggregating
the performances of each alternative under some criteria, in which the aggregation operators
play an important role. As many different types of criteria relationships exist in the real world
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there is a need for many types of formal aggregation operations to enable the modeling
of these numerous types of relationships. In response to this need a formal mathematical
discipline called aggregation theory is emerging [1–4]. In this paper, we contribute to this
theory by looking at the Bonferroni mean (BM), proposing the normalized weighted BM
(NWBM) and the generalized normalized weighted BM (GNWBM) and developing the
generalized intuitionistic fuzzy normalized weighted BM (GIFNWBM) and its application
in multicriteria decision making.

Bonferroni [5] originally introduced a mean-type aggregation operator called the
Bonferroni mean, which can provide for the aggregation lying between the max and
min operators and logical “oring” and “anding” operators. A prominent characteristic of
BM is that it cannot only consider the importance of each criterion but also reflect the
interrelationship of the individual criterion. Recently, Yager [6] further studied the BM and
provided an interpretation of BM as involving a product of each argument with the average
of the other arguments, and where the BM was shown to be suitable for modeling various
concepts, such as hard and soft partial conjunction and disjunction [7] and boundedness
similar to k-intolerance [8, 9]. Furthermore, Yager [6] extends the BM replacing the simple
average by other mean-type operators, such as the Choquet integral [10] and the ordered
weighted averaging operator [11], as well as associates differing importance with the
arguments. Mordelová and Rückschlossová [12] also investigated the generalizations of BM
referred to as ABC-aggregation functions. Beliakov et al. [1] further extended the BM by
considering the correlations of any three aggregated arguments instead of any two and
proposed the generalized Bonferroni mean (GBM). Nevertheless, the arguments suitable to
be aggregated by the BM and GBM can only take the forms of crisp numbers rather than
any other types of arguments, which restrict the potential applications of the BM to more
extensive areas. In the real world, due to the increasing complexity of the socioeconomic
environment and the lack of knowledge and data, crisp data are sometimes unavailable.
Thus, the input arguments may be more suitable with representation of fuzzy formats, such
as fuzzy number [13], interval-valued fuzzy number [14], intuitionistic fuzzy value [15],
interval-valued intuitionistic fuzzy value [16], and hesitant fuzzy element [17, 18]. Therefore,
Xu and Yager [19] applied the BM to intuitionistic fuzzy environment and introduced the
intuitionistic fuzzy Bonferroni mean (IFBM) and the intuitionistic fuzzy weighted Bonferroni
mean (IFWBM), Xu and Chen [20] further applied the BM to interval-valued intuitionistic
fuzzy environment and introduced the interval-valued intuitionistic fuzzy Bonferroni mean
(IIFBM) and the interval-valued intuitionistic fuzzy weighted Bonferroni mean (IIFWBM).

It is noted that the BM, GBM, IFBM, and IIFBM ignore the weight vector of the
aggregated arguments, although the IFWBM and the IIFWBM consider this issue, we
cannot, respectively, obtain IFBM and IIFBM when all the weights of the aggregated
arguments are the same, that is, these two operators have not reducibility, which seems to
be counterintuitive. To deal with this issue, Xia et al. [21] proposed the revised BM and
revised generalized weighted Bonferroni mean (GWBM), which take into the weight vector
and reducibility and extended them to intuitionistic fuzzy environment. However, a question
arises, that is, the revised BM and the GWBM just reflect the correlationship between the
individual criterion and all criteria, which is not an interrelationship between the individual
criterion and other criteria represented in the BM. Therefore, to further develop BM, we
propose the normalized weighted BM (NWBM) and the generalized normalized weighted
BM (GNWBM). Themain advantage of the NWBM and the GNWBM is that they can not only
consider weight vector and interrelationship of the individual criterion which is similar to the
IFWBM and the IIFWBM but also have the reducibility like the GWBM. Based on the NWBM



Journal of Applied Mathematics 3

and GNWBM operators, we develop the intuitionistic fuzzy normalized weighted Bonferroni
mean (IFNWBM) and the generalized intuitionistic fuzzy normalized weighted Bonferroni
mean (GIFNWBM), on the basis of which an approach to multicriteria decision making is
also proposed.

The remainder of this paper is organized as follows. We briefly review some basic
concepts and operations of the IFV and BM, in Section 2. Section 3 proposes the NWBM and
GNWBM operators and studies their desirable properties. Section 4, the IFNWBM operator
is proposed, and then its corresponding generalized form is also given. A practical example
is provided in Section 5 to demonstrate the application of the generalized intuitionistic fuzzy
normalizedweighted Bonferroni mean. The paper ends in Section 6with concluding remarks.

2. Basic Concepts and Operations

In this section, we introduce some basic notions and operations related to the intuitionistic
fuzzy value and the Bonferroni mean.

2.1. Intuitionistic Fuzzy Values

Definition 2.1 (see [15]). Let X = (x1, x2, . . . , xn) be fixed. An intuitionistic fuzzy set (IFS) A
in X can be defined as

A =
{(

xi, μ(xi), ν(xi)
) | xi ∈ X

}
, (2.1)

where μ(xi) ∈ [0, 1] and ν(xi) ∈ [0, 1] satisfy 0 ≤ μ(xi) + ν(xi) ≤ 1 for all xi ∈ X and μ(xi) and
ν(xi) are, respectively, called the degree of membership and the degree of nonmembership of
the element xi ∈ X to A.

Furthermore, π(xi) = 1 − μ(xi) + ν(xi) is called the hesitation degree of xi to A, which
represents the indeterminacy degree. For computational convenience, Xu [22] named the pair
(μα, να) an intuitionistic fuzzy value (IFV) denoted as α with the conditions 0 ≤ μα ≤ 1, 0 ≤
να ≤ 1 and 0 ≤ μ(xi) + ν(xi) ≤ 1. The set of IFVs is denoted asΩ. To compare and calculate the
IFVs, Chen and Tan [23] introduced the score function s(α) = μα − να to get the score value
of α, and Hong and Choi [24] defined the accuracy function h(α) = μα + να to evaluate the
accuracy degree of α. Based on the score function and the accuracy function, Xu and Yager
[25] gave a total order relation between two IFVs α and β, as follows:

if s(α) < s(β), then α < β;

if s(α) = s(β), then

(i) if h(α) = h(β), then α = β; (ii) if h(α) < h(β), then α < β.

Definition 2.2 (see [22, 25]). Let α = (μα, να), α1 = (μα1 , να1), and α2 = (μα2 , να2) be three IFVs,
then following operational laws are valid:

(1) α1 ⊕ α2 = (μα1 + μα2 − μα1 · μα2 , να1 · να2);

(2) α1 ⊗ α2 = (μα1 · μα2 , να1 + να2 − να1 · να2);

(3) λα = (1 − (1 − μα)
λ, να

λ), λ > 0;

(4) αλ = (μα
λ, 1 − (1 − να)

λ), λ > 0.
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2.2. Bonferroni Means

The Bonferroni mean was originally introduced by Bonferroni [5] and intensively investi-
gated by Yager [6], which was defined as follows.

Definition 2.3 (see [5]). Let p, q ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers. If

BMp,q(a1, a2, . . . , an) =

⎛

⎜
⎜
⎝

1
n(n − 1)

n∑

i,j=1
i /= j

a
p

i a
q

j

⎞

⎟
⎟
⎠

1/(p+q)

(2.2)

then BMp,q is called the Bonferroni mean (BM).
One interpretation of the Bonferroni Mean is as a kind of combined “anding” and

“averaging” operator [6]. Then, here we see that ap

i a
q

j indicates the degree to which both
criteria Ai and Aj are satisfied under the given conditions and the special case when p = q =
1. There exists another interesting way to view this aggregation operator and described as
follows.

BMp,q(a1, a2, . . . , an) =

⎛

⎜⎜
⎝

1
n

n∑

i=1

a
p

i

⎛

⎜⎜
⎝

1
n − 1

n∑

j=1
j /= i

a
q

j

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

1/(p+q)

. (2.3)

We see that the term (1/(n − 1))
∑n

j=1, j /= i a
q

j is the power average satisfaction of all

criteria except Ai. We will denote this as uq

i . Thus

BMp,q(a1, a2, . . . , an) =

(
1
n

n∑

i=1

a
p

i u
q

i

)1/(p+q)

. (2.4)

Here then u
q

i is the power average satisfaction to all criteria except Ai and a
p

i u
q

i

represent the interrelationship between Ai and other criteria Aj , which is also the prominent
characteristic of the BM. Based on the BM, Beliakov et al. [1] further extended and generalized
the BM to the generalized Bonferroni mean (GBM) by considering the correlations of any
three aggregated arguments instead of any two.

Definition 2.4 (see [1]). Let p, q, r ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers. If

GBMp,q,r(a1, a2, . . . , an) =

⎛

⎜⎜
⎝

1
n(n − 1)(n − 2)

n∑

i,j,k=1
i /= j /= k

a
p

i a
q

j a
r
k

⎞

⎟⎟
⎠

1/(p+q+r)

(2.5)

then GBMp,q,r is called the generalized Bonferroni mean (GBM).
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It is obvious that the GBM reduces to the BM if r = 0, and the GBM can represent the
interrelationship of any three criteria. Here, we see that the term 1/(n − 1)

∑n
j=1, i /= j(1/(n −

2)
∑n

k=1, k /= i /= j a
q

j a
r
k
) is the power average satisfaction of all criteria correlationship except Ai,

denote as vq,r

i . Thus

GBMp,q,r(a1, a2, . . . , an) =

(
1
n

n∑

i=1

a
p

i v
q,r

i

)1/(p+q+r)

. (2.6)

The above BM and GBM can only deal with the situation that the arguments are
represented by real number but are invalid if the aggregation information is given in other
forms, such as the IFV, which is a widely used technique to deal with uncertainty and
vagueness. To deal with this issue, Xu and Yager [19] extended the BM to intuitionistic fuzzy
environment and gave the following definition.

Definition 2.5 (see [19]). Let p, q, r ≥ 0, and αi (i = 1, 2, . . . , n) be a collection of intuitionistic
fuzzy values. The intuitionistic fuzzy Bonferroni mean (IFBM) and the intuitionistic fuzzy
weighted Bonferroni mean (IFWBM) are, respectively, defined as

IFBMp,q(α1, α2, . . . , αn) =

⎛

⎝ 1
n(n − 1)

n⊕

i,j=1, i /= j

(
α
p

i ⊗ α
q

j

)
⎞

⎠

1/(p+q)

,

IFWBMp,q(α1, α2, . . . , αn) =

⎛

⎝ 1
n(n − 1)

n⊕

i,j=1, i /= j

((
wiα

p

i

)
⊗
(
wjα

q

j

))
⎞

⎠

1/(p+q)

.

(2.7)

However, it is noted that the BM, GBM, and IFBM ignore the weight vector of the
aggregated arguments, although the IFWBM considers this issue, we cannot obtain the IFBM
when all theweights of the aggregated arguments are the same, that is, these IFWBMoperator
has not the reducibility, which seems to be counterintuitive. Therefore, to deal with these
issues, Xia et al. [21] proposed the generalized weighted Bonferroni mean (GWBM) based on
the GBM and described as follows.

Definition 2.6 (see [21]). Let p, q ≥ 0, and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers with the weight vector w = (w1, w2, . . . , wn) such that wi ≥ 0 and

∑n
i=1 wi = 1. If

GWBMp,q,r(a1, a2, . . . , an) =

⎛

⎝
n∑

i,j,k=1

wiwjwka
p

i a
q

j a
r
k

⎞

⎠

1/(p+q+r)

(2.8)

then GWBMp,q,r is called the generalized weighted Bonferroni mean (GWBM).
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If w = (1/n, 1/n, . . . , 1/n), then the GWBM reduces to the revised GBM, that is,

GBMp,q,r(a1, a2, . . . , an) =

⎛

⎝ 1
n3

n∑

i,j,k=1

a
p

i a
q

j a
r
k

⎞

⎠

1/(p+q+r)

, (2.9)

which reflects the reducibility.
Similarly, we can transform the GWBM into the following form:

GBMp,q,r(a1, a2, . . . , an) =

⎛

⎝ 1
n

n∑

i=1

a
p

i

⎛

⎝ 1
n

n∑

j=1

a
q

j

⎞

⎠
(

1
n

n∑

k=1

ar
k

)⎞

⎠

1/(p+q+r)

. (2.10)

However, a question arises, that is, the GWBM just considers the whole correlationship
between the criterion ai and all criteria

∑n
j=1 a

q

j ·
∑n

k=1 a
r
k and cannot reflect the interrelation-

ship between the individual criterion ai and other criteria vq,r

i which is the main advantage of
the BM. To further overcome this drawback, we propose the following NWBM and GNWBM
operators.

3. Normalized Weighted BM and Generalized Normalized
Weighted BM

The classical BM and GBM ignore the weight vector of aggregated arguments, the general
weighted BMs (WBM) have not reducibility, and the revised generalized BM (GWBM) cannot
reflect the interrelationship between the individual criterion and other criteria. To deal with
these issues, in the following subsections, we propose the normalized weighted versions of
BM andGBM, that is, the normalizedweighted BM (NWBM) and the generalized normalized
weighted BM (GNWBM).

3.1. NWBM

Definition 3.1. Let p, q ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative numbers with
the weight vector w = (w1, w2, . . . , wn) such that wi ≥ 0, and

∑n
i=1 wi = 1. If

NWBMp,q(a1, a2, . . . , an) =

⎛

⎜⎜
⎝

n∑

i,j=1
i /= j

wiwj

1 −wi
a
p

i a
q

j

⎞

⎟⎟
⎠

1/(p+q)

, (3.1)

then NWBMp,q is called the normalized weighted Bonferroni mean (NWBM).
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Then, we can transform the NWBM into the interrelationship NWBM form as follows:

NWBMp,q(a1, a2, . . . , an) =

⎛

⎜
⎜
⎝

n∑

i=1

wia
p

i

n∑

j=1
j /= i

wj

1 −wi
a
q

j

⎞

⎟
⎟
⎠

1/(p+q)

. (3.2)

We see that the term
∑n

j=1, j /= i(wj/(1−wi))a
q

j is theweighted power average satisfaction

of all criteria except Ai and
∑n

j=1, j /= i wj/(1 −wi) = 1. We denote the term as uq

i . Thus

NWBMp,q(a1, a2, . . . , an) =

(
n∑

i=1

wia
p

i u
q

i

)1/(p+q)

. (3.3)

Here then u
q

i is the weighted power average satisfaction to all criteria except Ai,
and NWBMp,q represents the interrelationship between the individual criterion ai and other
criteria aj (j /= i)which is similar to the BM.

Moreover, the NWBM has the following properties.

Property 1 (Reducibility). Let p, q ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers with the weight vector w = (1/n, 1/n, . . . 1/n), then

NWBMp,q(a1, a2, . . . , an) = BMp,q(a1, a2, . . . , an). (3.4)

Proof. Since w = (1/n, 1/n, . . . 1/n), then by Definition 3.1, we have

NWBMp,q(a1, a2, . . . , an) =

⎛

⎜⎜
⎝

n∑

i,j=1
i /= j

wiwj

1 −wi
a
p

i a
q

j

⎞

⎟⎟
⎠

1/(p+q)

=

⎛

⎜⎜
⎝

1
n(n − 1)

n∑

i,j=1
i /= j

a
p

i a
q

j

⎞

⎟⎟
⎠

1/(p+q)

= BMp,q(a1, a2, . . . , an),

(3.5)

which complete the proof of the property.

Property 2 (Idempotency). Let p, q ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers with the weight vectorw = (w1, w2, . . . , wn), such thatwi ≥ 0, and

∑n
i=1 wi = 1. If all

ai (i = 1, 2, . . . , n) are equal, that is, ai = a, for all i, then

NWBMp,q(a1, a2, . . . , an) = a. (3.6)
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Proof. Since ai = a (i = 1, 2, . . . , n), then

NWBMp,q(a1, a2, . . . , an) =

⎛

⎜
⎜
⎝

n∑

i=1

wia
p

n∑

j=1
j /= i

wj

1 −wi
aq

⎞

⎟
⎟
⎠

1/(p+q)

=

⎛

⎜
⎜
⎝ap+q

n∑

i=1

wi

n∑

j=1
j /= i

wj

1 −wi

⎞

⎟
⎟
⎠

1/(p+q)

= a,

(3.7)

which complete the proof of the property.

Property 3 (Monotonicity). Let p, q ≥ 0, ai and bi (i = 1, 2, . . . , n) be two collections of
nonnegative numbers with the weight vector w = (w1, w2, . . . , wn), such that wi ≥ 0 and∑n

i=1 wi = 1. If ai ≥ bi, for all i, then

NWBMp,q(a1, a2, . . . , an) ≥ NWBMp,q(b1, b2, . . . , bn). (3.8)

Proof. Since ai ≥ bi for all i, and p, q ≥ 0, then

a
p

i a
q

j ≥ b
p

i b
q

j

(
i, j = 1, 2, . . . , n

)
,

⎛

⎜⎜
⎝

n∑

i,j=1
i /= j

wiwj

1 −wi
a
p

i a
q

j

⎞

⎟⎟
⎠ ≥

⎛

⎜⎜
⎝

n∑

i,j=1
i /= j

wiwj

1 −wi
b
p

i b
q

j

⎞

⎟⎟
⎠.

(3.9)

Therefore,

NWBMp,q(a1, a2, . . . , an) ≥ NWBMp,q(b1, b2, . . . , bn), (3.10)

which complete the proof.

Property 4 (Boundedness). Let p, q ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers with the weight vectorw = (w1, w2, . . . , wn), such thatwi ≥ 0, and

∑n
i=1 wi = 1, then

min
i
{ai} ≤ NWBMp,q(a1, a2, . . . , an) ≤ max

i
{ai}. (3.11)

Proof. By Property 2, we can get

NWBMp,q

(
min

i
{ai},min

i
{ai}, . . . ,min

i
{ai}
)

= min
i
{ai},

NWBMp,q

(
max

i
{ai},max

i
{ai}, . . . ,max

i
{ai}
)

= max
i

{ai}.
(3.12)
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Since mini{ai} ≤ ai ≤ maxi{ai} (i = 1, 2, . . . , n), then based on Property 3, we have

min
i
{ai} ≤ NWBMp,q(a1, a2, . . . , an) ≤ max

i
{ai}, (3.13)

which complete the proof of the theorem.

3.2. GNWMB

In this subsection, we further extend the NWBM to the generalized normalized weighted
Bonferroni mean (GNWBM) by considering the correlation of any three aggregated
arguments instead of any two based on the GBM

Definition 3.2. Let p, q, r ≥ 0, and ai (i = 1, 2, . . . , n) be a collection of nonnegative numbers
with the weight vector w = (w1, w2, . . . , wn) such that wi ≥ 0, and

∑n
i=1 wi = 1. If

GNWBMp,q,r(a1, a2, . . . , an) =

⎛

⎜⎜
⎝

n∑

i,j,k=1
i /= j /= k

wiwjwk

(1 −wi)
(
1 −wi −wj

)a
p

i a
q

j a
r
k

⎞

⎟⎟
⎠

1/(p+q+r)

, (3.14)

then GNWBMp,q,r is called the generalized normalized weighted Bonferroni mean
(GNWBM).

Furthermore, we can transform the GNWBM into the interrelationship GNWBM form
as follows:

GNWBMp,q,r(a1, a2, . . . , an) =

⎛

⎜⎜
⎝

n∑

i=1

wia
p

i

n∑

j=1
j /= i

wj

1 −wi
a
q

j

n∑

k=1
k /= i /= j

wk(
1 −wi −wj

)ar
k

⎞

⎟⎟
⎠

1/(p+q+r)

.

(3.15)

We see that the term
∑n

j=1, j /= i (wj/(1 −wi))a
q

j is the weighted power average satisfac-
tion of all criteria except Ai, with

∑n
j=1, j /= i (wj/(1 − wi)) = 1. The term

∑n
k=1, k /= i /= j (wk/(1 −

wi −wj))ar
k is the weighted power average satisfaction of all criteria except Ai and Aj , with∑n

k=1, k /= i /= j (wk/(1 − wi − wj)) = 1. Here then NWBMp,q represents the interrelationship
between any three aggregated arguments, which is similar to the GBM. Especially, if r → 0,
then the GNWBM reduces to the NWBM.

Moreover, the GNWBM has the following properties.

Property 5 (Reducibility). Let p, q, r ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers with the weight vector w = (1/n, 1/n, . . . 1/n), then

GNWBMp,q,r(a1, a2, . . . , an) = GBMp,q,r(a1, a2, . . . , an). (3.16)
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Proof. Since w = (1/n, 1/n, . . . 1/n), then by Definition 3.2, we can get

GNWBMp,q,r(a1, a2, . . . , an) =

⎛

⎜⎜
⎝

n∑

i,j,k=1
i /= j /= k

1
n(n − 1)(n − 2)

a
p

i a
q

j a
r
k

⎞

⎟⎟
⎠

1/(p+q+r)

=

⎛

⎜
⎜
⎝

1
n(n − 1)(n − 2)

n∑

i,j,k=1
i /= j /= k

a
p

i a
q

j a
r
k

⎞

⎟
⎟
⎠

1/(p+q+r)

,

GNWBMp,q,r(a1, a2, . . . , an) = GBMp,q,r(a1, a2, . . . , an),

(3.17)

which complete the proof of the property.

Property 6 (Idempotency). Let p, q, r ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers with the weight vector w = (w1, w2, . . . , wn), such that wi ≥ 0 and

∑n
i=1 wi = 1. If all

ai (i = 1, 2, . . . , n) are equal, that is, ai = a, for all i, then

GNWBMp,q,r(a1, a2, . . . , an) = a. (3.18)

Proof. The proof of Property 6 is similar to Property 2.

Property 7 (Monotonicity). Let p, q, r ≥ 0 ai and bi (i = 1, 2, . . . , n) be two collections of
nonnegative numbers with the weight vector w = (w1, w2, . . . , wn), such that wi ≥ 0 and∑n

i=1 wi = 1. If ai ≥ bi, for all i, then

GNWBMp,q,r(a1, a2, . . . , an) ≥ GNWBMp,q,r(b1, b2, . . . , bn). (3.19)

Proof. The proof of Property 7 is similar to Property 3.

Property 8 (Boundedness). Let p, q, r ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative
numbers with the weight vector w = (w1, w2, . . . , wn), such that wi ≥ 0 and

∑n
i=1 wi = 1, then

min
i
{ai} ≤ GNWBMp,q,r(a1, a2, . . . , an) ≤ max

i
{ai}. (3.20)

Proof. The proof of Property 8 is similar to Property 4.

4. Intuitionistic Fuzzy Normalized Weighted BM and Generalized
Intuitionistic Fuzzy Normalized Weighted BM

To aggregate the intuition fuzzy correlated information, Xu and Yager [19] proposed the
IFBM and IFWBM, and Xia et al. [21] proposed the GIFWBM. However, according to
the aforementioned analysis, there are some drawbacks in the IFWBM and the GIFWBM,
respectively. To solve these issues, and motivated by the GBM, we propose the intuitionistic
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fuzzy normalized weighted BM (IFNWBM) and the generalized intuitionistic fuzzy
normalized weighted BM (GIFNWBM) based on the NWBM and GNWBM and describe as
follows.

4.1. IFNWBM

Definition 4.1. Let p, q ≥ 0 and αi = (μi, νi) (i = 1, 2, . . . , n) be a collection of IFVs with the
weight vector w = (w1, w2, . . . , wn) such that wi ≥ 0 and

∑n
i=1 wi = 1. If

IFNWBMp,q(α1, α2, . . . , αn) =

⎛

⎝
n⊕

i,j=1, i /= j

wiwj

1 −wi

(
α
p

i ⊗ α
q

j

)
⎞

⎠

1/(p+q)

(4.1)

then IFNWBMp,q is called the intuitionistic fuzzy normalized weighted Bonferroni mean
(IFNWBM).

On the basis of the operational laws of IFVs, we have the following theorem.

Theorem 4.2. Let p, q ≥ 0 and αi = (μi, νi) (i = 1, 2, . . . , n) be a collection of IFVs with the weight
vector (w1, w2, . . . , wn), such that wi ≥ 0 and

∑n
i=1 wi = 1, then the aggregated value by using the

IFNWBM is also an IFV and

IFNWBM p,q(α1, α2, . . . , αn)

=

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − μ

p

i μ
q

j

)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

,

1 −

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − (1 − νi)p

(
1 − νj

)q)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)⎞

⎟⎟
⎠.

(4.2)

Proof. By the operational laws for IFVs, we have

α
p

i =
(
μ
p

i , 1 − (1 − νi)p
)
, α

q

j =
(
μ
q

j , 1 −
(
1 − νj

)q)
,

α
p

i ⊗ α
q

j =
(
μ
p

i μ
q

j , 1 − (1 − νi)p
(
1 − νj

)q)
,

(4.3)
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then

n⊕

i,j=1, i /= j

wiwj

1−wi

(
α
p

i ⊗ α
q

j

)
=

⎛

⎜
⎜
⎝1−

n∏

i,j=1
i /= j

(
1−μp

i μ
q

j

)wiwj/(1−wi)
,

n∏

i,j=1
i /= j

(
1−(1−νi)p

(
1−νj

)q)wiwj/(1−wi)

⎞

⎟
⎟
⎠

IFNWBMp,q(α1, α2, . . . , αn) =

⎛

⎝
n⊕

i,j=1,i /= j

wiwj

1 −wi

(
α
p

i ⊗ α
q

j

)
⎞

⎠

1/(p+q)

,

=

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − μ

p

i μ
q

j

)wiwj/(1−wi)

⎞

⎟
⎟
⎠

1/(p+q)

,

1 −

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − (1 − νi)p

(
1 − νj

)q)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)⎞

⎟⎟
⎠.

(4.4)

In addition, since

0 ≤

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − μ

p

i μ
q

j

)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

≤ 1,

0 ≤ 1 −

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − (1 − νi)p

(
1 − νj

)q)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

≤ 1,

(4.5)

then

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − μ

p

i μ
q

j

)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

+ 1 −

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − (1 − νi)p

(
1 − νj

)q)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)
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≤ 1 +

⎛

⎜
⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − (1 − νi)p

(
1 − νj

)q)wiwj/(1−wi)

⎞

⎟
⎟
⎠

1/(p+q)

−

⎛

⎜
⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − (1 − νi)p

(
1 − νj

)q)wiwj/(1−wi)

⎞

⎟
⎟
⎠

1/(p+q)

= 1,

(4.6)

which completes the proof of the theorem.

Moreover, the IFNWBM also has the following properties.

Property 9. If all αi (i = 1, 2, . . . , n) are equal, that is, αi = α, for all i, then

IFNWBMp,q(α1, α2, . . . , αn) = α. (4.7)

Proof. Since αi = (μi, νi) = α, we have

IFNWBMp,q(α1, α2, . . . , αn)

=

⎛

⎝
n⊕

i,j=1, i /= j

wiwj

1 −wi
(αp ⊗ αq)

⎞

⎠

1/(p+q)

=

⎛

⎜⎜
⎝(αp ⊗ αq)

n∑

i,j=1
i /= j

wiwj

1 −wi

⎞

⎟⎟
⎠

1/(p+q)

= α

⎛

⎜⎜
⎝

n∑

i

wi

n∑

j=1
j /= i

wj

1 −wi

⎞

⎟⎟
⎠

1/(p+q)

= α,

(4.8)

which completes the proof.

Property 10. Let αi = (μαi , ναi) and βi = (μβi , νβi) (i = 1, 2, . . . , n) be two collections of IFVs, if
μαi ≥ μβi and ναi ≤ νβi , for all i, then

IFNWBMp,q(α1, α2, . . . , αn) ≥ IFNWBMp,q(β1, β2, . . . , βn
)
. (4.9)
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Proof. Since μαi ≥ μβi and ναi ≤ νβi , for all i, then

μ
p
αi
μ
q
αj
≥ μ

p

βi
μ
q

βj

=⇒
n∏

i,j=1
i /= j

(
1 − μ

p
αi
μ
q
αj

)wiwj/(1−wi) ≤
n∏

i,j=1
i /= j

(
1 − μ

p

βi
μ
q

βj

)wiwj/(1−wi)

=⇒ 1 −
n∏

i,j=1
i /= j

(
1 − μ

p
αi
μ
q
αj

)wiwj/(1−wi) ≥ 1 −
n∏

i,j=1
i /= j

(
1 − μ

p

βi
μ
q

βj

)wiwj/(1−wi)

=⇒

⎛

⎜
⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − μ

p
αi
μ
q
αj

)wiwj/(1−wi)

⎞

⎟
⎟
⎠

1/(p+q)

≥

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 − μ

p

βi
μ
q

βj

)wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

,

(
1 − ν

p
αi

)(
1 − ν

q
αj

)
≥
(
1 − ν

p

βi

)(
1 − ν

q

βj

)

=⇒
n∏

i,j=1
i /= j

(
1 −
(
1 − ν

p
αi

)(
1 − ν

q
αj

))wiwj/(1−wi)

≤
n∏

i,j=1
i /= j

(
1 −
(
1 − v

p

βi

)(
1 − ν

q

βj

))wiwj/(1−wi)

=⇒

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 −
(
1 − ν

p
αi

)(
1 − ν

q
αj

))wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

≥

⎛

⎜⎜
⎝1 −

n∏
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i /= j

(
1 −
(
1 − ν

p

βi

)(
1 − ν

q

βj

))wiwj/(1−wi)

⎞

⎟
⎟
⎠

1/(p+q)

,

(4.10)

then

1 −

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 −
(
1 − ν

p
αi

)(
1 − ν

q
αj

))wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

≤ 1 −

⎛

⎜⎜
⎝1 −

n∏

i,j=1
i /= j

(
1 −
(
1 − ν

p

βi

)(
1 − ν

q

βj

))wiwj/(1−wi)

⎞

⎟⎟
⎠

1/(p+q)

.

(4.11)
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Therefore,

⎛

⎜
⎜
⎝1 −
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i,j=1
i /= j

(
1−μp

αi
μ
q
αj
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⎟
⎠
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− 1+

⎛
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n∏
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(
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(
1−νpαi

)(
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))wiwj/(1−wi)
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⎟
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1/(p+q)

≥
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⎟
⎟
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1/(p+q)

− 1

+

⎛
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(4.12)

Let α = IFNWBMp,q (α1, α2, . . . , αn) and β = IFNWBMp,q (β1, β2, . . . , βn) and set s(α)
and s(β) be the score values of α and β, then (4.12) is equal to s(α) ≥ s(β). Now we discuss
the following two cases.

Case 1. If s(α) > s(β), then by the total order relation between two IFVs, we have

IFNWBMp,q(α1, α2, . . . , αn) > IFNWBMp,q(β1, β2, . . . , βn
)
. (4.13)

Case 2. If s(α) = s(β), then

⎛
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.

(4.14)
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Since μαi ≥ μβi and ναi ≤ νβi , for all i, we can get
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.

(4.15)

Therefore, h(α) = h(β) and

IFNWBMp,q(α1, α2, . . . , αn) = IFNWBMp,q(β1, β2, . . . , βn
)
, (4.16)

which complete the proof of the property.

Property 11. Let αi = (μi, νj) (i = 1, 2, . . . , n) be a collection of IFVs, and (α̃1, α̃2, . . . , α̃n) is any
permutation of (α1, α2, . . . , αn), then

IFNWBMp,q(α̃1, α̃2, . . . , α̃n) = IFNWBMp,q(α1, α2, . . . , αn). (4.17)

Proof. Since (α̃1, α̃2, . . . , α̃n) is any permutation of (α1, α2, . . . , αn), then

⎛

⎜⎜
⎝

n⊕

i,j=1
i /= j

wiwj

1 −wi

(
α
p

i ⊗ α
q

j

)

⎞

⎟⎟
⎠

1/(p+q)

=

⎛
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⎝

n⊕
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i /= j

wiwj

1 −wi

(
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p

i ⊗ α̃
q

j

)

⎞

⎟⎟
⎠

1/(p+q)

. (4.18)

Therefore,

IFNWBMp,q(α1, α2, . . . , αn) = IFNWBMp,q(α̃1, α̃2, . . . , α̃n), (4.19)

which complete the proof.
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Property 12. Let αi = (μi, νj) (i = 1, 2, . . . , n) be a collection of IFVs, and

α− =
(
min

i

{
μi

}
,max

i
{νi}
)
, α+ =

(
max

i

{
μi

}
,min

i
{νi}
)
, (4.20)

then

α− ≤ IFNWBMp,q(α1, α2, . . . , αn) ≤ α+. (4.21)

Proof. Since μi ≥ mini{μi} and νi ≤ maxi = {νi}, then based on Properties 9 and 10, we have

IFNWBMp,q(α1, α2, . . . , αn) ≥ IFNWBMp,q(α−, α−, . . . , α−) = α−. (4.22)

Likewise, we can get

IFNWBMp,q(α1, α2, . . . , αn) ≤ IFNWBMp,q(α+, α+, . . . , α+) = α+, (4.23)

which complete the proof of the property.

4.2. GIFNWBM

Definition 4.3. Let p, q, r ≥ 0 and αi = (μi, νi) (i = 1, 2, . . . , n) be a collection of IFVs with the
weight vector w = (w1, w2, . . . , wn) such that wi ≥ 0, and

∑n
i=1 wi = 1. If

GIFNWBMp,q,r(α1, . . . , αn) =

⎛

⎜⎜
⎝

n⊕

i,j,k=1
i /= j /= k

wiwjwk

(1 −wi)
(
1 −wi −wj

)
(
α
p

i ⊗ α
q

j ⊗ αr
k

)

⎞

⎟⎟
⎠

1/(p+q+r)

,

(4.24)

then GIFNWBMp,q,r is called the generalized intuitionistic fuzzy normalized weighted Bon-
ferroni mean (GIFNWBM).
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On the basis of the operational laws of IFVs, we can drive the following theorem.

Theorem 4.4. Let p, q, r ≥ 0 and αi = (μi, νi) (i = 1, 2, . . . , n) be a collection of IFVs with the weight
vector w = (w1, w2, . . . , wn), such that wi ≥ 0 and

∑n
i=1 wi = 1, then the aggregated value by using

the GIFNWBM is also an IFV and

IFNWBM p,q,r(α1, α2, . . . , αn)

=

⎛

⎜
⎜
⎝

⎛

⎜
⎜
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n∏
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i /= j /= k

(
1 − μ

p

i μ
q

j μ
r
k

)wiwjwk/((1−wi)(1−wi−wj ))

⎞
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⎟
⎠

1/(p+q+r)

,

1 −

⎛

⎜
⎜
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n∏
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i /= j /= k

(
1 − (1 − νi)p

(
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)q(1 − νk)r
)wiwjwk/((1−wi)(1−wi−wj ))

⎞

⎟
⎟
⎠

1/(p+q+r)⎞

⎟
⎟
⎠.

(4.25)

Proof. The proof of Theorem 4.4 is similar to Theorem 4.2.

Furthermore, the GIFNWBM also has the following properties.

Property 13. If all αi (i = 1, 2, . . . , n) are equal, that is, αi = α, for all i, then

GIFNWBMp,q,r(α1, α2, . . . , αn) = α. (4.26)

Proof. The proof of Property 13 is similar to Property 9.

Property 14. Let αi = (μαi , ναi) and βi = (μβi , νβi) (i = 1, 2, . . . , n) be two collections of IFVs, if
μαi ≥ μβi and ναi ≤ νβi , for all i, then

GIFNWBMp,q,r(α1, α2, . . . , αn) ≥ GIFNWBMp,q,r(β1, β2, . . . , βn
)
. (4.27)

Proof. The proof of Property 14 is similar to Property 10.

Property 15. Let αi = (μi, νj) (i = 1, 2, . . . , n) be a collection of IFVs and (α̃1, α̃2, . . . , α̃n) is any
permutation of (α1, α2, . . . , αn), then

GIFNWBMp,q,r(α̃1, α̃2, . . . , α̃n) = GIFNWBMp,q,r(α1, α2, . . . , αn). (4.28)

Proof. The proof of Property 15 is similar to Property 11.

Property 16. Let αi = (μi, νj) (i = 1, 2, . . . , n) be a collection of IFVs, and

α− =
(
min

i

{
μi

}
,max

i
{νi}
)
, α+ =

(
max

i

{
μi

}
,min

i
{νi}
)
, (4.29)
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then

α− ≤ GIFNWBMp,q,r(α1, α2, . . . , αn) ≤ α+. (4.30)

Proof. The proof of Property 16 is similar to Property 12.

5. An Approach to Intuitionistic Fuzzy Multicriteria Decision Making

In what follows, we apply the GIFNWBM operator to intuitionistic fuzzy multicriteria
decision making, which involves the following steps.

Step 1. For a multicriteria decision making problem, set Y = {y1, y2, . . . , yn} be a set of
n alternatives, C = {c1, c2, . . . , cm} be a set of m criteria, whose weight vector is w =
(w1, w2, . . . , wm), satisfying wj > 0 (j = 1, 2, . . . , m), and

∑m
j=1 wj = 1, where wj denotes

the important degree of cj . The performance of yi with respect to cj is measured by an IFV
bij = (μij , νij), where μij indicates the degree that yi satisfies cj and νij indicates the degree that
yi does not satisfy cj , such that 0 ≤ μij ≤ 1, 0 ≤ νij ≤ 1 and μij + νij ≤ 1, and the intuitionistic
fuzzy decision matrix B = (bij)n×m contains all bij = (μij , νij) (i = 1, 2, . . . , n; j = 1, 2, . . . , m). If
all the criteria cj are the benefit type, then the performance values do not need normalization.
Whereas there are, generally, benefit criteria (the bigger the performance values the better)
and cost criteria (the smaller the performance values the better) in multicriteria decision
making, in such cases, we may transform the performance values of the cost type into the
performance values of the benefit type. by Xu andHu’s approach [26]. Then, the intuitionistic
fuzzy decision matrix B = (bij)n×m can be transformed into the normalization matrix R =
(rij)n×m where

(
rij
)
n×m =

(
μ′
ij , ν

′
ij

)
=

{
bij , for benefit criterion ci,

bij , for cost criterion ci,
(5.1)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, and bij is the complement of bij such that bij = (νij , μij).

Step 2. Utilize the GIFNWBM operator:

ri =
(
μ′
i, ν

′
i

)
= GIFNWBMp,q,r(ri1, ri2, . . . , rim). (5.2)

to aggregate all the preference values rij (j = 1, 2, . . . , m) of the ith line and get the overall
performance value ri corresponding to the alternative yi.

Step 3. Calculate the score valued and the accuracy degree of the overall performance value
ri and utilize the total order relation between two IFVs to rank the overall performance value
ri (i = 1, 2, . . . , n).

Step 4. Rank all the alternatives yi (i = 1, 2, . . . , n) in accordance with ri (i = 1, 2, . . . , n) in
descending order, and then, select the most desirable alternative with the largest score value.
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Table 1: Normalization intuitionistic fuzzy decision matrix R = (rij)4×5.

c1 c2 c3 c4 c5

y1 (0.85, 0.12) (0.90, 0.08) (0.80, 0.07) (0.55, 0.30) (0.83, 0.15)
y2 (0.69, 0.28) (0.78, 0.19) (0.75, 0.20) (0.85, 0.10) (0.65, 0.30)
y3 (0.72, 0.24) (0.85, 0.12) (0.82, 0.16) (0.40, 0.35) (0.95, 0.03)
y4 (0.63, 0.35) (0.60, 0.25) (0.65, 0.30) (0.94, 0.02) (0.90, 0.00)

Let us give a practical example to illustrate the proposed approach in the intuitionistic
fuzzy multicriteria decision making procedure.

Example 5.1. There is an investment company, which wants to invest a sum of money in the
best option (adapted from Herrera and Herrera-Viedma [27]). There is a panel with four
possible alternatives {y1, y2, y3, y4} to invest the money, in which y1 is a car company, y2 is a
fast food chains company, y3 is an arms company, y4 is a software company. The investment
company must make a decision according to five criteria: c1 is the growth analysis, c2 is
the environment impact analysis, c3 is the risk analysis, c4 is the social impact analysis,
c5 is the profitability analysis. The weight vector of the criteria {c1, c2, c3, c4, c5} is w =
(0.15, 0.12, 0.24, 0.18, 0.31). Assume that the characteristics of the alternatives yi (i = 1, 2, 3, 4)
with respect to the criteria cj (j = 1, 2, 3, 4, 5) are represented by the IFVs bij = (μij , νij), where
μij indicates the degree that the alternative yi satisfies the criterion cj and νij indicates the
degree that the alternative yi does not satisfy the criterion cj .

To get the optimal alternative(s), the following steps are given.

Step 1. Based on (5.1), we normalize bij (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5) to rij and construct the
normalization intuitionistic fuzzy decision matrix R = (rij)4×5 (see Table 1).

Step 2. Aggregate all the preference values rij (j = 1, 2, 3, 4, 5) of the ith line, and get the
overall performance value ri corresponding to the alternative yi by the GIFNWBM operator
(here we let p = q = r = 1):

r1 = (0.6331, 0.2910), r2 = (0.5891, 0.3692),

r3 = (0.6056, 0.3233), r4 = (0.6049, 0.3222).
(5.3)

Step 3. Calculate the score of the overall performance value ri (i = 1, 2, 3, 4):

s(r1) = 0.3421, s(r2) = 0.2199, s(r3) = 0.2823, s(r4) = 0.2827. (5.4)

Step 4. Rank all the alternatives yi (i = 1, 2, 3, 4) in accordance with ri. Since s(r1) > s(r4) >
s(r3) > s(r2), then by the total order relation between two IFVs, we have the ranking of the
IFVs: y1 > y4 > y3 > y2. Hence, y1 is the best option.

In Step 2, if we take p = q = r = 2, we can get

r1 = (0.6974, 0.2335), r2 = (0.6510, 0.3079),

r3 = (0.6770, 0.2627), r4 = (0.6697, 0.2604).
(5.5)
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Then, we calculate the score values of all the alternatives:

s(r1) = 0.4640, s(r2) = 0.3430, s(r3) = 0.4143, s(r4) = 0.4093. (5.6)

Therefore, y1 > y3 > y4 > y2, and y1 is still the optimal alternative.
By the aforementioned numeral results, the optimal investment decision is the car

company y1. It should be noted out that the whole ranking of the alternatives has changed.
The GIFNWBM1,1,1 produces the ranking of all the alternatives as y1 > y4 > y3 > y2,
which is slightly different from the ranking of alternatives y1 > y3 > y4 > y2, derived
by the GIFNWBM2,2,2, that is, the ranking of y3 and y4 is reversed while the ranking of
the other alternatives is kept unchanged. Therefore, we can see that the value derived by
the GIFNWBM operator depends on the choice of the parameters p, q, and r, and these
parameters are not robust. In general, the bigger parameters p, q, and r, the more the
calculation effort needed, and in the special case where at least two of these parameters
take the value of zero, the GIFNWBM cannot capture the interrelationship of the individual
arguments. As a result, in practical applications, we generally take the values of these
parameters as p = q = r = 1, which is not only intuitive and simple but also the
interrelationship of the individual argument can be fully taken into account [21].

6. Concluding Remarks

To aggregate the intuitionistic fuzzy information, a lot of aggregation operators have been
developed and investigated, especially, the ones which reflect the interrelationship of the
aggregated arguments are the hot research topics, among which the Bonferroni mean
(BM) is an important aggregation technique. The desirable characteristic of the BM is its
capability to capture the interrelationship between the input arguments. To further develop
the BM, we have proposed the normalized weighted Bonferroni mean (NWBM) and the
generalized normalized weighted Bonferroni mean (GNWBM) whose characteristics are to
reflect the preference and interrelationship of the aggregated arguments and can satisfy
the basic properties of the aggregation techniques simultaneously. To aggregate the IFVs,
the intuitionistic fuzzy normalized weighted Bonferroni mean (IFNWBM) operator and
the generalized intuitionistic fuzzy normalized weighted Bonferroni mean (GIFNWBM)
operator have been developed and discussed. Furthermore, some desirable properties of
the IFNWBM operator and the GIFNWBM operator are investigated in detail. To deal with
the situation that the criteria have connections in intuitionistic fuzzy multicriteria decision
making, an approach has been proposed on the basis of the GIFNWBM operator. It is worth
noting that the results of this paper can be extended to the interval-valued intuitionistic fuzzy
environment and the hesitant fuzzy environment.
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[7] J. J. Dujmović and H. L. Larsen, “Generalized conjunction/disjunction,” International Journal of Ap-
proximate Reasoning, vol. 46, no. 3, pp. 423–446, 2007.

[8] J. J. Dujmović, “Continuous preference logic for system evaluation,” IEEE Transactions on Fuzzy Sys-
tems, vol. 15, no. 6, pp. 1082–1099, 2007.

[9] J.-L. Marichal, “k-intolerant capacities and Choquet integrals,” European Journal of Operational
Research, vol. 177, no. 3, pp. 1453–1468, 2007.

[10] G. Choquet, “Theory of capacities,” Annales de l’Institut Fourier, vol. 5, pp. 131–295, 1955.
[11] R. R. Yager, “On ordered weighted averaging aggregation operators in multicriteria decision

making,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.
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