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We obtain new sharp bounds for the Bernoulli numbers: 2(2n)!/ (2" (22" - 1)) < |Ba,| < (2(2% -
1)/2%)¢(2k) (2n)!/ (w2 (22" = 1)), n = k,k +1,..., k € N*, and establish sharpening of Papenfuss’s

inequalities, the refinements of Becker-Stark, and Steckin’s inequalities. Finally, we show a new
simple proof of Ruehr-Shafer inequality.

1. Introduction

The classical Bernoulli numbers B, (n =1,2,...) can be defined by (see [1])

X X
— =ZB"H’ |x| < 2. (L.1)

Reference [2] shows a upper bound for |By,| = (=1)"*'B,,

22n)! 1

|Ban| < WW,

n=1,2,.... (1.2)

On the other hand, [3] presents a lower bound for |By,| as follows:

202n)! 1

Boy| > _—,
| 2n| (ZJZ_)ZH 1 _2—2n

n=12,.... (1.3)

On the basis of (1.2) and (1.3), Alzer [4] obtains the further results.
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Theorem A. For all integers n > 1 one has

1 20n)! 1 14

2(2n)!
< |B2n| < —(2”)2n _1 _ Zﬁ_zn/

(2ﬂ_)2n 1 —=2a-2n
with the best possible constants a = 0 and p =2 +In(1 - 6/m%)/1In2 = 0.6491 - --.
In this paper, we obtain new bounds for the Bernoulli numbers as follows.

Theorem 1.1. Let k e Nt , n=k,k+1,..., then

2(2% - 1) (2n)!
62k — & (1.5)

2(2n)!
‘72_2"(22,1 _ 1) < |BZn| S

The equality holds in (1.5) if and only if n = k. Furthermore, 2 and (2(2%K — 1) /22%)¢(2k) are the best

constants in (1.5).

In the following, we study on some trigonometric inequalities.
Mitrinovic [5] gives us a result which belongs to Steckin.

Theorem B. If0 < x < /2, then

4 X < tan x. (1.6)

J o —2x

Now, we show a upper bound for tanx and obtain the following sharp Steckin’s
inequalities.

Theorem 1.2. If 0 < x < /2, then

4
I I —2x

(1.7)

<tanx <ur

a - 2x

or
4 1 tanx<ﬂ_ 1 (1.8)

a-2x

— <
Jr I —2x x

Furthermore, 4/ and ot are the best constants in (1.7) and (1.8).

Kuang [6] gives us the further results described as Becker-Stark inequalities

Theorem C. Let 0 <t <1, then

4 t ar a ot
- — <tan—t < ———. 1.9
Jrl—t2<an2 <21—152 (19)

Furthermore, 4/ and o /2 are the best constants in (1.9).
Let x = (or/2)t in (1.9), then Theorem C is equivalent to.
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Theorem D. Let 0 < x < /2, then

8 tan x a2

a2 — 4x2? x a2 —4x2 (1.10)

Furthermore, 8 and or? are the best constants in (1.10).

Clearly, Becker-Stark inequalities (1.10) are the generalization of the strengthened
Steckin’s inequalities (1.8).

On the other hand, Papenfuss [7] proposes an open problem described as the
following statement.

Theorem E. Let 0 < x < /2, then

) 8r2x3
xsec’x —tanx < ——. (1.11)
(2 — 4x2)?
Bach [8] prove Theorem E and obtain a further result.
Theorem F. Let 0 < x < /2, then
: 27t x°
xsec™x — tanx < (1.12)

T(Jrz —4x2)%

In this section, we first obtain sharp Papenfuss-Bach inequalities described as
Theorem 1.3.

Theorem 1.3. Let 0 < x < or/2, then

64x3 ) 20t x°
——— 5 <xsec’x—tanx < —————. (1.13)
(% — 4x2) 3 (72 -4x2)
Furthermore, 64 and 2or* /3 are the best constants in (1.13).
The inequalities (1.13) are equivalent to
64x  _ xsec’x — tan x B 27t x xe <O,£>. (1.14)
(2 — 4x2)2 x? 3 (72— 4x2)? 2
That is,
64 t "2t
. <<anx> <—=, xe(0%) (1.15)
(o2 — 4x2) x 3 (a2 -4x2) 2

Then, integrating the three functions in (1.15) from 0 to x, where x € (0,r/2), we obtain the
following refinement of Becker-Stark inequalities.
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Theorem 1.4 (Refinement of Becker-Stark Inequalities). Let 0 < x < /2, then

8 8 tanx ot 1 ar?
—_ 1-— — 1-— ). 1.16
:/1'2—4x2+< .71'2>< x <123r2—4x2+< 12) (1.16)

An application of Theorem 1.4 leads to Theorem 1.5 ( the refinement of Steckin’s
inequalities).

Theorem 1.5 (Refinement of Steckin’s Inequalities). If0 < x < or /2, then

4 1 8 tanx a° 1 a2
;yr—2x+<1_nj>< p <Eyr—2x+<1_ﬁ>' (1.17)

Finally, we will show a new proof of Ruehr-Shafer inequality.

Theorem G (Ruehr-Shafer Inequality, see [8]). Let 0 < x < /2, then

stanx —x

X 118
a2 — 4x? ( )

xsec’x — tanx < 27

2. Two Lemmas

Lemma 2.1 (see [9, Lemma 2.1]). The function (1-(1/2"))¢{(n) (n =1,2,...) is decreasing, where
¢(n) is the Riemann’s zeta function.

Lemma 2.2 (see [10]). Let I, and m,, (n =1,2,...) be real numbers, and let the power series L(x) =

w1 Lix™ and M(x) = 3,72, m,x" be convergent for |x| < R. If m, >0 forn=1,2,...and if,/m,
is strictly decreasing for n = 1,2, ..., then the function L(x)/M(x) is strictly decreasing on (0, R).

3. Proof of Theorem 1.1

Using the representation

_ o)™ _
C(Zn) - 2(271)' |B271|I n= 1/2/' e (31)
(cf. [11, page 266]), we have
Gy < BT =) o 1y —kk+1,...; keN' 32
(n) = an)! = < _ﬁ>§( n), n=kk+1,...; keN". (3.2)

From Lemma 2.1, we know that G(n) is decreasing and G(k) = (2(2%k-1) /2%%)¢(2k), G(+0) =
2limy, -, ¢ (2n) = 2. Then, the proof of Theorem 1.1 is complete.
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4. Proofs of Theorem 1.3 and G
4.1. Proof of Theorem 1.3.

The following power series expansion can be found in [12]:

0 22n (2211 ) ~ © 22n (22n 1)
tanx =y ————~= o (-)" " Bpux™ = Y — = o | By |7, |x|<E (4.1)
n=1 n=1
Then
oo 22n 22n T
sec’x = (tanx)’ Z ((2 Y )(Zn ~1)|Bou|x*™2, x| < 5
n=

4.2
2 & 2% (2% - 1) 2n-1 I 2

xsec’x —tanx = 2W(211—2)|B2n|x , x] < 5

n=
Let
25 —
A(x) = xsec-x tanx2 _ L(x) ’ 43)
x3/ (w2 —4x2)>  M(x)
where
=) 22n 22n -1
L(x) = xsec’x — tan x = nzz%@n —2)|Bon|x®™t, x| < %,
3 ©2m-2/2\ o
x n- _ a
M) = — = S E2(2) e, <]
(‘71— —4.X') n=2 ‘a

Then, I, = ((22"(2" - 1)/(2n)!) (2n - 2)|Bay|, my = ((2n - 2)/32) (2/7)*" > 0 (n > 2)
and I,/m, = 64(1 - 1/2*")¢(2n). So, I,/ m, is decreasing by Lemma 2.1. Therefore, A(x) =
L(x)/M(x)is decreasing on (0,7r/2) by Lemma 2.2. At the same time, lim,_,o- A(x) = 27*/3
and lim, _, - /5)- A(x) = 64, so 64 and 2% /3 are the best constants in (1.13).

4.2. Proof of Theorem G.

By (4.1) and (4.2), we have

( 2 2 2 22”( 2n ) 2n-1
xsec’x — tanx) (r* —4x?) =2x23, T(n —1)|Ban|x
n=2 .
4 S 22” (22"1 B 1) 2 2)|B 2n+1
A3 en Bl ()
2n 2211 1
272 (tanx — x) = ZJrZZ ( )|B 2L

(2n)!
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so, (1.18) is equivalent to

o 22n (22n _ 1) o 22n (2211 _ 1)
272y L (1= 2)|Bon|x®" T <4y 2 (2n = 2)| By |x?,
=  (2n)! nZ=2 (2n)!
that is,
=) 22n (22n _ 1) o0 22n (2211 _ 1)
22y (1= 2)|Bon|x®" T <4 2 (21 — 2)| By |x®,
= (2n)! o nzz (2n)! 2
or
[e9) 22n+2 (22n+2 _ 1) [e2) 2211 (22n _ 1)
2 2n+1 2n+1
—— (1= 1)[Baa|x™" <4 ——————"(n—1)|Bay[x™".
=  (2n+2)! nZZZ (2n)!

From Lemma 2.1, we have that (1 - 1/2%"){(2n) is decreasing or

22n+2 -1

——t@n+2) < (2 -1)¢@n)

holds. By (3.1), we get

7['2 (22n+2 _ 1)
(2n +2)!

(2 -1)

B
| 2n+2| < (21’1) '

|B2n |/
so, (4.8) holds.

5. Remark

In 2010, Zhu and Hua [9] proved for x € (0,r/2) that

72+ ((4(8-x?)) /) x? _tanx 72+ (w2 /3 - 4)x?
2 — 4x? x 2 — 4x?

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(5.1)

Now, we can compare the results of (5.1) with (1.16). In fact, we can easy check that

8 <1 8 > _ 7?+ ((4(8 - a?)) /) x?

a2 —4x2 ) a2 — 4x? !
at 1 17\ a? + (/3 - 4)x?
12 72 — 4x2 12 )" a2 — 4x2? ’

So, (5.1) is equivalent to (1.16).

(5.2)
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