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Point pattern matching is an important topic of computer vision and pattern recognition. In this
paper, we propose a point pattern matching algorithm for two planar point sets under Euclidean
transform.We view a point set as a complete graph, establish the relation between the point set and
the complete graph, and solve the point pattern matching problem by finding congruent complete
graphs. Experiments are conducted to show the effectiveness and robustness of the proposed
algorithm.

1. Introduction

Point pattern matching problem is an important task of computer vision and pattern
recognition. It is to find a good correspondence between two point sets in m-dimensional
space. In general, it can be classified into two kinds. One is that the point number of the
two point sets is the same. The other is that the point numbers are different. The first case
is called complete matching, while the second case is called incomplete matching or partial
matching. Point pattern matching has found many applications, such as image registration,
motion detection, object tracking, automated visual inspection of flat objects, autonavigation,
and pose estimation.

In the past decades, many researchers have devoted themselves to designing high
performance point pattern matching algorithms. Griffin and Alexopoulos [1] present a
method for the complete matching problem. They calculate the two pattern controids and
align them and then construct a bipartite graph. The point matching is finally found by de-
termining the maximal cardinality matching of the bipartite graph. Vinod and Ghose [2]
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view point pattern matching problem as 0-1 integer programming problem and then use
an artificial neural network to solve the point pattern matching problem under translation
and rotation transform. To solve the problem of noisy point pattern matching, Morgera and
Cheong [3] propose a hybrid and iterative method accommodating patterns from different
dimensions. It exploits singular value decomposition to estimate the rotation matrix and
steepest-ascent to find the permutation matrix. In [4], Wang and Chen consider the matching
problem of point sets with affine transform and use the intrinsic invariant properties of
a line segment to design a pattern-matching method. In another work [5], Chang et al.
propose a fast algorithm based on 2D cluster approach. It can find the optimal matching
between two point sets under the transform of translation, rotation, and scale. In [6], Chui
and Rangarajan propose a robust point matching algorithm based on the softassign and
the thin-plate spline. This algorithm can jointly estimate the correspondence and nonrigid
transformations between two point sets with different sizes. In [7], Carcassoni and Hancock
exploit three ways to improve the recovery of point correspondences using spectral analysis
of the point proximity matrix. These ways include an alternative proximity weighting matrix,
robust methods for comparing the eigenvectors of the proximity matrix and embedding the
correspondence process within the EM algorithm. To solve the incomplete matching problem
under affine transform, Zhang et al. [8] design a method combining a genetic algorithm with
partial Hausdorff distance.

In [9], Van Wamelen et al. propose a fast algorithm for 2D point matching using
probabilistic and sorted nearest neighbors. Its time complexity is O(n(logm)3/2), where n
and m are the point numbers of the point sets. Li et al. [10] introduce a new similarity K-d
tree method to establish a one-to-onematch and then apply it to matching nonaffinely-related
point sets. To target the optimal transform between point sets, Yin [11] exploits the technique
of particle swarm optimization, where the transform parameters are encoded as a real-
valued vector called particle. Bishnu et al. [12] present simple and deterministic algorithm
for point pattern matching under translation and rotation in 2D. It runs O(n 2log n) time
for complete matching and O(mn4/3 log n) time for incomplete matching. In [13], Caetano et
al. give a graphical models-based algorithm to achieve point pattern matching in Euclidean
spaces of any dimension. This algorithm runs in a polynomial time and is provably optimal
for complete matching between noiseless point sets. Later, McAuley et al. [14] present a
new graph showing better performance than that of [13] and use it to determine point
set matching. Li et al. [15] propose a dynamic segment-based hierarchical point matching
algorithm for self-initialising articulated motion reconstruction from sparse feature points.
Recently, Bhowmick et al. [16] propose a novel data structure called “angular tree” for
supporting point pattern matching algorithms. Aiger and Kedem [17] introduce an efficient
algorithm for matching point sets under the transform of translation, rotation, and scale by
using the Hausdorff metric as a distance function. In another study [18], Aiger and Kedem
propose a matching algorithm based on a simple alignment scheme. It runs roughly in
O(n log n+ km log n) time, where m and n are the point number of two point sets and k is
the number of matched subsets between the two sets.

Most of the above algorithms are designed to solve the matching problem under affine
transform or the transform of translation and rotation. These works are not suitable for the
point sets under reflection transform. To overcome this problem, we propose an efficient
algorithm based on the fact that the Euclidean distance between any two points is invariant.
This algorithm is not only suitable for point sets under reflection transform, but also effective
for those under translation and rotation transform. The rest of the paper is organized as
follows. Section 2 introduces congruent complete graph-based algorithm. Section 3 presents
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the proposed algorithm. Experimental results are given in Section 4 and conclusions aremade
in Section 5.

2. Congruent Complete Graph-Based Algorithm

2.1. Congruent Complete Graphs

A point set can be represented by a complete graph as follows. A vertex denotes a point and
the weight of an edge connecting two vertices represents the Euclidean distance between the
corresponding two points. For a given point set, if the point number is n, the edge number
of its corresponding complete graph is n(n−1)/2. Clearly, if V and V ′ are two matched point
sets under reflection transform, or transform of translation and rotation, the corresponding
edges of their complete graphs are equal, and vice versa. In general, translation and rotation
transform and reflection transform are collectively called Euclidean transform.

Definition 2.1. If all corresponding edges of two complete graphs are equal, they are
congruent graphs.

Let G(V) and G(V ′) be the complete graphs of V and V ′, respectively, and G(V ) ∼=
G(V ′) represent that G(V) and G(V ′) are congruent graphs. Thus, there is a property of
congruent graphs.

Property 1. If G(V ) ∼= G(V ′), the point sets V and V ′ are the matching sets under Euclidean
transform.

If two point sets are the matching sets under Euclidean transform, corresponding
edges of congruent graphs formed by these point sets are equal, and vice versa. As shown in
Figure 1, since G({p1, p2, p3, p4}) ∼= G({q1, q2, q3, q4}), {p1, p2, p3, p4}, and {q1, q2, q3, q4}
are the matching sets under reflection transform. Similarly, {p1, p2, p3, p4} and {v1, v2, v3, v4}
are the matching sets under translation and rotation transform since G({p1, p2, p3, p4}) ∼=
G({v1, v2, v3, v4}).

Let V = v1, v2, . . . , vk (k ≥ 3) and V ′ = {v′1, v′2, . . . , v′k} be two planar point sets. If
we use the Euclidean distance between any two points to represent the corresponding edge
weight of graph, the complete graph of each point set has k(k − 1)/2 edges. Clearly, we can
find congruent complete graphs by calculating all edges and establishing their corresponding
relations. However, such computational cost is large. To reduce computation, we can calculate
matched edges based on the following theorem.

Theorem 2.2. Let (va, v
′
a) and (vb, v

′
b) be two pairs of matched points between V and V ′. Thus, we

have G(V ) ∼= G(V ′) if they satisfy the following conditions.

(1) |vavi|=|v′av′i| (i = 1, 2, . . . , k, i /=a) and |vbvi| = |v′bv′i| (i = 1, 2, . . . , k, i /= b).

(2) If v1, v2, . . . , vk (i /=a, i /= b) are on one side of the straight line vavb, their corresponding
points v′1, v

′
2, . . . , v

′
k
are also on the corresponding side of the straight line v′av

′
b
.

(3) If va, vb, and vi (i /=a, i /= b) are collinear, their corresponding points v′a, v
′
b, and v

′
i are also

collinear.
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Figure 1: Congruent complete graphs and corresponding point sets.
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Figure 2: Two pairs of congruent complete graphs.

Proof. As shown in Figure 2(a), suppose that va, vb, and vi (i /=a, i /= b) are not collinear, and
for a given vertex vj , there are also no three collinear vertices among {va, vb, vi, vj}. According
to the condition (2), assume that vi and vj are on one side of the straight line vavb. Thus,
vi
′ and v′j are on the corresponding side of straight line v′av

′
b. Using the condition (1), it is

deduced that |vavb| = |v′av′b|, |vavi| = |v′av′i|, and |vbvi| = |v′bv′i|. Therefore, G({va, vb, vi}) ∼=
G({v′a, v′b, v′i}) by Definition 2.1. Similarly, G({va, vb, vj}) ∼= G({v′a, v′b, v′j}). The Property 1
shows that ∠vbvavj = ∠v′bv

′
av
′
j and ∠vbvavi = ∠v′bv

′
av
′
i. Thus, ∠vivavj = ∠v′iv

′
av
′
j because

∠vbvavj = ∠vbvavi + ∠vivavj and ∠v′bv
′
av
′
j = ∠v′bv

′
av
′
i + ∠v′iv

′
av
′
j . Since |vavi| = |v′av′i| and

|vavj | = |v′av′j | (Condition 1), G({va, vi, vj}) ∼= G({v′a, v′i, v′j}) by Definition 2.1. Thus, |vivj | =
|v′iv′j |. This means that the distance between vi and other vertex is equal to that between v′i
and the corresponding vertex. The case that vi and vj are on different side of straight line
vavb can be proven by using the similar steps.

Consider the case that vertices are collinear. If va, vb, and vi are collinear, v′a, v
′
b,

and v′i are also collinear (Condition 3). If vj and v′j are on the straight lines vavb and v′av
′
b

respectively, it is clearly that |vivj | = |v′iv′j |. If they are not on the straight lines as shown in
Figure 2(b), |vivj | = |v′iv′j | is also available.

From the above analysis, it can be found that |vivj | = |v′iv′j | can be derived if the vertices
vi and vj satisfy the above-mentioned conditions. So G(V ) ∼= G(V ′).
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Obviously, the pattern matching between two point sets P and Q under Euclidean
transform can be achieved by calculating their congruent complete graphs. The detailed
algorithm is as follows.

(1) For each vertex pi ∈ P (i = 1, 2, . . . , n), calculate the Euclidean distance |pipj | (i /= j)
between pi and pj and sort these distances to make an ascending sequence.

(2) For each vertex qi ∈ Q (i = 1, 2, . . . , m), calculate the Euclidean distance |qiqj | (i /= j)
between qi and qj and sort these distances to make an ascending sequence.

(3) Compute the congruent complete graphs between G(P) and G(Q) by Theorem 2.2
and determine whether or not P and Q are matched.

2.2. Parameters of Congruent Complete Graphs

If two point sets are matched, one can be viewed as the transformed result of the other, where
the transform may be translation and rotation transform or reflection transform. Note that
Euclidean distance between two points is invariant under these transforms. Parameters of the
above transforms are discussed as follows. (1) Translation and rotation transform denoted as
Tθ,tx,ty : let (x, y) be the coordinates of a point and (x′, y′) the coordinates of its transformed
version. If they satisfy the following equation:

(
x′

y′

)
=

(
tx

ty

)
+

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
, (2.1)

the transform is called translation and rotation transform, where θ is the rotation angle tx
and ty are the translations along x-axis and y-axis, respectively. The θ, tx, and ty are the
parameters of translation and rotation transform. (2) Reflection transform denoted as Tl: if l
is the perpendicular bisector of the line segment connecting (x, y) and (x′, y′), the two points
are a pair of matched points under the Tl, where l is the symmetry axis and the parameter of
the reflection transform. Parameter calculations are as follows.

For translation and rotation transform, let (p1, q1) and (p2, q2) be two pairs of matched
points under translation and rotation transform, that is, Tθ,tx,ty(qi) = pi (i = 1, 2), where the
coordinates of qi and pi are (xi, yi) and (x′i, y

′
i), respectively. Substitute the coordinates of

each pair of points into (2.1) and then obtain the following equation:

tx = x1
′ − x1 cos θ + y1 sin θ,

ty = y1
′ − x1 sin θ − y1 cos θ,

θ = θ−−−→q1q2 − θ−−−→q1q2 ,

(2.2)

where θ is the included angle between −−−→q1q2 and
−−−→p1p2. From (2.2), it is found that the transform

parameters tx, ty, and θ can be uniquely determined by two pairs of matched points.
For reflection transform, suppose that {q′1, q′2, . . . , q′r} is the transformed result of

{q1, q2, . . . , qr} under the transform Tl, as shown in Figure 3. If qi (i = 1, 2, . . . , r) and q′i are
not the same point, the perpendicular bisector l of the line segment connecting qi and q′i is the
symmetry axis of the reflection transform.



6 Journal of Applied Mathematics

q3
′

q1
′

q2
′

qi
′

l

qi

q1
q2

q3

Figure 3: Symmetry axis of reflection transform.

From the above analysis, it is clearly that the parameters tx, ty, and θ can uniquely
determine a translation and rotation transform, and the symmetry axis l can determine
a reflection transform. If V ′ = {v′1, v′2, . . . , v′k} (k ≥ 3) is the transformed result of V =
{v1, v2, . . . , vk} under the Euclidean transform, V and V ′ are a pair of matched point sets.

3. Proposed Algorithm

3.1. Calculation of Congruent Complete Graphs

Let P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qn} be two matched point sets in a 2D plane. To
find the congruent complete graphs containing vertices pa and qb, we calculate the distances
|papi| (i = 1, 2, . . . , m, i /=a) and |qbqj | (j = 1, 2, . . . , n, j /= b), and make these distances in
ascending order, where the sorted result of |papi| is {d1, d2, . . . , dm−1} and that of |qbqj | is
{s1, s2, . . . , sn−1}. Thus, congruent complete graphs can be calculated by the following steps.

(1) Let i = 1 and j = 1. If di = sj , record the matched points forming the matched sets
and let i← i+1. If di > sj , let j ← j+1. If di < sj , let i← i+1. Repeat the computation
until i = m or j = n.

(2) Select a pair of matched points pc and qf from the above matched sets, whose
distances to pa and qb are equal. Calculate the distances from pc and qf to other
corresponding matched points, respectively, and compute the congruent complete
graphs by the Theorem 2.2. If the congruent complete graphs are available, we
extract other congruent complete graphs from the rest points. Otherwise, we select
another matched pair to calculate congruent complete graphs until all matched
pairs are used.

3.2. Matching Algorithm Based on Complete Graphs

For incomplete matching problem, if we calculate complete graphs of all points to identify
congruent graphs, the computational cost is large. In here, nearest neighbor algorithm is
exploited to improve efficiency. Let P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qn} be two
matched point sets, and thematched probability in P is ρ, that is, ρm points of P havematched
points in Q. Thus, the matched probability ρ′ in Q can be calculated by

ρ′ =
ρm

n
. (3.1)
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Note that the minimum point number of congruent complete graphs is 3. Suppose
that the selected neighbor point numbers in P and Q are k and t. For each point of P and Q,
we apply the method [19] to find its nearest neighbor points. A small number of neighbor
points is helpful to improve computational speed. However, average matched point number
for each point could not be smaller than 3. In the words, the k or t value must satisfy ρk ≥ 3
or ρ′t ≥ 3. Thus, we have

k =
⌈
3
ρ

⌉
, (3.2)

where �·	means upward rounding. So we have

t =
⌈
3
ρ

⌉
=
⌈
3n
ρm

⌉
. (3.3)

Detailed steps of the proposed matching algorithm are as follows.

Step 1. For each point of Q, extract t neighbor points by the method [19], calculate the
distances to the neighbor points, and sort these distances.

Step 2. Randomly select a point from P and find its k neighbor points by the method [19]
again. Next, calculate its distances to the k neighbor points, and sort these distances. Apply
the Theorem 2.2 to determine matched graphs between the complete graph forming by these
k + 1 points of P and the other complete graph of each point of Q. During the determination,
we record the transform parameters and the transform type, that is, translation and rotation
transform or reflection transform.

Step 3. Repeat Step 2 and merge the congruent complete graphs with the same transform
parameters and the same transform type. If the point number of the congruent complete
graphs is bigger than a predefined threshold T, we recalculate the transform parameters. If
the calculated results are equal to the prior values, the corresponding points forming the
congruent complete graphs are the matched points. The algorithm is done. Otherwise, turn
to Step 2.

4. Experimental Results

To validate the proposed algorithm,many experiments are conducted and all results show the
effectiveness of our algorithm. In here, typical examples including the synthesized point sets
and the real point sets from fingerprints are presented. For the synthesized examples, point
sets under the two kinds of Euclidean transform are both considered, where the matched
probability in P is 0.8, that is, ρ = 0.8.As the points may be perturbed by noises in a real-world
situation, we define a threshold ε = 4. If the difference between two distances is smaller than
the threshold, their corresponding edges are considered as a matched pair.
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Table 1: Coordinates of the points in P.

No. (x, y) No. (x, y) No. (x, y) No. (x, y) No. (x, y)
1 (132, 225) 11 (153, 36) 21 (212, 203) 31 (125, 73) 41 (114, 157)
2 (108, 214) 12 (94, 13) 22 (252, 150) 32 (79, 20) 42 (128, 126)
3 (174, 82) 13 (28, 6) 23 (245, 69) 33 (64, 102) 43 (213, 233)
4 (144, 73) 14 (18, 77) 24 (59, 19) 34 (208, 107) 44 (128, 178)
5 (241, 241) 15 (200, 67) 25 (13, 137) 35 (196, 48) 45 (234, 201)
6 (187, 233) 16 (187, 139) 26 (10, 28) 36 (59, 161) 46 (204, 83)
7 (235, 179) 17 (3, 90) 27 (219, 174) 37 (34, 246) 47 (191, 103)
8 (166, 219) 18 (125, 9) 28 (120, 54) 38 (34, 145) 48 (20, 214)
9 (60, 135) 19 (56, 37) 29 (253, 18) 39 (202, 153) 49 (220, 142)
10 (12, 62) 20 (31, 93) 30 (73, 50) 40 (2, 185) 50 (102, 131)

Table 2: Coordinates of the points in Q under reflection transform.

No. (x, y) No. (x, y) No. (x, y) No. (x, y) No. (x, y) No. (x, y)
1 (−63, 110) 11 (−58, 149) 21 (−23, 164) 31 (60, 85) 41 (105, 245) 51 (12, 284)
2 (−94, 165) 12 (−34, 193) 22 (−13, 266) 32 (47, 117) 42 (78, 294) 52 (−8, 204)
3 (−71, 166) 13 (−51, 218) 23 (21, 30) 33 (35, 137) 43 (63, 315) 53 (106, 97)
4 (−102, 196) 14 (−34, 235) 24 (81, −182) 34 (48, 165) 44 (−63, 305) 54 (116, −96)
5 (−61, 205) 15 (−26, 296) 25 (11, 129) 35 (61, 190) 45 (151, 117) 55 (51, −137)
6 (−132, 218) 16 (−7, 31) 26 (4, 238) 36 (163, −69) 46 (163, 149) 56 (93, −49)
7 (−109, 228) 17 (−15, 63) 27 (6, 258) 37 (74, 61) 47 (181, 180) 57 (1, 72)
8 (−87, 245) 18 (−26, 80) 28 (−75, −45) 38 (76, 134) 48 (130, 189) 58 (130, −189)
9 (−41, 88) 19 (1, 93) 29 (25, 313) 39 (98, 149) 49 (163, 199) 59 (52, 342)
10 (−48, 127) 20 (−12, 149) 30 (47, 52) 40 (70, 214) 50 (135, 254) 60 (135, −254)

4.1. Reflection Transform

The point sets are produced as follows. Firstly, 40 random points with integer coordinates
are generated in a square sized 256 × 256 to form the point set P . A reflection transform
with symmetric axis y = 2x + 3 and a translation transform with tx = 7 and ty = 4 are then
applied to the 40 points. So 40 points of Q are then obtained. To test the robustness of our
algorithm, 10 random points in the 256 × 256 square are generated and then added into P .
Another reflection is applied to the 10 points to generate their transformed versions, which
are then added to Q. Moreover, another 10 points, which do not belong to P , are added to
Q. During the point generations, the distance between each two points is not smaller than
10. Furthermore, the coordinates of points in P and Q are both perturbed by Gaussian noises
with 0 mean and 1 variance, and the quantization errors caused by the noises are controlled
within ±3. Coordinates of the points in P and Q are presented in Tables 1 and 2, where the
serial numbers of points are randomly arranged. As expected, the propose algorithm correctly
finds 40 matched pairs of points. The matched results are listed in Table 3.

4.2. Translation and Rotation Transform

The point set P used in Subsection 4.1 is also adopted here. We apply the translation and
rotation transform with tx = 7, ty = 4, and θ = 0.716 (radian) to the first 40 points of P and
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Table 3:Matched pairs (ni, nj) between Tables 1 and 2, where ni and nj are the serial numbers of points in
Tables 1 and 2.

No. (ni, nj) No. (ni, nj) No. (ni, nj) No. (ni, nj)
1 (11, 11) 11 (26, 23) 21 (36, 39) 31 (22, 8)
2 (46, 13) 12 (39, 27) 22 (44, 40) 32 (12, 9)
3 (34, 14) 13 (27, 51) 23 (43, 43) 33 (3, 12)
4 (22, 15) 14 (45, 29) 24 (25, 53) 34 (4, 21)
5 (13, 16) 15 (10, 30) 25 (40, 45) 35 (19, 57)
6 (24, 17) 16 (20, 31) 26 (48, 46) 36 (16, 26)
7 (32, 18) 17 (33, 32) 27 (37, 47) 37 (5, 59)
8 (30, 19) 18 (50, 34) 28 (18, 1) 38 (9, 38)
9 (31, 20) 19 (41, 35) 29 (15, 5) 39 (1, 41)
10 (49, 22) 20 (17, 37) 30 (29, 6) 40 (6, 42)

Table 4: Coordinates of the points in Q under translation and rotation transform.

No. (x, y) No. (x, y) No. (x, y) No. (x, y) No. (x, y) No. (x, y)
1 (−72, 116) 11 (−30, 95) 21 (−4, 303) 31 (69, 75) 41 (107, 200) 51 (37, −206)
2 (−112, 145) 12 (−11, 123) 22 (15, 320) 32 (68, 154) 42 (94, 221) 52 (−94, −81)
3 (−53, 164) 13 (−35, 145) 23 (39, 57) 33 (57, 232) 43 (99, 283) 53 (9, −223)
4 (−117, 179) 14 (−12, 222) 24 (25, 69) 34 (59, 252) 44 (137, 140) 54 (13, −150)
5 (−76, 210) 15 (−40, 260) 25 (29, 90) 35 (80, 256) 45 (115, 145) 55 (101, −45)
6 (−128, 212) 16 (24, 27) 26 (26, 127) 36 (58, 279) 46 (152, 168) 56 (114, 186)
7 (−107, 228) 17 (−3, 32) 27 (−16, −98) 37 (95, 93) 47 (186, 184) 57 (86, −84)
8 (−67, 275) 18 (4, 140) 28 (52, 309) 38 (85, 113) 48 (150, −68) 58 (24, −126)
9 (−24, 59) 19 (−1, 170) 29 (31, 344) 39 (99, 132) 49 (165, 198) 59 (53, 141)
10 (−49, 74) 20 (−9, 197) 30 (54, 71) 40 (85, 180) 50 (147, 217) 60 (−47, −211)

then obtain 40 points of Q. Next, we apply another transform of translation and rotation to
the last 10 points of P and add the transformed points to Q. Moreover, another 10 points
are added to Q. During generation, the distance between each two points is also not smaller
than 10. Similarly, Gaussian noises with 0 mean and 1 variance is also exploited to perturb
the points of Q. Table 4 are the coordinates of those points of Q. Our algorithm correctly
determines 40 matched pairs of points, as shown in Table 5.

4.3. Fingerprint Matching

To view the performance in a real-world situation, the proposed algorithm is applied to
fingerprint recognition. Figure 4 presents two fingerprint images taken from the same finger
of a person. The circled feature points are manually selected and their coordinates are also
manually extracted by using the software origin. In this experiment, the circled features
represent those points for pattern matching and the total number of used features in each
fingerprint image is 42. Our algorithm finds 35 matched pairs of features, indicating the
practicability of the proposed algorithm. The results are as shown in Figure 5, where the “×”
marks represent the feature points in Figure 4(a), the “+” marks represent the feature points
in Figure 4(b), and the circle marks mean the matched pairs.
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Table 5:Matched pairs (ni, nj) between Tables 1 and 4, where ni and nj are the serial numbers of points in
Tables 1 and 4.

No. (ni, nj) No. (ni, nj) No. (ni, nj) No. (ni, nj)

1 (25, 1) 11 (13, 16) 21 (16, 33) 31 (6, 21)

2 (40, 2) 12 (26, 17) 22 (39, 34) 32 (19, 24)

3 (36, 3) 13 (50, 19) 23 (49, 35) 33 (5, 29)

4 (48, 4) 14 (41, 20) 24 (27, 36) 34 (32, 30)

5 (37, 6) 15 (43, 22) 25 (18, 37) 35 (4, 32)

6 (10, 9) 16 (24, 23) 26 (46, 41) 36 (11, 39)

7 (17, 10) 17 (30, 25) 27 (34, 42) 37 (3, 40)

8 (20, 11) 18 (31, 27) 28 (22, 43) 38 (29, 47)

9 (33, 12) 19 (45, 28) 29 (9, 13) 39 (15, 48)

10 (44, 14) 20 (12, 31) 30 (1, 15) 40 (23, 50)

(a) A fingerprint image (b) Another fingerprint image

Figure 4: Two different fingerprint images from the same finger with circled features.
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Figure 5: Matched pairs between Figures 4(a) and 4(b).
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5. Conclusions

A novel point pattern matching algorithm is proposed in this paper, which views point
pattern matching problem as complete graph matching. For each point, the proposed
algorithm constructs its complete graph by using its neighbor points. Point pattern matching
is then solved by finding congruent complete graphs between the point sets. The proposed
algorithm is suitable for the point sets under Euclidean transform. Many experiments are
done, and the results show that our algorithm is robust and effective. As finding a matched
pair of points in advance is not needed, the proposed algorithm is not influenced by
calculation errors causing in point pair determination, and, therefore, achieves robustness.
Complete graphs are formed by those points in neighbor. It effectively reduces computational
cost and improves speed.
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