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Recently, Xiao et al. proposed a nonsmooth equations-based method to solve the �1-norm
minimization problem (2011). The advantage of this method is its simplicity and lower storage.
In this paper, based on new nonsmooth equations reformulation, we investigate new nonsmooth
equations-based algorithms for solving �1-norm minimization problems. Under mild conditions,
we show that the proposed algorithms are globally convergent. The preliminary numerical results
demonstrate the effectiveness of the proposed algorithms.

1. Introduction

We consider the �1-norm minimization problem

min
x

f(x) � 1
2
‖Ax − b‖2 + ρ‖x‖1, (1.1)

where x ∈ R
n, b ∈ R

m, A ∈ R
m×n, and ρ is a nonnegative parameter. Throughout the paper,

we use ‖v‖ =
√∑n

i=1 |vi|2 and ‖v‖1 =
∑

i |vi| to denote the Euclidean norm and the �1-norm
of vector v ∈ Rn, respectively. Problem (1.1) has many important practical applications,
particularly in compressed sensing (abbreviated as CS) [1] and image restoration [2]. It can
also be viewed as a regularization technique to overcome the ill-conditioned, or even singular,
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nature of matrix A, when trying to infer x from noiseless observations b = Ax or from noisy
observations b = Ax + ξ, where ξ is the white Gaussian noise of variance σ2 [3–5].

The convex optimization problem (1.1) can be cast as a second-order cone program-
ming problem and thus could be solved via interior point methods. However, in many
applications, the problem is not only large scale but also involves dense matrix data, which
often precludes the use and potential advantage of sophisticated interior point methods.
This motivated the search of simpler first-order algorithms for solving (1.1), where the
dominant computational effort is a relatively cheap matrix-vector multiplication involving
A and AT . In the past few years, several first-order algorithms have been proposed. One of
the most popular algorithms falls into the iterative shrinkage/thresholding (IST) class [6, 7].
It was first designed for wavelet-based image deconvolution problems [8] and analyzed
subsequently by many authors, see, for example, [9–11]. Figueiredo et al. [12] studied the
gradient projection and Barzilai-Borwein method [13] (denoted by GPSR-BB) for solving
(1.1). They reformulated problem (1.1) as a box-constrained quadratic program and solved
it by a gradient projection and Barzilai-Borwein method. Wright et al. [14] presented sparse
reconstruction algorithm (denoted by SPARSA) to solve (1.1). Yun and Toh [15] proposed
a block coordinate gradient descent algorithm for solving (1.1). Yang and Zhang [16]
investigated alternating direction algorithms for solving (1.1).

Quite recently, Xiao et al. [17] developed a nonsmooth equations-based algorithm
(called SGCS) for solving �1-norm minimization problems in CS. They reformulated the
box-constrained quadratic program obtained by Figueiredo et al. [12] into a system of
nonsmooth equations and then applied the spectral gradient projection method [18] to
solving the nonsmooth equation. The main advantage of the SGCS is its simplicity and lower
storage. The difference between the above algorithms and SGCS is that SGCS did not use
line search to decrease the value of objective function at each iteration and instead used a
projection step to accelerate the iterative process. However, each projection step in SGCS
requires twomatrix-vector multiplication involvingA orAT , which means that each iteration
requires matrix-vector multiplication involving A or AT four times, while each iteration in
GPSR-BB and IST is only two times. This may bring in more computational complexity. In
addition, the dimension of the system of nonsmooth equations is 2n, which is twice of the
original problems. These drawbacks motivate us to study new nonsmooth equations-based
algorithms for the �1-norm minimization problem.

In this paper, we first reformulate problem (1.1) into a system of nonsmooth equations.
This system is Lipschitz continuous and monotone and many effective algorithms (see, e.g.,
[18–22]) can be used to solve it. We then apply spectral gradient projection (denoted by
SGP) method [18] to solve the resulting system. Similar to SGCS, each iteration in SGP
requires matrix-vector multiplication involving A or AT four times. In order to reduce the
computational complexity, we also propose a modified SGP (denoted by MSGP) method to
solve the resulting system. Under mild conditions, the global convergence of the proposed
algorithms will be ensured.

The remainder of the paper is organized as follows. In Section 2, we first review some
existing results of nonsmooth analysis and then derive an equivalent system of nonsmooth
equations to problem (1.1). We verify some nice properties of the resulting system in this
section. In Section 3, we propose the algorithms and establish their global convergence.
In Section 4, we apply the proposed algorithms to some practical problems arising from
compressed sensing and image restoration and compare their performancewith that of SGCS,
SPARSA, and GPSR-BB.

Throughout the paper, we use 〈· , ·〉 to denote the inner product of two vectors in Rn.
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2. Preliminaries

By nonsmooth analysis, a necessary condition for a vector x ∈ R
n to be a local minima of

nonsmooth function f : R
n → R is that

(0, . . . , 0)T ∈ ∂f(x), (2.1)

where ∂f(x) denotes the subdifferential of f at x [23]. If f is convex, then (2.1) is also
sufficient for x to be a solution of (1.1). The subdifferential of the absolute value function
|t| is given by the signum function sign(t), that is

∂|t| = sign(t) :=

⎧
⎪⎪⎨
⎪⎪⎩

{1}, t > 0,
[−1, 1], t = 0,
{−1}, t < 0.

(2.2)

For problem (1.1), the optimality conditions therefore translate to

∇if(x) + ρ sign(xi) = 0, |xi| > 0,
∣∣∇if(x)

∣∣ ≤ ρ, xi = 0,
(2.3)

where ∇if(x) = ∂f(x)/∂xi, i = 1, . . . , n. It is clear that the function defined by (1.1) is convex.
Therefore a point x∗ ∈ Rn is a solution of problem (1.1) if and only if it satisfies

∇if(x∗) + ρ = 0, if x∗
i > 0,

∇if(x∗) − ρ = 0, if x∗
i < 0,

−ρ ≤ ∇if(x∗) ≤ ρ, if x∗
i = 0.

(2.4)

Formally, we call the above conditions the optimality conditions for problem (1.1).
For any given τ > 0, we define a mapping Hτ = (Hτ

1 ,H
τ
2 , . . . ,H

τ
n)

T : R
n → R

n by

Hτ
i (x) � max

{
τ
(∇if(x) − ρ

)
,min

{
xi, τ

(∇if(x) + ρ
)}}

. (2.5)

Then Hτ is a continuous mapping and is closely related to problem (1.1). It is generally
not differentiable in the sense of Fréchet derivative but semismooth in the sense of Qi and
Sun [24]. The following proposition shows that the �1-norm minimization problem (1.1) is
equivalent to a nonsmooth equation. It can be easily obtained by the use of the optimality
conditions and the convexity of the function f defined by (1.1).

Proposition 2.1. Let τ > 0 be any given constant. A point x∗ ∈ R
n is a solution of problem (1.1) if

and only if it satisfies

Hτ(x∗) = 0. (2.6)
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The above proposition has reformulated problem (1.1) as a system of nonsmooth
equations. Compared with the nonsmooth equation reformulation in [17], the dimension of
(2.6) is only half of the dimension of the equation in [17].

Given a, b, c, d ∈ R. It is easy to verify that (see, e.g. [25])

min{a, b} −min{c, d} = (1 − s)(a − c) + s(b − d),

max{a, b} −max{c, d} = (1 − t)(a − c) + t(b − d)
(2.7)

with

s =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, a ≤ b, c ≤ d;
1, a > b, c > d;
min{a, b} −min{c, d} + c − a

b − d + c − a
, otherwise,

t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, a ≥ b, c ≥ d;
1, a < b, c < d;
max{a, b} −max{c, d} + c − a

b − d + c − a
, otherwise.

(2.8)

It is clear that 0 ≤ s, t ≤ 1. By (2.5), we have for any x, y ∈ R
n, it holds that

Hτ
i (x) −Hτ

i

(
y
)

= max
{
τ
(∇if(x) − ρ

)
,min

{
xi, τ

(∇if(x) + ρ
)}}

−max
{
τ
(∇if

(
y
) − ρ

)
,min

{
yi, τ

(∇if
(
y
)
+ ρ

)}}

= τ(1 − ti)
(∇if(x) − ∇if

(
y
))

+ ti
(
min

{
xi, τ

(∇if(x) + ρ
)} −min

{
yi, τ

(∇if
(
y
)
+ ρ

)})

= τ(1 − ti)
(∇if(x) − ∇if

(
y
))

+ ti
(
(1 − si)

(
xi − yi

)
+ τsi

(∇if(x) − ∇if
(
y
)))

= ti(1 − si)
(
xi − yi

)

+ τ(1 − ti + tisi)
(∇if(x) − ∇if

(
y
))
,

(2.9)

where 0 ≤ si, ti ≤ 1. Define two diagonal matrixes S and T by

S = diag{s1, s2, . . . , sn}, T = diag{t1, t2, . . . , tn}. (2.10)

Then we obtain

Hτ(x) −Hτ(y) = T(I − S)
(
x − y

)
+ τ(I − T + TS)

(∇f(x) − ∇f
(
y
))
. (2.11)
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Since ∇f(x) = AT (Ax − b), we get

Hτ(x) −Hτ(y) =
(
T(I − S) + τ(I − T + TS)ATA

)(
x − y

)
. (2.12)

The next proposition shows the Lipschitz continuity of Hτ defined by (2.5).

Proposition 2.2. For each τ > 0, there exists a positive constant L(τ) such that

∥∥Hτ(x) −Hτ(y)∥∥ ≤ L(τ)
∥∥x − y

∥∥, ∀x, y ∈ R
n. (2.13)

Proof. By (2.10) and (2.12), we have

∥∥Hτ(x) −Hτ(y)∥∥ ≤
∥∥∥T(I − S) + τ(I − T + TS)ATA

∥∥∥∥∥x − y
∥∥ ≤

(
1 + τ

∥∥∥ATA
∥∥∥
)∥∥x − y

∥∥.
(2.14)

Let L(τ) � 1 + τ‖ATA‖. Then (2.13) holds. The proof is complete.

The following proposition shows another good property of the system of nonsmooth
equations (2.6).

Proposition 2.3. There exists a constant τ∗ > 0 such that for any 0 < τ ≤ τ∗, the mapping Hτ :
R

n → R
n is monotone, that is

〈
Hτ(x) −Hτ(y), x − y

〉 ≥ 0, ∀x, y ∈ R
n. (2.15)

Proof. Let Dii be the ith diagonal element of ATA. It is clear that Dii > 0, i = 1, . . . , n. Set
τ∗ � mini{1/Dii}. Note that ATA is symmetric and positive semidefinite. Consequently, for
any τ ∈ (0, τ∗], matrix T(I − S) + τ(I − T + TS)ATA is also positive semidefinite. Therefore, it
follows from (2.12) that

〈
Hτ(x) −Hτ(y), x − y

〉 ≥ 0. (2.16)

This completes the proof.

3. Algorithms and Their Convergence

In this section, we describe the proposed algorithms in detail and establish their convergence.
Let τ > 0 be given. For simplicity, we omit τ and abbreviate Hτ(·) as H(·).

Algorithm 3.1 (spectral gradient projection method (abbreviated as SGP)). Given initial point
x0 ∈ R

n and constants θ0 = 1, r > 0, ν ≥ 0, σ > 0, γ ∈ (0, 1). Set k := 0.

Step 1. Compute dk by

dk = −θkH(xk), (3.1)



6 Journal of Applied Mathematics

where for each k ≥ 1, θk is defined by

θk =
sTk−1sk−1

yT
k−1sk−1

(3.2)

with sk−1 = xk − xk−1 and yk−1 = H(xk) −H(xk−1) + r‖H(xk)‖νsk−1. Stop if dk = 0.

Step 2. Determine steplength αk = γmk withmk being the smallest nonnegative integerm such
that

−〈H(
xk + γmdk

)
, dk

〉 ≥ σγm
∥∥H(

xk + γmdk

)∥∥‖dk‖. (3.3)

Set zk := xk + αkdk. Stop if ‖H(zk)‖ = 0.

Step 3. Compute

xk+1 = xk − 〈H(zk), xk − zk〉
‖H(zk)‖2

H(zk). (3.4)

Set k := k + 1, and go to Step 1.

Remark 3.2. (i) The idea of the above algorithm comes from [18]. The major difference
between Algorithm 3.1 and the method in [18] lies in the definition of yk−1. The choice
of yk−1 in Step 1 follows from the modified BFGS method [26]. The purpose of the term
r‖H(xk)‖νsk−1 is to make yk−1 be closer toH(xk) −H(xk−1) as xk tends to a solution of (2.6).

(ii) Step 3 is called the projection step. It is originated in [20]. The advantage of the
projection step is to make xk+1 closer to the solution set of (2.6) than xk. We refer to [20] for
details.

(iii) Since −〈H(xk), dk〉 = ‖H(xk)‖‖dk‖, by the continuity of H, it is easy to see that
inequality (3.3) holds for all m sufficiently large. Therefore Step 2 is well defined and so is
Algorithm 3.1.

The following lemma comes from [20].

Lemma 3.3. LetH : R
n → R

n be monotone and x, y ∈ R
n satisfy 〈H(y), x − y〉 > 0. Let

x+ = x −
〈
H
(
y
)
, x − y

〉
∥∥H(

y
)∥∥2

H
(
y
)
. (3.5)

Then for any x∗ ∈ R
n satisfying H(x∗) = 0, it holds that

‖x+ − x∗‖2 ≤ ‖x − x∗‖2 − ‖x+ − x‖2. (3.6)

The following theorem establishes the global convergence for Algorithm 3.1.



Journal of Applied Mathematics 7

Theorem 3.4. Let {xk} be generated by Algorithm 3.1 and x∗ a solution of (2.6). Then one has

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2. (3.7)

In particular, {xk} is bounded. Furthermore, it holds that either {xk} is finite and the last iterate is a
solution of the system of nonsmooth equations (2.6), or the sequence is infinite and limk→∞‖xk+1 −
xk‖ = 0. Moreover, {xk} converges to some solution of (2.6).

Proof. The proof is similar to that in [18]. We omit it here.

Remark 3.5. The computational complexity of each of SGP’s steps is clear. In large-scale
problems, most of the work is matrix-vector multiplication involving A and AT . Steps 1 and
2 of SGP require matrix-vector multiplication involving A or AT two times each, while each
iteration in GPSR-BB involves matrix-vector multiplication only two times. This may bring
in more computational complexity. Therefore, we give a modification of SGP. The modified
algorithm, which will be called MSGP in the rest of the paper, coincides with SGP except at
Step 3, whose description is given below.

Algorithm 3.6 (modified spectral gradient projection method (abbreviated as MSGP)). Given
initial point x0 ∈ R

n and constants θ0 = 1, r > 0, σ > 0, γ ∈ (0, 1) a positive integer M. Set
k := 0.

Step 3. Let m = k/M. Ifm is a positive integer, compute

xk+1 = xk − 〈H(zk), xk − zk〉
‖H(zk)‖2

H(zk); (3.8)

otherwise, let xk+1 = zk. Set k := k + 1, and go to Step 1.

Lemma 3.7. Assume that {xk} is a sequence generated by Algorithm 3.6 and x∗ ∈ R
n satisfies

H(x∗) = 0. Let λmax(ATA) be the maximum eigenvalue of ATA and τ ∈ (0, 1/λmax(ATA)]. Then it
holds that

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖, k = 0, 1, 2, . . . . (3.9)

Proof. Let xk+1 be generated by (3.8). It follows from Lemma 3.3 that (3.9) holds. In the
following, we assume that xk+1 = zk. Then, we obtain

‖xk+1 − x∗‖ = ‖xk + αkdk − x∗‖
= ‖xk − αkθkH(xk) − x∗ + αkθkH(x∗)‖
= ‖(xk − x∗) − αkθk[H(xk) −H(x∗)]‖.

(3.10)
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This together with (2.12) implies that

‖xk+1 − x∗‖ =
∥∥∥xk − x∗ − αkθk

[(
Tk(I − Sk) + τ(I − Tk + TkSk)ATA

)]
(xk − x∗)

∥∥∥

=
∥∥∥(1 − αkθk)(xk − x∗) + αkθk(I − Tk + TkSk)

(
I − τATA

)
(xk − x∗)

∥∥∥

≤ (1 − αkθk)‖xk − x∗‖ + αkθk
∥∥∥I − τATA

∥∥∥‖xk − x∗‖.

(3.11)

Let τ ∈ (0, 1/λmax(ATA)]. Then we get

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖. (3.12)

This completes the proof.

Now we establish a global convergence theorem for Algorithm 3.6.

Theorem 3.8. Let λmax(ATA) be the maximum eigenvalue of ATA and τ ∈ (0, 1/λmax(ATA)].
Assume that {xk} is generated by Algorithm 3.6 and x∗ is a solution of (2.6). Then one has

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖, k = 0, 1, 2, . . . . (3.13)

In particular, {xk} is bounded. Furthermore, it holds that either {xk} is finite and the last iterate is a
solution of the system of nonsmooth equations (2.6), or the sequence is infinite and limk→∞‖xk+1 −
xk‖ = 0. Moreover, {xk} converges to some solution of (2.6).

Proof. We first note that if the algorithm terminates at some iteration k, then we have dk = 0
or ‖H(zk)‖ = 0. By the definition of θk, we have H(xk) = 0 if dk = 0. This shows that either
xk or zk is a solution of (2.6).

Suppose that dk /= 0 and ‖H(zk)‖/= 0 for all k. Then an infinite sequence {xk} is
generated. It follows from (3.3) that

〈H(zk), xk − zk〉 = −αk〈H(zk), dk〉 ≥ σα2
k‖H(zk)‖‖dk‖ > 0. (3.14)

Let x∗ be an arbitrary solution of (2.6). By Lemmas 3.7 and 3.3, we obtain

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖,

‖xmM+1 − x∗‖2 ≤ ‖xmM − x∗‖2 − ‖xmM+1 − xmM‖2,
(3.15)

wherem is a nonnegative integer. In particular, the sequence {‖xk −x∗‖} is nonincreasing and
hence convergent. Moreover, the sequence {xk} is bounded, and

lim
m→∞

‖xmM+1 − xmM‖ = 0. (3.16)
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Following from (3.8) and (3.14), we have

‖xmM+1 − xmM‖ =
〈H(zmM), xmM − zmM〉

‖H(zmM)‖ ≥ σα2
mM‖dmM‖. (3.17)

This together with (3.16) yields

lim
m→∞

αmM‖dmM‖ = 0. (3.18)

Now we consider the following two possible cases:

(i) lim infm→∞‖H(xmM)‖ = 0;

(ii) lim infm→∞‖H(xmM)‖ = ε > 0.

If (i) holds, then by the continuity ofH and the boundedness of {xmM}, it is clear that
the sequence {xmM} has some accumulation point x∗ such thatH(x∗) = 0. Since the sequence
{‖xk − x∗‖} converges, it must hold that {xk} converges to x∗.

If (ii) holds, then by the boundedness of {xmM} and the continuity of H, there exist a
positive constant C and a positive integer m0 such that

1
2
ε ≤ ‖H(xmM)‖ ≤ C, ∀m ≥ m0. (3.19)

On the other hand, from (3.2) and the definitions of sk−1 and yk−1, we have

θmM =
sTmM−1smM−1
yT
mM−1smM−1

=
sTmM−1smM−1

〈H(xmM) −H(xmM−1), xmM − xmM−1〉 + r‖H(xmM)‖νsTmM−1smM−1
,

(3.20)

which together with (3.19) and Propositions 2.2 and 2.3 implies

1
L + rCν

≤ θmM ≤ 2ν

rεν
, ∀m ≥ m0. (3.21)

Consequently, we obtain from (3.1), (3.19), and (3.21)

‖dmM‖ = θmM‖H(xmM)‖ ≥ ε

2(L + rCν)
, ‖dmM‖ ≤ 2νC

rεν
, ∀m ≥ m0. (3.22)

Therefore, it follows from (3.18) that limm→∞αmM = 0. By the line search rule, we have for all
m sufficiently large, mk − 1 will not satisfy (3.3). This means

−
〈
H
(
xmM + γmk−1dmM

)
, dmM

〉
< σγmk−1

∥∥∥H
(
xmM + γmk−1dmM

)∥∥∥‖dmM‖. (3.23)
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Since {xmM} and {dmM} are bounded, we can choose subsequences of {xmM} and {dmM}
converging to x∗∗ and d∗∗, respectively. Taking the limit in (3.23) for the subsequence, we
obtain

−〈H(x∗∗), d∗∗〉 ≤ 0. (3.24)

However, it is not difficult to deduce from (3.1), (3.19), and (3.21) that

−〈H(x∗∗), d∗∗〉 > 0. (3.25)

This yields a contradiction. Consequently, lim infm→∞‖H(xmM)‖ = ε > 0 is not possible. The
proof is then complete.

4. Applications to Compressed Sensing and Image Restoration

In this section, we apply the proposed algorithms, that is, SGP and MSGP, to solve some
practical problems arising from the compressed sensing and image restoration. We will
compare the proposed algorithms with SGCS, SPARSA, and GPSR-BB. The system of
nonsmooth equations in SGCS is

F(z) � min{z, τ(Hz + c)} = 0, (4.1)

where z, c,H are defined as those in [17]. The test problems are associated with applications
in the areas of compressed sensing and image restoration. All experiments were carried out
on a Lenovo PC (2.53GHz, 2.00GB of RAM) using Matlab 7.8. The parameters in SGCS are
specified as follows:

τ = 7, β = 1, γ = 1.2, ξ = 10−4, ρ = 0.1. (4.2)

The parameters in SGP and MSGP are specified as follows:

τ = 7, σ = 1, r = 0.8, γ = 0.5, M = 10. (4.3)

Throughout the experiments, we choose the initial iterate to be x0 = 0.
In our first experiment, we consider a typical CS scenario, where the goal is to

reconstruct a length-n sparse signal (in the canonical basis) from m observations, where
m < n. The m × n matrix A is obtained by first filling it with independent samples of
the standard Gaussian distribution and then orthonormalizing the rows. Due to the storage
limitations of PC, we test a small size signal with m = 1024, n = 4096. The observed vector is
b = Axorig+ξ, where ξ is Gaussian white noise with variance σ2 = 10−4 and xorig is the original
signal with 50 randomly placed ±1 spikes and with zeros in the remaining elements. The
regularization parameter is chosen as ρ = 0.05‖ATb‖∞. We compare the performance of SGP
and MSGP with that of SGCS, SPARSA, and GPSR-BB by solving the problem and choose
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Figure 1: From top to bottom: original signal, observation, and reconstruction obtained by MSGP.

ν = 1 in SGP and MSGP algorithms. We measure the quality of restoration by means of mean
squared error (MSE) to the original signal xorig defined by

MSE =
1
n

∥∥x − xorig
∥∥2
, (4.4)

where x is the restored signal. To perform this comparison, we first run the SGCS algorithm
and stop the algorithm if the following inequality is satisfied:

∥∥xk+1 − xk
∥∥

∥∥xk
∥∥ < 10−5, (4.5)

and then run each of the other algorithms until each reaches the same value of the objective
function reached by SGCS.

The original signal and the estimation obtained by solving (1.1) using the MSGP
method are shown in Figure 1. We can see from Figure 1 that MSGP does an excellent job
at locating the spikes with respect to the original signal. In Figure 2, we plot the evolution
of the objective function versus iteration number and CPU time, for these algorithms. It is
readily to see that MSGP worked faster than other algorithms.

In the second experiment, we test MSGP for three image restoration problems based
on the images as House, Cameraman, and Barbara. House and Cameraman images are of
size 256 × 256 and the other is of size 512 × 512. All the pixels are contaminated by Gaussian
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Figure 2: The objective function plotted against iteration number and CPU time for SGCS, SPARSA, GPSR-
BB, SGP, and MSGP.

noise with the standard deviation of 0.05 with blurring. The blurring function is chosen to be
a two-dimensional Gaussian,

h
(
i, j

)
=

1(
1 + i2 + j2

) , (4.6)

truncated such that the function has a support of 9×9. The image restoration problem has the
form (1.1), where ρ = 0.0005 andA = HW are the composition of the 9×9 uniform blur matrix
and the Haar discrete wavelet transform (DWT) operator. We compare the performance of
MSGP with that of SGCS, SPARSA, and GPSR-BB by solving the problem and choose ν = 0
in the MSGP method. As usual, we measure the quality of restoration by signal-to-noise ratio
(SNR) defined as

SNR = 10 × log10

∥∥xorig
∥∥2

∥∥xorig − x
∥∥2

, (4.7)

where xorig and x are the original and restored images, respectively. We first run SGCS and
stop the process if the following inequality is satisfied:

∥∥xk+1 − xk
∥∥

∥∥xk
∥∥ < 10−5, (4.8)

and then run the other algorithms until their objective function value reach SGCS’s value.
Table 1 reports the number of iterations (Iter), the CPU time in seconds (Time), and the SNR
to the original images (SNR).
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Table 1: Test results for SGCS, SPARSA, GPSR-BB, SGP, and MSGP in image restoration.

Ima SGCS SPARSA GPSR-BB SGP MSGP
Iter Time SNR Iter Time SNR Iter Time SNR Iter Time SNR Iter Time SNR

House 53 12.15 30.68 19 0.85 30.35 25 1.28 30.44 38 5.27 30.61 16 0.78 30.82
Cameraman 59 9.55 22.42 19 0.87 23.64 23 1.06 22.67 48 4.81 22.50 17 0.79 23.36
Barbara 150 234.05 22.95 29 7.08 23.72 41 12.78 22.93 62 42.12 23.06 26 6.92 23.09

It is easy to see from Table 1 that the MSGP is competitive with the well-known
algorithms: SPARSA and GPSR-BB, in computing time and number of iterations and
improves the SGCS greatly. Therefore we conclude that the MSGP provides a valid approach
for solving �1-norm minimization problems arising from image restoration problems.

Preliminary numerical experiments show that SGP and MSGP algorithms have
improved SGCS algorithm greatly. This may be because the system of nonsmooth equations
solved here has lower dimension than that in [17] and the modification to projection steps
that we made reduces the computational complexity.
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