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We introduce the new iterative methods for finding a common solution set of monotone, Lipschitz-
type continuous equilibrium problems and the set of fixed point of nonexpansive mappings which
is a unique solution of some variational inequality. We prove the strong convergence theorems of
such iterative scheme in a real Hilbert space. The main result extends various results existing in
the current literature.

1. Introduction

Let H be a real Hilbert space and C a nonempty closed convex subset of H with inner product
(-,+). Recall that a mapping S : C — C is called nonexpansive if ||Sx — Sy|| < ||x — y|| for all
x,y € C. The set of all fixed points of S is denoted by F(S) = {x € C : x = Sx}. A mapping
g : C — Cisacontraction on C if there is a constant a € (0,1) such that ||g(x)-g(y)|| < alx-yl||
for all x,y € C. We use Il¢ to denote the collection of all contractions on C. Note that each
g € I'lc has a fixed unique fixed point in C. A linear bounded operator A is strongly positive if
there is a constant y > 0 with property (Ax, x) > ?||x||2 forall x € H.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [1-4] and the references therein. Convex
minimization problems have a great impact and influence in the development of almost all
branches of pure and applied sciences. A typical problem is to minimize a quadratic function
over the set of the fixed points of a nonexpansive mapping on a real Hilbert space:

0(x) = r?eig%(Ax,x) -{(x,b), (1.1)
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where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping

T, and b is a given point in H. Let H be a real Hilbert space. Recall that a linear bounded
operator B is strongly positive if there is a constant y > 0 with property

(Ax,x) >¥|x|* VxeH. (1.2)

Recently, Marino and Xu [5] introduced the following general iterative scheme based on the
viscosity approximation method introduced by Moudafi [6]:

X1 = (I =y A)Txy + anyg(x,), n>0, (1.3)

where A is a strongly positive bounded linear operator on H. They proved that if the
sequence {a,} of parameters satisfies appropriate conditions, then the sequence {x,}
generated by (1.3) converges strongly to the unique solution of the variational inequality:

((A-yg)x",x-x*)>0, xeC (1.4)
which is the optimality condition for the minimization problem:

rréig%(Ax,x) - h(x), (1.5)

where h is a potential function for yg (i.e., h'(x) = yg(x) for x € H).
A mapping B of C into H is called monotone if (Bx — By, x—y) >0forall x,y € C. The
variational inequality problem is to find X € C such that

(B%x-%)>0 VxeC. (1.6)

The set of solutions of variational inequality is denoted by VI(C, B). A mapping B: C — H
is called inverse-strongly monotone if there exists a positive real number f such that

(x -y,Bx-By) > p||Bx - By||>, Vx,yeC. (1.7)

For such a case, B is p-inverse-strongly monotone. If B is a f-inverse-strongly monotone
mapping of C to H, then it is obvious that B is (1/p)-Lipschitz continuous. In 2009, Klin-
eam and Suantai [7] introduced the following general iterative method:

x0€C, xy1 = Pe(anyg(xn) + (I - a,A)SPc(x, — AyBxy,)), n>0, (1.8)

where Pc is the metric projection of H onto C, g is a contraction, A is a strongly positive
linear bounded operator, B is a p-inverse strongly monotone mapping, {a,} C (0,1), and
{An} C [a,b] for some a,b with 0 < a < b < 2f. They proved that under certain appropriate
conditions imposed on {a,} and {1,}, the sequence generated by (1.8) converges strongly to
a common element of the set of fixed points of nonexpansive mapping and the set of solutions
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of the variational inequality for an inverse strongly monotone mapping (say X € C) which
solves the following variational inequality:

((A-yg)X,x-X)>0, VYxeF(S)nVI(C, B). (1.9)

We recall the following well-known definitions. A bifunction f : C x C — Ris called

(a) monotone on C if

fGoy)+f(y,x) <0, Vx,yeC; (1.10)

(b) pseudomonotone on C if

f(x,y)>0= f(y,x) <0, Vx,yeC; (1.11)

(c) Lipschitz-type continuous on C with two constants ¢; > 0 and ¢; > 0 if

2 Vx, y,zeC. (1.12)

2
fey)+f(y,2) 2 fx2) —allx—y[| - elly-=
We consider the following equilibrium problems: find X € C such that

Find ¥ € C such that f(X,y) >0, VYxeC. (1.13)

The set of solution of problem (1.13) is denoted by EP(f,C). If f(x,y) := (Fx,y — x) for all
x,y € C, where F is a mapping from C to H, then problem EP( f, C) reduces to the variational
inequalities (1.6). It is well known that problem EP(f, C) covers many important problems in
optimization and nonlinear analysis as well as it has found many applications in economic,
transportation, and engineering.

For solving the common element of the set of fixed points of a nonexpansive mapping
and the solution set of equilibrium problems, S. Takahashi and W. Takahashi [8] introduced
the following viscosity approximation method:

x9 € H,
Find y, € C such that f(y,, v) + %(y ~YnYn—xn), Yx€C, (1.14)
Xne1 = 0ng(Xn) + (1 - an)Syn, Yn 20,
where {a,} C [0,1] and {r,} C (0,00). They showed that under certain conditions over

{an} and {r,}, sequences {x,} and {y,} converge strongly to z € F(S) N EP(F), where
z = Pr(s)rep(r) 8 (2)-
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In this paper, inspired and motivated by Klin-eam and Suantai [7] and S. Takahashi
and W. Takahashi [8], we introduce the new algorithm for solving the common element of
the set of fixed points of a nonexpansive mapping, the solution set of equilibrium problems,
and the solution set of the variational inequality problems for an inverse strongly monotone
mapping. Let f be monotone, Lipschitz-type continuous on C with two constants ¢; > 0 and
¢ >0, A a strongly linear bounded operator, and B a f-inverse strongly monotone mapping.
Let g : C — C be a contraction with coefficient « such that 0 < y <y/aand S: C — Ca
nonexpansive mapping. The algorithm is now described as follows.

Step 1 (initialization). Choose positive sequences {a,} C (0,1) and {1,} C [c,d] for some
¢,d € (0,1/L), where L = max{2c1,2¢c;} and p C [a, b] for some a,b with0 < a < b < 2p.

Step 2 (solving convex problems). For a given point xg = x € C and set n := 0, we solve the
following two strongly convex problems:

. 1
Yn = argmm{)unf(xn,y) + E”y —xn||2 (Y€ C},

: (1.15)
ty = argmin{lnf(yn,y) + E”y— x|y e C}.
Step 3 (iteration n). Compute
i1 = Pe(nyg(xa) + (I - @, A)SPe (b, ~ BBL) ), (1.16)

where P¢ is the metric projection of H onto C. Increase n by 1 and go to Step 1.

We show that under some control conditions the sequences {x,}, {y,}, and {t,}
defined by (1.15) and (1.16) converge strongly to a common element of solution set of
monotone, Lipschitz-type continuous equilibrium problems, and the set of fixed points of
nonexpansive mappings which is a unique solution of the variational inequality problem
(1.6).

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : CxC — R
be a bifunction. For solving the mixed equilibrium problem, let us assume the following
conditions for a bifunction f : Cx C — R:

(Al) f(x,x) =0forallx € C;

(A2) f is Lipschitz-type continuous on C;

(A3) f is monotone on C;

(A4) for each x € C, f(x,-) is convex and subdifferentiable on C;
(A5) f is upper semicontinuous on C.

The metric (nearest point) projection Pc from a Hilbert space H to a closed convex subset
C of H is defined as follows: given x € H, Pcx is the only point in C such that
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llx = Pcx|| — inf{|lx — y|| : y € C}. In what follows lemma can be found in any standard
functional analysis book.

Lemma 2.1. Let C be a closed convex subset of a real Hilbert space H. Given x € H and y € C, then

(i) y = Pexifand only if (x —y,y —z) > 0 forall z € C,

)
(ii) Pc is nonexpansive,
(iii) (x — v, Pcx — Pcy) > ||Pcx — Pyl forall x,y € H,
)

(iv) (x = Pcx,Pcx—y) forallx € Hand y € C.

Using Lemma 2.1, one can show that the variational inequality (1.6) is equivalent to a
fixed point problem.

Lemma 2.2. The point u € C is a solution of the variational inequality (1.6) if and only if u satisfies
the relation u = Pc(u — ABu) for all A > 0.

A set-valued mapping T : H — 2H is called monotone if for all x,y € H,u € Tx, and
v € Ty imply (x—y,u—v) > 0. A monotone mapping T : H — 2 is maximal if the graph G(T)
of T is not property contained in the graph of any other monotone mapping. It is known that
a monotone mapping T is maximal if and only if for (x,u) € HxH, (x-y,u-v) >0 for every
(y,v) € G(T) implies u € Tx. Let B be an inverse-strongly monotone mapping of C to H, let
Ncv be normal cone to C at v € C, thatis, Ncv = {w € H : (v—u,w) >0, forall u € C},
and define

To =

Bu+ Nco, ifve C,
(2.1)

0, ifog C

Then T is a maximal monotone and 0 € Tv if and only if v € VI(C, B) [9].
Now we collect some useful lemmas for proving the convergence results of this paper.

Lemma 2.3 (see [10]). Let C be a nonempty closed convex subset of a real Hilbert space H and
h : C — R be convex and subdifferentiable on C. Then x* is a solution to the following convex
problem:

min{h(x) : x € C} (2.2)
if and only if 0 € 0h(x*) + Nc(x*), where oh(-) denotes the subdifferential of h and Nc(x*) is the

(outward) normal cone of C at x* € C.

Lemma 2.4 (see [11, Lemma 3.1]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let f: CxC — R be a pseudomonotone, Lipschitz-type continuous bifunction with constants
c1 > 0and c; > 0. For each x € C, let f(x,-) be convex and subdifferentiable on C. Suppose that the
sequences {xn}, {yn}, and {t,} are generated by Scheme (1.15) and p € EP(f). Then

1t =pI* < loew = pII” = (= 20en) [l = yull” = (A= 20ae) [y~ tall”, ¥R 2 0. (23)
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Lemma 2.5 (see [12]). Let C be a closed convex subset of a Hilbert space H and let S : C — C bea
nonexpansive mapping such that F(S) # 0. If a sequence {x,} in C such that x, — z and x, — Sx, —
0, then z = Sz.

Lemma 2.6 (see [5]). Assume that A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient y > 0and 0 < p < A|™, then ||I - pA|l <1-py.

In the following, we also need the following lemma that can be found in the existing
literature [3, 13].

Lemma 2.7 (see [3, Lemma 2.1]). Let {a,} be a sequence of non-negative real number satisfying
the following property:

Ap+1 < (1 - Yn)an + Ynﬂnr n2z 0/ (24)

where {y,} C (0,1) and {B,} C R such that 377y, = oo and limsup,  f, < 0. Then {a,}
converges to zero, As N — oo.

3. Main Theorems

In this section, we prove the strong convergence theorem for solving a common element
of solution set of monotone, Lipschitz-type continuous equilibrium problems and the set of
fixed points of nonexpansive mappings.

Theorem 3.1. Let H be a real Hilbert space, and let C be a closed convex subset of H. Let f : CxC —
R be a bifunction satisfying (A1)-(A5), let B : C — H be a p-inverse strongly monotone mapping,
let A be a strongly positive linear bounded operator of H into itself with coefficient ¥ > 0 such that
Al =1andlet g : C — C be a contraction with coefficient a(a € (0,1)). Assume that 0 <y <y/a.
Let S be a nonexpansive mapping of C into itself such that Q := F(S) NEP(f) N VI(C, B) #0. Let the

sequences {x,},{yn}, and {t,} be generated by (1.15) and (1.16), where {a,} C (0,1), {B} C [a,b]
for some a,b € (0,2p), and {A,} C [c,d] for some c,d € (0,1/L), where L = max{2c1,2¢,}.
Suppose that the following conditions are satisfied:

(B1) lim,, o ¢, = 0;

(B2) 221 an = oo/

(B3) X1 lanst — an| < oo;

GOPHERVIMENHELS
Then the following holds.

(i) Po(I — A +yg) is a contraction on C; hence there exists q € C such that q = Po(I — A +
yg)(g), where Pq is the metric projection of H onto C.

(ii) The sequences {xn}, {yn}, and {t,} converge strongly to the same point q.
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Proof. For any x,y € H, we have

[Pa(yg + (I - A))x - Pa(yg + (- A)y| < [lyg+ T - A)x - (yg + I - A)y|
<yllg@x) =gl + 1T - Allf|x - y]|
<yallx -yl + (1-)|x -y
=(1-F-ya)lx-yll.

(3.1)

Banach’s contraction principle guarantees that Po(yg + (I — A)) has a unique fixed point, say
q € H. Thatis, g = Pa(yg + (I - A))(g). By Lemma 2.1(i), we obtain that

((rg-A)gp-q)<0, YpeQ. (3.2)

The proof of (ii) is divided into several steps.

Step 1. T - BB is nonexpansive mapping. Indeed, since B is a f-strongly monotone mapping
and 0 < g <2p, for all x,y € C, we have

| (1-BB)x - (1-BB)y| = || =) ~B(Bx-By)|
= |lx = y|* - 2B(x ~ v, Bx - By) + B || Bx - By||’
< |lx =y - 2B||Bx - By||* + || Bx - By’ (3.3)
< |lx-yl*+A(F - 28)||Bx - By|’

2
< [lx-wll™

Step 2. We show that {x,} is a bounded sequence. Put w, = Pc(t, — ﬁBtn) for all n > 0. Let
p € Q; we have

leon = pll = || Pe (b~ PBtw) — Pe(p - BBp) |
< -Fye- - o0
<|ltu-pll-
By Lemma 2.4, we have

1 %ns1 = pl| = || Pc(anyg(xn) + (I - 2 A)S(wy)) - p|
< ”an}’g(xn) + (I —anA)S(wn) - P“
< an”}’g(xn) - AP” + ”I - ‘anH”S(wn) - 5(}9) ”
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< an|lyg(xn) = Ap|| + I = anAll||won —p||

< anl|lyg(xn) = Ap|| + (1 - au) [[ta - p|

< an|lyg(xn) - Ap|| + (1 - any) [|xn - p||

< awya||xn = p|l + aallyg(p) - Ap|l + (1 - aw¥) [|2a - p|

_ - y8(p) -~ Ap
< (1= (- ya)) e - pl + -y EEL AP
Y-ya
(3.5)
By induction, we get that
1
s =l < max{ [l =l == llvs () - 4pll |, m >0 36
Hence {x,} is bounded, and then {w,}, {y.}, and {t,} are also bounded.
Step 3. We show that
nhjrgollxnﬂ — xn|| = 0. (3.7)

Since f(x,-) is convex on C for each x € C, applying Lemma 2.3, we see that t, =
argmin{(1/2)||t — x,|| + X f (yn, t) : t € C} if and only if

0€d, ()Lnf(yn, t) + %”y - xn||2> (tn) + Nc(ty), (3.8)

where N¢(x) is the (outward) normal cone of C at x € C. This implies that 0 = \,w+t,—x,+w,
where w € 0, f (Y, tn) and w € Nct,. By the definition of the normal cone N¢, we have

(Xp = Aw —ty, t —t,) = (w,t—t,) <0, VteC, (3.9)
and so
(by = xp, t —ty) > Ap(w, t, —t), ViteC. (3.10)
Substituting t = t,.1 € C into (3.10), we get that
(tn = Xn,tns1 = ) 2 A (W, by = bpin). (3.11)

Since f(x,-) is subdifferentiable on C and w € 0, f (v, t»), we have

fWnt) = f(Yn tn) = (w,t—t,), VteC. (3.12)
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From (3.11) and (3.12), we obtain that

<tn — Xn, tn+1 - tn> > )ln<w/ tn - tn+1>

(3.13)
> )ln(f(ynrtn) _f(yn/t"+1))‘

By the similar way, we also have
(tns1 = Xna1, tn — b1 ) 2 A (f (]/n+1/ tn+1) - f(]/n+1/tn))- (3.14)

It follows from (3.13) and (3.14) and f is Lipschitz-type continuous and monotone, we get

= %l = 2 s bl 2 (bt = b~ = i + 1)
> A (f Wnotn) = f (Yo tns1)) + At (f (Wit b)) = f (Yns1, )
> A (=f (b tu) = 1|y = tal|” = 211w =t
+ Ans1 <—f(tn+1, tn) = c1||Ynet, tnat ||2 —colltn — tn+1||2>

> ()‘n+1 - )‘n)f(tn/ tn+1)

2 _l)‘n+1 - )lnllf(tnr tn+1)|/
(3.15)

and hence

et = tall> = A/ 1001 = %all? + 201 = Al (b )|
(3.16)

< net = Xally/2Pni1 = Al f B i) -
Thus, we have

ll2¢ns1 = Xl
= ||Pc(anyg(xn) + (I = 2 A)S(wn)) = Pe(@n-1yg(xn-1) + (I = 41 A)S(wn 1)) ||
< | any g (xn) + (I = anA)S(wy) = an-1Yg(Xn-1) = (I = an-1A)S(wp1) ||
= || nyg(xn) = Anyg(Xn1) + Any§(Xn1) = A1y (Xn-1) + (I — @, A)S(tn)
—(I =2, A)S(tp-1) + (I = apA)S(tp-1) — (I — an1A)S(ta) ||
< apyallxy = xp || + | — anal|lyg (xn) ||
+ [ = an All|S(wn) = S(wn-1) || + |an — an-a|[|AS(tn-1) |

< anyallxn = xXno1l| + || I = an¥||lewn — wnor | + [an — an-1| (]| g (xn-1) || + 1AS (tuzt) )
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< “nya”xn - xn—l” + ”I - “n?” ”tn - tn—l” + |“n - “n—ll(Y”g(xn—l)” + ”AS(tn—l)“)

< anY‘x”xn - xn—l” + (1 - an?) <||xn - xn—l” + \/2|/\n+1 - )Ln||f(tn/ tn+1) |>
+|an — ana| (y]| g (xn-1) || + 1AS (sa) )

< (1 -an(y—ya)llxn — xnal + (1= anY)\/ 21 = M| K + |y — a1 | M,

(3.17)

where K > sup, .o\/If (ts-1,tx)| and M > sup, . yllg(xn-1)[[+[|AS(ts-1) |- Using (B3), (B4), and
Lemma 2.7, we have lim,, , oo ||Xp+1 — %] = 0.

Step 4. We show that
Him [|x, — £,]| = 0. (3.18)
Indeed, for each p € Q, applying Lemma 2.4, we have

[EEdk

= [[Pc(nyg(xn) + (I - @nA)S(wn)) - pl|°

< [lanygen) + (I = 20 A)S(z0y) - p|’

< (allyg(xn) = Ap|| + (1 = &) | S(eon) - pl])*

= allyg(en) - Ap|” + (1 - @)’ (|S(wn) - pI*
+ 20, (1 = ) Y8 (n) = g (P) ||| S(zon) - |

< an|lyg(xa) = Ap||” + (1 - @) [|S(wn) - pl|*
+ 20, (1 = aaY) Y8 (n) = g (P) ||| S(z0n) - p|

< an(|lygxa) - yg() [l + lIyg(p) - Apl)* + (1 - @) [|Swn) - pl|”
+2a, (1= aaY) lyg(xn) = g (P) || S(z0n) - p|

= a,|lyg(xn) =g + 2aullyg(xa) = v (@) Iv8(p) - APl + aullys(p) - Ap||*
+ (1= a)) [|S(@n) = plI* + 28, (1 - @¥) [yg () = 8(p) [ | S(wi) - p

< a|lyg(an) = yg@)|) + (1= @) |t — p|* + O

< awya? o = p||” + 6,

# (1= @) ([ = I = (1= 200 o = gl = (1~ 20022 [l = )



Journal of Applied Mathematics 11
<t ()| =PI + (1= ) [0 =PI = (1= ) (1 = 24,0) [, = P
— (1= an¥) (1 = 22,62) [y — ta)* + O
= (1- (T~ @)l =PI - (1= @F) (1 = 200 [0 -
— (1= 1) (1 = 22,2) || Y — ta]|” + 6

<l = pIF = (1= @) (1 = 24 |0 =yl = (1 - @)1~ 2002l — a1

+ 6,
(3.19)
where
On = 2an||yg(xn) =8 (P) lllyg (P) — APl +2an (1 = 2u¥) [|yg (xn) = 8 (p) | 520,
% [|S@n) = pll + aullyg (p) - Ap|”.
It then follows that
(1= @) (1= 2002) [0 = vl < [ = pIF = s - P
— (1= 1) (1 = 2X,1) || Y — ta|” + 6 (3.21)
< (e = pll + 1xnea = plD Ixn = xniall + 65 — 0,
asn — oo. Hence
Tim [|2c, = yn| = 0. (322)
By the similar way, also
r}ijr;o||yn —t|| =0. (3.23)
From (3.22) and (3.23), we can conclude that
¢ = tall < ||xn = Y| + ||yn — tu]| — O as n— oo. (3.24)
Step 5. We show that
;}ijr;o||xn — Sx,|| = 0. (3.25)

From (1.15), we get that

%1 = pII” = || Pe(anyg(xa) + (I - 2, A)Sw0,) - p||*

< || @nyg () + (I = @A) Sty - p||?
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< (aullygGen) = Ap|| + (1 = aad)[|Seon ~ p])*
< aullyg(ea) = Ap|I” + (1 - au¥) wn = p|”
+ 20, (1= a¥) || yg (xn) = Ap||[|zon — p|
< aullyge) — Apll*+ (1~ a7) || (1-BB)ta — (1~ FB)p||
+ 20, (1 = ay) || Y8 (xn) = Ap||[|zon — p|
< aullygen) - Apl+ (1) (o - I + (B - 26) 1582 - BpP)
< aullyg(ea) = Ap|l” + [|ta = p|I” + (1 - au¥) a(b ~26) || Bt ~ Bp|’
+ 20, (1 = a¥) [ g (xn) = Ap|l [lwn - p|
< anlygCen) = Ap|” + [|xa = p|I” + (1 - as¥)a(b - 26) | Bt - Bp||®

+ 2, (1 - a¥) [l y8 () = Ap|l[|ewn -

7

(3.26)

and hence

~(1 - ay)a(b-2p)||Bty - Bpl|* < aullyg(xn) — Ap|| + [|xu - p|I* = || 2ne1 - p|I?
+ 20, (1 = a,Y) || yg (n) = Ap||[|2wn = p||-

(3.27)

Since a, — 0, we get that ||Bt, — Bp|| — 0,as n — oo. By Lemma 2.1(iii), we have

Jeoa -l
= e i - Ptn) - Pep - pp) |

< (=)~ (o 30) )

(0T T - o))
gé(ntn—pll + llwon =l ||t >
o (T e %(23%-Wn'Bfn‘BP>‘ﬁi"Btn‘B"’”2>’
(3.28)
which implies that

ll20n = pII* < |tn = pII* = ltn = wall® + 2B(tn — wy, Bty — Bp) - B2|| Bt — Bp||>.  (3.29)



Journal of Applied Mathematics 13

Again from (3.29), we have

2w =PI = (| Pe(@nyg (xn) + (I - anA)Swy) - p||?

< Nlanyg(xa) + (I - nA)Swy - p||*

< (anllyg(en) = Ap|| + (1 = &i¥) || Swn - pl|)?

< aullyg(xn) - Ap|I* + (1 - auy) [, - p|’
+ 2, (1 - @) || Y8 (xn) = Ap||[|w0n - p||

< anllyg(xa) = Ap|l* + (1 - @) [t = plI* = (1= @) It —2oul>  (3:30)
+2B(1 = ay¥) (tn — wn, Bty - Bp) - B2 (1 - a,¥) || Bt - Bp||?
+2a, (1= an) lyg(xn) = Ap||[|wn - p||

< aullyg(xn) = Ap||* + [|x0 = p|I* = (1= @u¥)lltn - wal?
+2p(1 = as¥)(ta = wn, Bts — Bp) = B, (1 - aaY) | Bts - Bp|’

+2a, (1= anY) || yg () = Ap||||wn - p||-
This implies that
(1= ) tn — wall® < an]|yg(en) = Ap||* + |0 = || = |20s1 - pI’

+ 2B(1 = 4,7) (tu — 00, Bty ~ Bp) — 2(1 - a,7) | Bt - Bl (33D)

+2a, (1 = anY) |lyg (xn) = Ap|l[|zon = p||-
Since a, — 0 and ||Bt, — Bp|| — 0, we obtain that

nh_llrgo”tn —wy|| = 0. (3.32)

From (1.16), we have

|xXpe1 — Swyl| = ”PC (aan(xn) +(I - anA)Swn) — Pc(Swy,) ”
< || anyg(xn) + (I - 2, A)Sw, — Swy|| (3.33)

= ay|lyg(xn) + ASw,|| — 0, asn— co.

Since

Itn = Stull < lItn = xull + 10 — 2Xpaa || + 2041 — Swn|| + [|Swy — Stal|
(3.34)
<t = xall + 10 = Xnaa | + (X041 — Swyl| + [[wn — tall,
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from (3.7), (3.24), (3.32), and (3.33), we obtain that ||t, — St,|| — 0, as n — oo. Moreover, we
get that

lwn = Swyl| < [[wn = tull + |[tn = Stall + [|Stn — Swnl|

(3.35)
<2||wy =ty + ||ty — Stull — 0, as n — oo.
Since
[l = wnll < |20 = Eull + lltn = 2onll, (3.36)
it implies that
im [l —20u]| = 0. (3.37)
Since
llxn = Sxnll < {20 = Xpaal| + | %01 = Swnll + [[Swn - Sxa|
(3.38)
< llxn = X | + 13041 = Swnll + [lwn — x4,
we obtain that
Jim [lx; — S| = 0. (3.39)
Step 6. We show that
liglsip< (rg—A)q, Swn—q) <0. (3.40)
Indeed, we choose a subsequence {w;, } of {w,} such that
limsup((yg - A)q, Swn —q) = lim ((yg - A)q, Swn, —9)- (341)

n—oo

Since {wy} is bounded, there exists a subsequence {wy,_ } of {wy, } which converges weakly
to p. Next we show that p € Q.

We prove that p € F(S). We may assume without loss of generality that w,, — p.
Since ||w, — Swy|| — 0, we obtain Sw,, — p. Since ||x, — Sx,|| — 0, ||x, —wy,|| — 0and by
Lemma 2.5, we have p € F(S).

We show that p € EP(f). From Steps 4 and 6, we have that

tyy =P, Xn, =P, Yn —P- (3.42)
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Since y, is the unique solution of the convex minimization problem

min{%||y—xn||2+f(xn,y) :yeC}, (3.43)
we have
0024 (i) + 59 =5l ) () + Ne () (.44
It follows that
0=Auz+Yn—Xn + 2n, (3.45)

where z € 0, f (x5, y») and z, € Nc(y,). By the definition of the normal cone N¢, we get that
Yn=Xn,y =yn) 2 4(z,yn—y), VyeC. (3.46)
On the other hand, since f(x,, -) is subdifferentiable on C and z € 0, f (x5, ¥), we have
FCny) = f(nyn) 2{zy—yn), YyeC. (3.47)
Combining (3.47) with (3.46), we have
An(f e y) = f (%, Yn)) 2 (Y = X, yn = y), Yy €C. (3.48)
Hence
Ao (f (s ) = (X Y ) = (Y = X Y — y), Yy € C. (3.49)
Thus, using {A C [a,b] C (0,1/L)} and the upper semicontinuity of f, we have
f(p.y) 20, YyeC. (3.50)

Hence p € EP(f).
We show that p € VI(C, B). Let

(3.51)

Bv+ Ncou, veC(C,
Tov =
0, v¢C,
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where Ncv is normal cone to C at v € C. Then T is a maximal monotone operator. Let (v, u) €
G(T). Since u — Bv € Ncv and w, € C, we have (v — y,,u — Bv) > 0. On the other hand, by
Lemma 2.1(iv) and from w, = Pc(t, — pBt,), we have

U — Wy, w, — (ty — BBty ) ) >0, (3.52)
( (tn=PBt) )

and hence (v — w,, (w, — t,)/ E + Bt,) > 0. Therefore, we get that
(v- wnw”) > (v~ lek’Bv>

wy, —t
> (v — wy,,Bv) - <v - Wy, % + ank>
Nk

Wy, —t
= <v—wnk,Bv—Btnk - %>
N

Wy, —t
= (v — wy,, Bv — Bw,, ) + (v — wy,, Bw,, — Bt, ) — <v - Wy, M>

wy, —t
> (v — wy,, Bw,, — Bty, ) — <v - Wy,, %>
Tk

This implies that (v — p,u) > 0 as k — oo. Since T is maximal monotone, we have p € T~10
and hence p € VI(C, B).
From (a), (b), and (c), we obtain that p € Q. This implies that

limsup((yg - A)q, Swn —q) = lim ((yg = A)q, Swn, - q)
n—e (3.54)

=((rg=A)q.p-q) <0.
Step 7. We show that x,, — q. We observe that

%1 = all” = | Pe(anyg () + (I - anA)Sw,) ~ Pe(@)|’
< Jlawyg (xn) + (I - 2, A)Sw, - q]°
< a|lyg(xa) = Aqll + [|(I - 2, A) (Swn - q)||°
+ 20, ((I = an A) (Swy - ), 75 (xa) - Aq)
< @y lyg(xn) = Agl| + (1 - auy)’|| S, - q||”
+ 20, (St0n — 4, Y8 (xn) = Aq) = 20, (A(Swn — ), Y8 (xn) — Aq)
< (1-ay)’|[wn - ql|” + a3l yg(x) - Aq|
+ 20, (Swn — q,78(xn) —¥8(q)) + 20n(Swn — q,¥8(q) - Aq)
20 (A(Swn — q), Y8 (xn) — Aq)
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< (1= a)?||tu - ql|* + 2| yg(xa) - Aq|
+ 20, || Swn - q[|lyg(xn) = Y8 (@) || + 220 (Sw, — q,v8(q) - Aq)
- 202 (A(Sw, - q),yg(xa) — Aq)
< (1= )’ ||xn — ql|* + @[l yg(xa) - Aq
+ 2yacty||wn = q||||xn = ql| + 204(Swn — q,8(q) - Ag)
- 20, (A(Swy — q), 78 (xn) — Aq)
< (1= )|l = qll” + @y (xa) - Aql®
+ 2yaay||xq - q||* + 20, (St - 9,v8(q) - Aq)
- 202(A(Sw, - q),yg(xx) — Aq)
< ((1-any)® +2yaay, ) [ x0 - qlf” + a3l yg(xn) - Aql)®
+ 20, (St - 9,78(q) - Aq) + @27 ||xn - q]|”
+2a; | A(Swn — q) ||| Aq ~ yg ()|
= (1= 2, (7 = ya)) | — qI°
+ 2, (2(Sw, - 4,v8(q) - Aq) + anllyg(xn) - Aq|?
120, || A(Swn - 9) [[1|Aq - Y8 Cen) | + [l - 4%

(3.55)

Since {x,}, {g(x,)}, and ||Sw,|| are bounded, we can take a constant M > 0 such that
M2 supfa g - Adl + 22, 45w, - ) 149 - vg 0l + @il -l 356)

This implies that
et = all* < (1 =27 = ya)an) 00— ] + a0 (357)

where 0, = 2(Sw, —q,yg(q) - Aq) + Ma,. From (3.40), we have limsup, _, o, < 0. Applying
Lemma 2.7 to (3.57), we obtain that x, — gasn — oo. This completes the proof. O

If we put y = 1 and A = I in Theorem 3.1, we immediately obtain the following
corollary.

Corollary 3.2. Let H be a real Hilbert space, and let C be a closed convex subset of H. Let f : CxC —
R be a bifunction satisfying (A1)—(A5), let B : C — H be a p-inverse strongly monotone mapping,
and let g : C — C be a contraction with coefficient a (a € (0,1)). Assume that 0 <y <y/a. Let
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S be a nonexpansive mapping of C into itself such that Q := F(S) NEP(f) N VI(C, B) #0. Let the
sequences {x,}, {yn}, and {t,} be generated by

xo=x€C,

. 1
Yn = argmm{)tnf(xn,y) + E”y ~x| vy e C},
: (3.58)
. 2
ty = axgmin{ 1, (v, ) + 5 ly - =y € €,

Xn+1 = Ang(xy) + (1 — ) SPc (tn —BBt,,), n>0,

where {a,} C (0,1), {B} C [a,b] for some a,b € (0,2p), and {A,} C [c,d] for some c,d € (0,1/L),
where L = max{2c1,2c,}. Suppose that the following conditions are satisfied:

(B1) limy, , oaxy, = 0;

(B2) 3521 an = oo/

(B3) X1 lans1 — an| < oo;

GOPHERVINTESHELS
Then the following holds.

(i) Pag is a contraction on C; and hence there exists q € C such that g = Pag(q), where Pq is
the metric projection of H onto C.

(ii) The sequences {x,}, {y,}, and {t,} converge strongly to the same point q which is the
unique solution in the Q to the following variational inequality:

((I-f)gx-q)20, YxeQ. (3.59)

If we put g = u in the previous corollary, we get the following corollary.

Corollary 3.3. Let H be a real Hilbert space, and let C be a closed convex subset of H. Let f :
C x C — R be a bifunction satisfying (A1)—(A5), and let B : C — H be a p-inverse strongly
monotone mapping. Assume that 0 <y <y/a. Let S be a nonexpansive mapping of C into itself such
that Q := F(S) NEP(f) N VI(C, B) #0. Let the sequences {x,}, {y.}, and {t,} be generated by

xo=x€C,

. 1
Yn = argmm{)unf(xn,y) + E”y —x|:ye C},
: (3.60)
. 2
ty = argmm{)tnf(ymy) +5lly—xll" v e C},

Xns1 = apu + (1 — ay)SPc <tn - BBtn>/ n=>0,



Journal of Applied Mathematics 19

where {a,} C (0,1), {B} C [a,b] for some a,b € (0,2f), and {A,} C [c,d] for some c,d € (0,1/L),
where L = max{2cy,2c;}. Suppose that the following conditions are satisfied:

(Bl) hmn—mo Ay = O/’
(B2) 32 an = oo,
(B3) X2 lani — an| < o0;

(B4) 3771 Vs — Aul < o0

Then the sequences {x,}, {yn}, and {t,} converge strongly to the same point q, where q = Pqu, which
is the unique solution in the Q to the following variational inequality:

(g-u,x-q) >0, VYxeQ. (3.61)

4. Deduced Theorems

Let C be a nonempty closed convex subset of a real Hilbert space H with inner product (, -).
Let F be a nonlinear mapping from C into H. Recall that the function F is called

(a) strongly monotone on C if there exists > 0 such that

(Fe) - F(y),x-y) 2 pllx-yll’, ¥xyeC (4.1)
(b) monotone on C if
(F(x)-F(y),x-y)>0, Vx,yeC; (4.2)
(c) pseudomonotone on C if
(F(y),x-y)>0= (F(x),x-y) <0, Vx,yeC (4.3)

Remark 4.1. Notice that if F is L-Lipschitz on C, then for each x,y € C, f(x,y) = (F(x),y—x)
is Lipschitz-type continuous with constants ¢; = ¢; = L/2 on C. Indeed,

fxy)+f(y,2) - f(x,2) = (F(x),y - x) + (F(y),z - y) - (F(x),2 - x)
=—~(F(y) - F(x),y - z)
> -||F(y) - F(x)|[|ly - =]l
> -L||x-yll[ly - =| (*44)

L L
>l -5l ==

= —ciflx -yl - eally - =II"

Thus f is Lipschitz-type continuous on C.
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Let f : Cx C — Rbe defined by f(x,y) = (F(x),y — x), where F : C — H. Thus, by
Algorithm (1.15), we get the following:

. 1
Yn = argmm{)unf(xn,y) + E”y—xn”2 (Y€ C}

= argmin{)tn<F(xn),y —x) + %”y _ anZ ye C} (4.5)

= Pc(xn — MnF(xn)).

Similarly, we also obtain that t, = Pc(x, — A,F(y,)). Applying Theorem 3.1, we obtain
the convergence theorem for finding a common element of the set of fixed points of a
nonexpansive mapping and the solution set VI(C, B).

Corollary 4.2. Let H be a real Hilbert space, and let C be a closed convex subset of H. Let F : C — H
be a monotone, L-Lipschitz continuous mapping, let B : C — H be a p-inverse strongly monotone
mapping, also let A be a strongly positive linear bounded operator of H into itself with coefficient
Y > O such that ||Al| =1, and let g : C — C be a contraction with coefficient a (a € (0,1)). Assume
that 0 < y < y/a. Let S be a nonexpansive mapping of C into itself such that Q = F(S) NEP(f) N
VI(C, B) #0. Let the sequence {x,}, {y,}, and {t,} be generated by

xo=x€C,
Yn = PC(-xn - -)‘nF(-xn))/
by = PC(xn - )‘nF(yn))/

Xps1 = Pc <anyg(xn) + (I —a,A)SPc <tn - ﬁBtn>>, n>0,

(4.6)

where {a,} C (0,1), {B} C [a,b] for some a,b € (0,2p), and {1} C [c,d] for some c,d € (0,1/L).
Suppose that the following conditions are satisfied:

(B1) lim,, , , a, = 0;
(B2) 355 an = o,
(B3) X2 a1 — an| < oo;

(B4) 3771 Ve — Aul < oo

Then the sequences {x,}, {y,}, and {t,} converge strongly to the same point q, where q = Po(I - A+
Y8)(a)-
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