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We propose an iterative method for solving the Falkner-Skan equation. The method provides
approximate analytical solutions which consist of coefficients of the previous iterate solution. By
some examples, we show that the presented method with a small number of iterations is
competitive with the existing method such as Adomian decomposition method. Furthermore,
to improve the accuracy of the proposed method, we suggest an efficient correction method. In
practice, for some examples one can observe that the correction method results in highly improved
approximate solutions.

1. Introduction

We consider the well-known Falkner-Skan equation

y′′′(x) + y(x)y′′(x) + β
{

1 − y′(x)2
}
= 0, 0 ≤ x < ∞, (1.1)

subjected to boundary conditions

y(0) = y′(0) = 0, y′(∞) = 1. (1.2)

This boundary value problem arises in the research of viscous flow past a wedge of angle βπ .
β > 0 corresponds to flow toward the wedge and β < 0 does to flow away from the wedge.
The special case, β = 0, is called the Blasius equation where the wedge reduces to a flat plate.
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It is well known that a unique smooth solution of the Falkner-Skan equation (1.1) with the
condition (1.2) exists for 0 ≤ β ≤ 1 [1, 2]. For −0.1988 < β < 0, there exists two solutions, that
is, one with y′′(0) > 0 and the other one with y′′(0) < 0, as shown in the literature [3]. For
β > 1 the solution is unique under the restriction 0 < y′(x) < 1 [4, 5].

In order to obtain approximate solutions of the Falkner-Skan equation, analytical
methods such as Adomian decomposition methods [6–10], variational iterative methods
[11–15], and homotopy analysis methods [16–18] can be referred. The objective of this work
is to present a new analytical method which provides a simple form of iterate solutions and
can be a match for existing methods in accuracy.

In the next section we develop an iterative method based on a decomposition of the
Falkner-Skan equation (1.1) which was recently introduced in [19] for a particular case, β = 0.
In the result we derive an iterative formula producing approximate analytical solutions in
the form of polynomial series without requiring any differentiations or integrations of the
previous iterate solutions. The degree of the nth iterate solution increases very rapidly, in fact,
like O(2n) as n → ∞. In Section 3, for some values of β we compare the presented solutions
with the existing iterate solutions. In Section 4, to improve the accuracy of the presented
solutions we suggest a correction method which is composed of the successive differences of
the iterations.

2. Iteration for Approximate Analytical Solutions

To develop a new iterative method generating analytical series solutions, we consider the
following one-point boundary conditions instead of the boundary conditions in (1.2).

y(0) = y′(0) = 0, y′′(0) = α, (2.1)

where the curvature α of the solution is assumed to be known. Actually, the value of α can be
obtained by numerical evaluation [8, 20, 21]. In this section we derive iterate solutions based
on the method which was introduced in [19] for a special case, β = 0.

First, for y = y(x) the Falkner-Skan equation (1.1) becomes

(
y′′ + yy′)′ = (1 + β

)(
y′)2 − β. (2.2)

From the boundary conditions in (2.1), it follows that

y′′ + yy′ =
(
1 + β

) ∫x

0
y′(t)2dt − βx + α := A(x), (2.3)

and thus

y′ =
∫x

0
A(t)dt − 1

2
y2 := B(x). (2.4)
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In the result we have

y(x) =
∫x

0
B(t)dt. (2.5)

Denoting by yn(x) the nth iterate solution and substituting it into the right-hand side
of (2.5), with a given initial solution y0(x), we have an iteration formula

yn+1(x) =
∫x

0
Bn(t)dt, n ≥ 0, (2.6)

where

Bn(x) =
∫x

0
An(t)dt − 1

2
yn(x)2,

An(x) =
(
1 + β

) ∫x

0
y′
n(t)

2dt − βx + α.

(2.7)

Let δn denote a degree of the nth iterate solution yn(x). Then, from the formulas (2.6)
and (2.7), it follows that δn+1 = 2δn + 1 for all n ≥ 0. Solving this recurrence equation, we have

δn =

{
4 · 2n − 1, when β /= 0,
3 · 2n − 1, when β = 0.

(2.8)

For an initial solution y0(x) satisfying the conditions in (2.1), we may set the nth iterate
solution as

yn(x) =
δn−2∑
k=0

an,kx
k+2, (2.9)

for any integer n ≥ 0. Then, by performing integrations in (2.6) and (2.7) directly, we have

An(x) =
(
1 + β

) ∫x

0

(
δn−2∑
k=0

(k + 2)an,kt
k+1

)2

dt − βx + α

= α − βx +
(
1 + β

)δn−2∑
k=0

δn−2∑
j=0

(k + 2)
(
j + 2

)
an,kan,j

k + j + 3
xk+j+3,

y′
n+1(x) = Bn(x)

= αx − β

2
x2 +

δn−2∑
k=0

δn−2∑
j=0

{ (
1 + β

)
(k + 2)

(
j + 2

)
(
k + j + 3

)(
k + j + 4

) − 1
2

}
an,kan,jx

k+j+4.

(2.10)
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Thus, by integrating Bn(x), we have

yn+1(x) =
αx2

2
− βx3

6
+

δn−2∑
k=0

δn−2∑
j=0

{ (
1 + β

)
(k + 2)

(
j + 2

)
(
k + j + 3

)(
k + j + 4

) − 1
2

}
an,kan,j

k + j + 5
xk+j+5. (2.11)

On the other hand, referring to the boundary conditions in (2.1) and (1.1), we may
take an initial solution as

y0(x) =
α

2
x2 − β

6
x3. (2.12)

3. Examples

3.1. A Case of β = 0 (Blasius Problem)

A case of β = 0 is called the Blasius problem, and a well-known power series for the solution is

S(x) =
∞∑
k=0

(−1)k
ckα

k+1

(3k + 2)!
x3k+2, x ∼ 0, (3.1)

where the coefficients ck can be computed from the recurrence [1]:

ck =

⎧
⎪⎪⎨
⎪⎪⎩

1, k = 0, 1,
k−1∑
j=0

(
3k − 1

3j

)
cjck−j−1, k ≥ 2.

(3.2)

In fact, α ≈ 0.46959999 and the series becomes

S(x) =
α

2
x2 − α2

120
x5 +

11α3

40320
x8 − 73α4

7983360
x11 +

111α5

358758400
x14 + · · · . (3.3)

The Blasius series, however, converges only for |x| < ρ ≈ 4.02346 [16, 22, 23]. In this paper we
denote by Sn(x) a truncated Blasius series to the nth term of S(x).
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For the Blasius problem the first four iterate solutions generated by the formula (2.11),
with y0(x) = αx2/2, are as follows:

y1(x) =
αx2

2
− α2x5

120
,

y2(x) =
αx2

2
− α2x5

120
+

11α3x8

40320
− α4x11

712800
,

y3(x) =
αx2

2
− α2x5

120
+

11α3x8

40320
− 5α4x11

532224
+

10033α5x14

87178291200

− 5449α6x17

3908653056000
+

83α7x20

8935557120000
− α8x23

49080898944000
,

y4(x) =
αx2

2
− α2x5

120
+

11α3x8

40320
− 5α4x11

532224
+

9299α5x14

29059430400
− 2173649α6x17

355687428096000

+
13722337α7x20

115852476579840000
− 27184438601α8x23

12926008369442488320000

+
12320831753849α9x26

403291461126605635584000000
+ · · · − α16x47

463172433275878342410240000000
.

(3.4)

It should be noted that the degree of the presented solution yn(x) increases like O(2n) as
shown in (2.8) while that of the truncated Blasius series Sn(x) is 3n − 1, or it increases like
O(n) as n → ∞.

For comparison between yn(x) and Sn(x), Figure 1 includes graphs of the approxima-
tions to the numerical solution y∗(x), which is taken for an exact solution, and their errors
over an interval [0, ρ0]. We set ρ0 = 4.02346 which is close to the radius of convergence, ρ
of the Blasius series solution mentioned above. Figure 1 shows that the presented solutions
yn(x) approximate the exact solution better than the truncated Blasius series Sn(x).

3.2. A Case of β /= 0

We refer to another analytical solution obtained by the Adomian decomposition method as
follows:

yA
n (x) = y0(x) +

n∑
k=1

uk(x), n = 1, 2, . . . , (3.5)

with

uk+1(x) = −L−1(Ak(x)), k = 0, 1, 2, . . . , (3.6)
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Figure 1: Truncated Blasius series Sn(x) and their errors in (a) and presented solutions yn(x) and their
errors in (b), n = 2, 3, 4, 5, 6, for the Blasius equation (β = 0).

u0(x) = y0(x), and Adomian polynomial Ak(x) generated by the recursive formula [8]:

Ak(x) =
1
k!

dk

dλk

⎡
⎣N
⎛
⎝

k∑
j=0

λjuj(x)

⎞
⎠
⎤
⎦

λ=0

, (3.7)

where L−1 is an inverse operator of L = d3/dx3 and N is a nonlinear operator defined as
Nz(x) = z(x)z′′(x) − βz′(x)2.

Presented solutions yn(x), n = 2, 3, 4, 5, 6, given in (2.11) and their errors are compared
with those of Adomian’s solutions yA

n (x) for the Falkner-Skan equation with β = 0.5 and
β = 1 in Figures 2 and 3, respectively. We chose y0(x) in (2.12) as an initial solution and
took α = y′′(0) = 0.9277 for β = 0.5 and α = 1.2326 for β = 1, as given in [1]. One can
see that the presented solutions are competitive with the Adomian solutions. Moreover, it
should be noticed that unlike the Adomian solutions, the presented solutions do not require
any integration or differentiation.

For the so-called decelerated flow (or β < 0), it is well known that a unique solution
with α > 0 exists when −0.1988 < β < 0 [4]. So we take an example of β = −0.14 with
α = 0.2365 as given in [8]. Comparison between the presented solutions yn(x) and the
Adomian solutions yA

n (x) for this case is given in Figure 4. Therein we can find superiority of
the presented solutions in accuracy.
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Figure 2: The Adomian solutions yA
n (x) and their errors in (a) and presented solutions yn(x) and their

errors in (b) for the Falkner-Skan equation with β = 0.5.
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Figure 3: The Adomian solutions yA
n (x) and their errors in (a) and presented solutions yn(x) and their

errors in (b) for the Falkner-Skan equation with β = 1.
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Figure 4: Adomian’s solutions yA
n (x) and their errors in (a) and presented solutions yn(x) and their errors

in (b) for the Falkner-Skan equation with β = −0.14.

4. Improvement of the Approximate Solution

In Figure 1, for the case of β = 0, one can see that both the proposed solutions yn(x) and
the truncated Blasius series Sn(x) overshoot and undershoot, alternately, as n increases. This
tendency, in the proposed solutions, is continued to the cases of other values of β as can be
observed in Figures 2–4. Considering this feature, we propose a correction method as follows.

Let yj = yj(x), j = n − 1, n, n + 1, be three successive iterate solutions obtained by the
formula (2.11). To improve the accuracy of the iterate solutions, we suggest two corrections
of the form

ŷn+1 = θnyn + (1 − θn)yn+1,

ŷn = θnyn−1 + (1 − θn)yn

(4.1)

for a weight function θn = θn(x) such that 0 ≤ θn(x) < 1. Setting a constraint ŷn+1 = ŷn, we
can determine θn as

θn =
yn − yn+1

2yn − yn−1 − yn+1
= 1 − 1

1 + rn
, (4.2)
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Figure 5: Graphs of the ratios rn(x) and the weight functions θn(x), n = 3, 4, 5, 6 (β = 0).

Table 1: Comparison of the L2-norm errors of the truncated Blasius series Sn+1(x), the presented solution
yn+1(x), and its correction ŷn(x) for the Blasius problem (β = 0).

n E(Sn+1) E(yn+1) E(ŷn)
2 3.9 × 10−1 2.0 × 10−1 2.4 × 10−3

3 3.8 × 10−1 1.1 × 10−1 9.5 × 10−3

4 3.4 × 10−1 5.6 × 10−2 1.9 × 10−3

5 3.3 × 10−1 2.5 × 10−2 1.7 × 10−3

6 3.0 × 10−1 1.0 × 10−2 4.6 × 10−4

where rn = rn(x) is a ratio of the successive differences defined as

rn = −yn+1 − yn

yn − yn−1
. (4.3)

We may surmise that rn(x) ≥ 0 because, as mentioned above, the proposed solutions yn(x)
alternately overshoot and undershoot as n increases. In practice, for the Blasius problem
(β = 0), Figure 5(a) depicts the graphs of rn(x) on the interval [0, ρ0] for n = 3, 4, 5, 6, which
shows rn(x) ≥ 0 for all x ≥ 0. Thus from (4.2) we have 0 ≤ θn(x) < 1 so that the correction
ŷn(x) or ŷn+1(x) in (4.1) with the weight θn(x) in (4.2) is reasonable. The graph of θn(x) is
given in Figure 5(b).

For β = 0, for example, Figure 6 shows the approximations of ŷn(x), n = 2, 4, 6, and
their errors on an extended interval [0, ρ0 + 1]. Furthermore, Table 1 includes L2-norm errors
of Sn+1(x), yn+1(x), and ŷn(x) with respect to the numerical solution y∗(x) on the interval
[0, ρ0]. The L2-norm error E(y) is defined as

E
(
y
)
=
(∫ρ0

0

(
y(x) − y∗(x)

)2
dx

)1/2

. (4.4)

From Figure 6 and Table 1, compared with the results of yn+1(x) in Figure 1, we can see that
the correction ŷn(x) highly improves the accuracy of the original iterate solution yn+1(x).

In addition, absolute errors of yn+1(x) and ŷn(x), n = 2, 6, for each β =
0.5, 1,−0.14 are depicted in Figure 7. Similar to Table 1, Table 2 includes L2-norm errors
of yA

n+1(x), yn+1(x), and ŷn(x) on the interval [0, ρ0]. We can also observe that the correction
ŷn(x) highly improves the accuracy of the original iterate solution yn+1(x).
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Table 2: Comparison of the L2-norm errors of the Adomian solution yA
n+1(x), the presented solution yn+1(x),

and its correction ŷn(x) for various values of β.

β n E(yA
n+1) E(yn+1) E(ŷ)

2 9.9 × 10−2 1.6 × 10−1 5.7 × 10−3

0.5 4 2.1 × 10−3 5.1 × 10−2 2.4 × 10−3

6 5.4 × 10−3 1.2 × 10−2 5.1 × 10−4

2 3.1 × 10−1 2.0 × 10−1 4.6 × 10−3

1.0 4 9.3 × 10−3 5.5 × 10−2 1.5 × 10−3

6 5.1 × 10−3 1.2 × 10−2 4.1 × 10−4

2 2.8 × 10−1 1.2 × 10−1 2.0 × 10−3

−0.14 4 2.0 × 10−1 2.0 × 10−2 9.7 × 10−4

6 1.5 × 10−1 2.3 × 10−3 1.3 × 10−4

5. Conclusion

We have developed a new iterative method generating analytical solutions to the Falkner-
Skan equation (1.1) with the boundary conditions (2.1). In practice, for several cases of β,
it was shown that the presented method with a small number of iterations is available and
efficient, compared with a well-known existing method such as the Adomian decomposition
method. Moreover, we have proposed a simple correction method which improves the
accuracy and the rate of convergence of the presented method.
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Figure 7: Absolute errors of the presented solutions yn+1(x) (thin lines) and those of the corrected solutions
ŷn(x) (thick lines) for β = 0.5, 1,−0.14.

Although in this paper we considered −0.1988 < β ≤ 1 with the boundary conditions
y(0) = y′(0) = 0, the proposed method may be extended to the general case of β with
boundary conditions, y(0) = γ and y′(0) = λ, as long as the existence of the solution is
assured under some additional restrictions. In addition, we leave theoretical analysis of the
error and the radius of convergence for a future work.
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