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This paper deals with new methods for approximating a solution to the fixed point problem; find
X € F(T), where H is a Hilbert space, C is a closed convex subset of H, f is a p-contraction from
Cinto H,0 < p < 1, A is a strongly positive linear-bounded operator with coefficient y > 0,
0 <y <¥/p, T is anonexpansive mapping on C, and Pr(r) denotes the metric projection on the set
of fixed point of T. Under a suitable different parameter, we obtain strong convergence theorems by
using the projection method which solves the variational inequality ((A-y f)X+7(I-S)X,x-X) >0
for x € F(T), where T € [0, ). Our results generalize and improve the corresponding results of
Yao et al. (2010) and some authors. Furthermore, we give an example which supports our main
theorem in the last part.

1. Introduction

Throughout this paper, we assume that H is a real Hilbert space where inner product and
norm are denoted by (-,-) and || - ||, respectively, and let C be a nonempty closed convex
subset of H. A mapping T : C — C is called nonexpansive if

|ITx-Ty| <||lx-y|, VxyeC (1.1)

We use F(T) to denote the set of fixed points of T, thatis, F(T) = {x € C: Tx = x}. Itis
assumed throughout the paper that T is a nonexpansive mapping such that F(T) # 0.

Recall that a mapping f : C — H is a contraction on C if there exists a constant
p € (0,1) such that

If) - fWl <pllx-v

, Vx,yeC (1.2)
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A mapping A : H — H is called a strongly positive linear bounded operator on H if there
exists a constant y > 0 with property

(Ax,x) >¥|x|>, VYxeH. (1.3)

A mapping M : H — H is called a strongly monotone operator with a if

(x-y,Mx-My) >a|x-y Z Vx,y € H, (1.4)
and M is called a monotone operator if
(x-y,Mx-My) >0, Vx,yeH. (1.5)

We easily prove that the mapping (I -T) is monotone operator, if T is nonexpansive mapping.
The metric (or nearest point) projection from H onto C is mapping Pc[-] : H — C which
assigns to each point x € C the unique point Pc[x] € C satisfying the property

e = Pe[x]]) = inflx - ]| = d(x,C). (1.6)

The variational inequality for a monotone operator, M : H — H over C, is to find a
point in

VI(C,M) = {X € C: (x - % MX) >0, Yx € C}. (1.7)

A hierarchical fixed point problem is equivalent to the variational inequality for a
monotone operator over the fixed point set. Moreover, to find a hierarchically fixed point
of a nonexpansive mapping T with respect to another nonexpansive mapping S, namely, we
find X € F(T) such that

(x-%,(I-S)%) >0, VxeF(T). (1.8)

Iterative methods for nonexpansive mappings have recently been applied to solve a
convex minimization problem; see, for example, [1-5] and the references therein. A typical
problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H:

.1
xrer}rl(rTlé(Ax,x) -(x,b), (1.9)

where b is a given point in H. In [5], it is proved that the sequence {x,} defined by the
iterative method below, with the initial guess xo € H chosen arbitrarily,

Xpi1 = (I —a,A)Tx, +a,b, n>0, (1.10)
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converges strongly to the unique solution of the minimization problem (1.9) provided the
sequence {a;,} of parameters satisfies certain appropriate conditions.

On the other hand, Moudafi [6] introduced the viscosity approximation method
for nonexpansive mappings (see [7] for further developments in both Hilbert and Banach
spaces). Starting with an arbitrary initial xo € H, define a sequence {x,} recursively by

Xni1 = Onf (xn) + (1 —0n)Txn, n> 0, (1.11)

where {0y} is a sequence in (0,1). It is proved in [6, 7] that under certain appropriate
conditions imposed on {0,}, the sequence {x,} generated by (1.11) strongly converges to
the unique solution x* in C of the variational inequality

(I-f)x*, x-x*y>0, xeC. (1.12)

In 2006, Marino and Xu [8] introduced a general iterative method for nonexpansive
mapping. Starting with an arbitrary initial xy € H, define a sequence {x,} recursively by

Xn+1 = €Y f(xn) + (I — €, A)Tx,, n2>0. (1.13)

They proved that if the sequence {e,} of parameters satisfies appropriate conditions, then the
sequence {x,} generated by (1.13) strongly converges to the unique solution X = Pr)(I - A+
yf)X of the variational inequality

((A-yf)X, x-%)>0, VxeF(T), (1.14)

which is the optimality condition for the minimization problem

o1
xrer}rl(r%é(Ax,x) - h(x), (1.15)

where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).

In 2010, Yao et al. [9] introduced an iterative algorithm for solving some hierarchical
fixed point problem, starting with an arbitrary initial guess xy € C, define a sequence {x,}
iteratively by

Yn = ﬁnsxn + (]— - ,Bn)xn/

(1.16)
X1 = Pe[anf (xn) + (1 - ay)Tys], Yn>1.

They proved that if the sequences {a,} and {f,} of parameters satisfies appropriate
conditions, then the sequence {x,} generated by (1.16) strongly converges to the unique
solution z in H of the variational inequality

zeF(T), ((I-f)z, x—-z)>0, VYxeF(T). (1.17)
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In this paper we will combine the general iterative method (1.13) with the iterative
algorithm (1.16) and consider the following iterative algorithm:

Yn = ﬂnsxn + (1 - ﬂn)xnr
Xn41 = Pc [aan(xn) +(I - “nA)Tyn]r Vn > 1.

(1.18)

We will prove in Section 3 that if the sequences {a,} and {f,} of parameters satisfy
appropriate conditions and lim,, _, - (B, /a,) = T € (0, 00) then the sequence {x,} generated by
(1.18) converges strongly to the unique solution X in H of the following variational inequality

¥ e F(T), <%(A—yf)3~c+ (I-9)%, x—J?> >0, VxeF(T). (1.19)

In particular, if we take T = 0, under suitable difference assumptions on parameter, then the
sequence {x,} generated by (1.18) converges strongly to the unique solution X in H of the
following variational inequality

XeF(T), ((A-yf)% x-%)>0, VxeF(T). (1.20)

Our results improve and extend the recent results of Yao et al. [9] and some authors.
Furthermore, we give an example which supports our main theorem in the last part.

2. Preliminaries

This section collects some lemma which can be used in the proofs for the main results in the
next section. Some of them are known, others are not hard to derive.

Lemma 2.1 (Browder [10]). Let H be a Hilbert space, C be a closed convex subset of H, and T :
C — C be a nonexpansive mapping with F(T) #0. If {x,} is a sequence in C weakly converging to x
and if {(I — T)x,} converges strongly to y, then (I — T)x = y; in particular, if y = 0 then x € F(T).

Lemma 2.2. Let x € H and z € C be any points. Then one has the following:

(1) That z = Pc[x] if and only if there holds the relation:

(x-z,y-2z)<0, VyeC (2.1)

(2) That z = Pc[x] if and only if there holds the relation:

le=zI? < lx-yl* - ly-=l", ¥yeC (22)



Journal of Applied Mathematics 5

(3) There holds the relation:

> Vx, yeH. (2.3)

(Pcx] = Pcly], x —y) 2 ||Pc[x] - Pc[y]

Consequently, Pc is nonexpansive and monotone.

Lemma 2.3 (Marino and Xu [8]). Let H be a Hilbert space, C be a closed convex subset of H,
f + C — H be a contraction with coefficient 0 < p < 1,and T : C — C be nonexpansive mapping.

Let A be a strongly positive linear bounded operator on a Hilbert space H with coefficient ¥> 0. Then,
for0<y <Y /p, for x,y € C,

(1) the mapping (I — f) is strongly monotone with coefficient (1 — p), that is,

(x-y,(I-Hx= - fy) = 1-p)llx-yI, (24)
(2) the mapping (A -y f) is strongly monotone with coefficient Y —Yp that is
(x=y, (A=yNx=(A=yNw) = (V17 -yl 29

Lemma 2.4 (Xu [4]). Assume that {a,} is a sequence of nonnegative numbers such that

an+1 < (1 - Yn)an + 6n/ Vn > 0, (26)

where {y,} is a sequence in (0,1) and {6,} is a sequence in R such that

(1) 21 Yn = oo,
(2) limsup, ,_(8,/yn) <0o0r 372 [64] < 00. Then lim,, _, ,a, = 0.

Lemma 2.5 (Marino and Xu [8]). Assume A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient Y>0and0<a< |A|™Y. Then |I - aAl|<1-a Y.

Lemma 2.6 (Acedo and Xu [11]). Let C be a closed convex subset of H. Let {x,} be a bounded
sequence in H. Assume that

(1) The weak w-limit set wy, (x,) C C,

(2) For each z € C, lim,, _, oo ||x, — z|| exists. Then {x,} is weakly convergent to a point in C.

Notation. We use — for strong convergence and — for weak convergence.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — H
be a p-contraction with p € (0,1). Let S,T : C — C be two nonexpansive mappings with F(T) # (.
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Let A be a strongly positive linear bounded operator on H with coefficient y> 0. {a,} and {B,} are

two sequences in (0,1) and 0 < y <y / p. Starting with an arbitrary initial guess xo € C and {x,} is
a sequence generated by

Yn = ﬁnsxn + (1 - ,Bn)xn/

(3.1)
X1 = Pelany f(xn) + (I — 2, A)Ty,], VYn>1.

Suppose that the following conditions are satisfied:

(C1) limy,—, o, = 0and 3774 a = 00,

(C2) limy— o (Pn/an) =T =0,

(C3) limy— oo |ty — an1|/an) = 0 and limy, s (|fn = Pn1l/Pn) = 0, 0r
(C4) 351 lan — ana| < oo and 35724 |fn = Pra| < oo

Then the sequence {x,} converges strongly to a point X € H, which is the unique solution of the
variational inequality:

XeFT), ((A-yf)x,x-X)>0, VxeF(T). (3.2)

Equivalently, one has Prry(I - A+yf)X = X.

Proof . We first show the uniqueness of a solution of the variational inequality (3.2), which is
indeed a consequence of the strong monotonicity of A — yf. Suppose x€ F(T) and ¥ € F(T)

both are solutions to (3.2), then ((A -y f) x,x —X) <0and ((A - yf)x, x- x) < 0. It follows
that

((A=yf) xx %)+ ((A-yf)% 5-x) = ((A-7f) x,x &) - ((A-7f)% X -%)

= ((A-yf) x ~(A-yf)% x -X)

(3.3)

The strong monotonicity of A — yf (Lemma 2.3) implies that x= X and the uniqueness is
proved.

Next, we prove that the sequence {x,} is bounded. Since a, — 0 and
limy, —, o (Bu/an) = 0 by condition (C1) and (C2), respectively, we can assume, without loss
of generality, that a,, < ||A|™! and B, < a,, for all n > 1. Take u € F(T) and from (3.1), we have

et =l = [|Pe [any £ i) + (1 = AYTy,] - Pelu
< ey f (xn) + (I - anA) Ty, — ul| (3.4)
< any || f(n) = fF@) || + an]ly f () = Au|| + ||(T - @A) (Tyn - u)]|.
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Since ||I - a, Al <1-ay Y and by Lemma 2.5, we note that

o1 =l < £ = £+l ) = Au + (1= 7 ) [Ty~ ]
< anypllxn — ull + an||y f (u) — Aul| + <1 —ay, }7> Ty — Tu||

<yl =l + aulyf ) = Aull + (1,7 ) -
< @eyplixn — ull + au [y f () - Aul
e (1= a7 ) Bl = Sull + BllSu =l + (1= ) 2 - ]
< anypllxn —ull + ||y f () - Au|
# (1= 7) Bl =l + ullSu =l + (1= o), = ul] (35)
Vil + anlly ) = Aul] + (1 ¥ )BullSu—ul

)nxn ull + |y £ (u) — Au| + ullSt — ul

)nxn — ull + [l f @) - Au]| + (1S - ul]

(17 -0)
(1= 0)
< (1= (7 =10 ) )=l + il £ A + 15w -
(17 -0)
(17 -0)

>”xn —ull + (xn<}7 ‘YP) ”Yf(u) - Au|| +||Su _u”‘

()

By induction, we can obtain

v/ ) — Au] + 1Su—u|
(1)

which implies that the sequence {x,} is bounded and so are the sequences {f(x,)}, {Sx,},
and {ATy,}.
Set wy, := any f(xn) + (I — 2, A)Ty,, n>1. We get

ll6n+1 = ul| < maxq [lxo = u, (3.6)

|21 = x4l = || Pc [wn+1] - Pc [wn]”
3.7)
< lwpar = wy|.
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It follows that

|2¢ns1 = x| < ” (lanf(xn) +(I- anA)Tyn) - (an—lYf(xn—l) +(I - ‘xn—lA)Tyn—l) ”
< an}’”f(xn) = f(xn-1) ” +|an — an—l”lYf(xn—l) - ATy, ”

+ <1 — f) 1Ty = Tyl (338)
< anypllan = Xuo1 |l + | — auca |||V f (n-1) = ATy ||

e (1= 7 )l =l

By (3.7) and (3.8), we get

1xns1 = Xnll < anypllwn — wp-a|l + lan - an—1|||Yf(xn—1) = ATy ”

_ (3.9)
e (1= 7 )l =l
From (3.1), we obtain
lyn = Y|l = [[(BuSxn + (1= Bu)xn) = (Pu-1Sxnr + (1 = Pu1) Xu1) |
= ”ﬂn(sxn - an—l) + (ﬂn - ﬁn—l)(sxn—l - xn—l) + (1 - ﬂn) (xn - xn—l)” (3 10)
< lxn = xpall + |ﬂn - ﬁn—l | ISx-1 — xp1]]
< ||xn - xn—l“ + |ﬁn _ﬁn—ler
where M is a constant such that
sug{ Iy f (xn-1) = ATy || + [1Sxn-1 = xpa ||} < M. (3.11)
ne

Substituting (3.10) into (3.8) to obtain

241 = 2ull < anyplln = Xnoall + lan = et |||y f (Xn-1) = ATy |

+ (1 —ay, }_’> [lxn = X1l + | Br = Pu-1 | M]

< a"YP”xn - xn—l” + |a71 - an—l|M

+ (1 ~ f) [l1¢n = %1l + | Br = -1 | M]
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- <1 —ay <f —yp>>||xn — Xyl + M{[laty = -] + | B = Pu-t ]

< <1 —a, <}_’ _YP>>”wn — Wyl + M[|aty — ana| + | B = Pur]]-

(3.12)
At the same time, we can write (3.12) as
len+1 _ xn” < (1 _ aﬂ({, _Yp>>“wn _ wn—l” + Man[|an ;an—1| + |ﬁ7’l ;ﬁn—l'
(3.13)
< (1 - ay ()_’ —YP>>||wn - Wy + Man[|a" ‘_ﬁa"ﬂ - P ;ﬁn_l|].

From (3.12), (C4), and Lemma 2.5 or from (3.13), (C3), and Lemma 2.5, we can deduce that
|ps1 = x| — O, respectively.
From (3.1), we have

lln = Txul|l < |lxn — Xnaa |l + 201 — Toxn|
= |lxn = xpsa1ll + | Pc[wn] — Pc[Txy]|l
< lxn = xpaa |l + llwn — Tyl

= ||xn = Xpa1 |l + ”an}’f(xn) + (I - a,A)Ty, - Txn”

. (3.14)
< = Xl + @l f5n) = AT+ (1= 0 ) [Ty = T
<= ol + a7 i) = AT+ (10,7 )l = 0]
= ||xn — Xpe1|l + an”Yf(xn) - ATxn” + (1 —an ?)pn“sxn = Xnl-
Notice that a, — 0, f, — 0, and ||x,41 — X4|| — 0, so we obtain
lln — Txn|| — 0. (3.15)
Next, we prove
limsup(yf(z) - Az, x, —z) <0, (3.16)

n—oo

where z = Prr)(I — A +yf)z. Since the sequence {x,} is bounded we can take a subsequence
{x,,} of {x,} such that

limsup(yf(z) - Az, x, — z) = kli_r)r;o(yf(z) - Az, X, - 2), (3.17)

n—oo
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and x,, — X.From (3.15) and by Lemma 2.1, it follows that X € F(T). Hence, by Lemma 2.2(1)
that

limsup(yf(z) - Az, x, —z) = klim (yf(z) - Az, x,, — z)

n—oo

= (yf(z) - Az, X - z)

(3.18)
=((I-A+yf)z-2z,X-2z)
<0.
Now, by Lemma 2.2(1), we observe that
(Pclwn] = wy, Pc[wy] - z) <0, (3.19)

and so

1 = 2I* = (Pe[wn] - 2, Pelwn] - 2)
= (Pc[wn] = wn, Pcwn] = z) + (wn — 2, Pc[wn] - 2)
< (wn - z, Pc[wn] - )
= (@) f(xn) + (I = @y ATy — 2, X1 — 2)
< any || f(xn) = f@)|[1%n1 = 2l + @n(y f (2) = Az, Xpi1 — 2)

+ <1 —a, }7> ITyn — z||llxn1 — =l
< anypllxn — zlll|1xna — zl| + an(y f(2) — Az, Xpi1 — 2)
+ <1 —-a, }7> |y = z||llxns1 — =l
= anypllxn — zll||Xne1 — 2l + an(y f(2) — Az, X1 — 2)
¢ (1= 7 )BuS%0+ (1= B2)xn = 2| s =1
< anyplln = zl|[[xn = zll + an(y f(2) = Az, X1 = 2)
# (1= 7) [B1Sxn = S+ fullSz = 211+ (1= ) = 2] s - 2]
< anypllxn = zll[|xne1 = 2l + an(y f(2) = Az, Xp1 - 2)

+ (1 _ f) [Bullx — 2l + BullSz = 2l + (1 = Bu) 1% = 2I] [t — 2]
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(1 - an ()7 —yp)) 0 = 2ll|xXns1 = 2]l + any f(2) = Az, Xp41 — 2)

v (1 - a, f)ﬁnHSz I
a7 7))
<
- 2

v (1 ~ay f)ﬁnnsZ — 2 — =l

[||xn — 2| + [ - z||2] + (Y f(2) = Az, Xpi1 - 2)

(3.20)
Hence, it follows that
2 Lo <}7 —YP> 2 2a
st = 2P € —————L Ml = 2l + —— " (yf(2) — Az, X1 — 2)
1+a, (Y —yp) 1+a, (Y —YP)
2<1 ~ay f)ﬂn
+ ——— 15z = zllllxn - 2|l
1+a, (Y —yp)
2a, (f —YP) .
= (yf(z) — Az, xps1 — 2) (3.21)

1+a, (f —YP) a (f —w)
,ﬁn <1 — Oy }7)
+—— 15z = z|ll|xne1 - 2|l
an <Y —Yp>
2a, (f —YP>
l-—<
1+a, (Y —YP>

X [

We observe that

,ﬁn <1 —Qay ?)
lim sup

v N/
G ()

Thus, by Lemma 2.4, x, — zasn — oo. This is completes. O

(rf(2) = Az, xni1 - z) + 1Sz = 2l|[|2¢1 — 2l | <0.

(3.22)
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From Theorem 3.1, we can deduce the following interesting corollary.

Corollary 3.2 (Yao et al. [9]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f : C — H be a p-contraction (possibly nonself) with p € (0,1). Let S,T : C — C be two
nonexpansive mappings with F(T) #0. {ay,} and {B,} are two sequences in (0,1). Starting with an
arbitrary initial guess xg € C and {x,} is a sequence generated by

Yn = ﬂnsxn + (1 _ﬂn)xnr

(3.23)
Xn+1 = Pc [anf(xn) +(1- ‘Xn)Tyn]r Vn > 1.

Suppose that the following conditions are satisfied:

(C1) limy—, oty = 0and >77 1 ay = oo,
(C2) limy, . o (Bn/ an) = 0,
(C3) limy, . oo (|an — @n-1]/an) = 0 and limy, . oo (| = Pual/ ) = 0, 0
(C4) X% lan — ana| <ooand 32, [P = Pl < oo
Then the sequence {x,} converges strongly to a point X € H, which is the unique solution of the

variational inequality:

XeF(T), ((I-f)%x-%)>0, VxeF(T). (3.24)

Equivalently, one has Prr)(f)X = X. In particular, if one takes f = 0, then the sequence {x,}
converges in norm to the Minimum norm fixed point X of T, namely, the point X is the unique solution
to the quadratic minimization problem:

- i 2
z = arg min [|x][ (3.25)

Proof. As a matter of fact, if we take A = I and y = 1 in Theorem 3.1. This completes the
proof. O

Under different conditions on data we obtain the following result.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C —
H be a p-contraction (possibly nonself) with p € (0,1). Let S,T : C — C be two nonexpansive
mappings with F(T) # . Let A be a strongly positive linear bounded operator on a Hilbert space H

with coefficient Y>0and 0 < y <y /p. {ay} and {B,} are two sequences in (0,1). Starting with an
arbitrary initial guess xo € C and {x,} is a sequence generated by

Yn = ﬂnsxn + (1 - ,ﬁn)xnr

(3.26)
X1 = Pe[any f(xn) + (I — 2, A)Tyy,], VYn>1.
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Suppose that the following conditions are satisfied:

(C1) limy,—, ot = 0and 377 ay = 00,

(C2) limy oo (Bn/ atn) = T € (0, 0),

(C5) limy — oo ((lan = an-1| + |Pn = Pn1l) / anfn) = 0,

(C6) there exists a constant K > 0 such that (1/a,)|1/pn —1/Pra| < K.

Then the sequence {x,} converges strongly to a point X € H, which is the unique solution of the
variational inequality:

X e F(T), <%(A —yf)E+(I-9)% x- a?> >0, VxeF(T). (3.27)

Proof . First of all, we show that (3.27) has the unique solution. Indeed, let x and X be two
solutions. Then

((A-yf)x %-x) <T((I-9)% x -F). (3.28)
Analogously, we have
((A=yf) x,x %) <7((I-8) x, % x). (329)

Adding (3.28) and (3.29), by Lemma 2.3, we obtain

(i)l

IN

((A=yf)F-(A-yf) x,5-X)
(3.30)

IN

—T<(1—5)§— (I-S)x,%- 5c>

<0,
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and so ¥ =x. From (C2), we can assume, without loss of generality, that g, < (T + 1)a,, for all
n > 1. By a similar argument in Theorem 3.1, we have

61 =l < ayplen -l + o[£ (1) — Au|

+ (1 -y f) [l = ull + BullSue = ll + (1 = fu) lloxn — ull]

= (1= (T =0 ) Y=l + il £ = A + (1=, ) pollSu =l
< (1= =0 ) Y=l + il £ = A + oS ]
< (1= =10 ) Y= ull + Iy F ) = Au] + (74 Dar1Su
= (1= (7 =1p) ) =l + @l £ = Al + (- 1) ]
= (1= (719 Yl (7 -y ) ML= AL 2T DS ]
()
(3.31)
By induction, we obtain
- max{ b= = [l Aul + -+ i } (332)

which implies that the sequence {x,} is bounded. Since (C5) implies (C4) then, from
Theorem 3.1, we can deduce ||x,41 — x,,|| — O.
From (3.1), we note that

xn+1:PC[wn]_wn+wn+yn_yn (333)

= Pe[wn] — wn + any f(x0) + (TYn = Yn) + (Yn — 2nATy).
Hence, it follows that
Xp = X1 = (Wn — Pe[wn]) + an (Axy =y f(x0)) + (Yn = Tyn) + (Xn = yn) + an(ATy, — Axy)

= (wy — Pe[wn]) + an(A =y f)xn+ (I =Ty + Pu(I = S)xp + 0y A(Tyy — x),
(3.34)
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and so

Xn — Xntl 1

Xn
G- afs (A-anp, el m(f\ ~1f)x

1
T )

(I =S)xp + m— o A(Tyn = xn).

n)ﬂn

Set vy, = (x4 — Xp+1) /(1 — ay,) Brn. Then, we have

1 an
m(wn—l’c[wn])“‘ A= anpn (A-yf)x n+

Op =

1

(1 ) — (- S)x, +

T e AT =),

From (3.12) in Theorem 3.1 and (C6), we obtain

1
— an)pn

+ ;
(1- “n)ﬁn

||xn+1ﬁn—xn|| S@_ﬁﬂ(;_ﬂ)))nxn x|, [|an ﬁ:n_1|+|ﬁn—ﬂfn-1l]

Xn — xn—l”

() 5 e )

ﬂnfl
|ﬂn - ﬂn—l |

_(1_%(,; Yp>)||xnﬁnxln1n [m;:n_lu

Pn

(I- T)yn

|

(I-

15

T)yn

(3.35)

(3.36)

= () gt (o) Yot

+ M[Ian ;}:n—ﬂ + |ﬁn ;fn—l|]
1

< <1_an<}_’ —wﬁ)% + 120 = xpall| 7 -

4 M[lan ;fn—ﬂ + |ﬁn ;}fn1|]

< (1 —ay (f —yp))% + 0, K || 3 — x4 |
n-1

+M|:|an ﬂ:n 1| |ﬁn ‘Bfn 1|]

1

ﬂn ﬂn—l
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- W, — Wy
< (1 -ay, (Y —YP)>”’B—11” + ‘XnK”xn - x'rkl”

+M|:|t¥n _dn—1| n Iﬂn_ﬂn—ll]'

Pr Pn
(3.37)
This together with Lemma 2.4 and (C2) imply that
pim W =Xl g 0w = 2ol g, o —oll (3.38)
n—oo ﬂn n— oo ﬂn n— oo a,

From (3.36), for z € F(T), we have

1 a,
(1 _an)pn<wn—PC[wn]/PC[Wn—l] —-z)+ a _an)ﬁn<(A—Yf)xmxn_z>

(U, Xy — 2) =

+ (1 _in)ﬁ <(I_T)y”’x" _Z> + ﬁ((l_s)xn/xn_z)

———(A(Tyn— xn), Xn — )

T anpn
- oy (e Pl Peln] -2
+ g (= Pelwnl, Pelwa] = Pelwo ]
* ﬁﬁ((z‘l—ﬁ)xn - (A-yf)z xn—z) + JW((A—yf)z,xn - z)
F s (=9 = (1= 5)2,3, - 2) + (= 5)z%,-2)

1 a,
(1— ) B (I =T)yn %= 2) + A=) (A(Tyn — xn), xn — z).

(3.39)
By Lemmas 2.2 and 2.3, we obtain
1 <f —Yp>an 2
(On xn = 2) 2 mm = Pelewnl, Pelwnaa] = Pelwn]) + <5l = =]
YA ab, )[5 o ((A=yf)z,xu - >+(1_1—an)((1—5)z,xn—z> (3.40)
+ m(([-zr)yn,xn —z)+ (1—1171)[5,1“(1‘/" X)) % - 2).
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Now, we observe that

g — 2P s LTIy P (1= S)z % -2)
(Y —Yp) ay <Y —Yp> an
1 1

(I =T)Yn, xn - z)

- —><(A—Yf)z,xn -z) - (f _Yp>an

e ATy - %)% 2)

. (_;m - Pefwy], Pelwy 1] - Pelawg]) (341)
¥ —YP>“n
(1—0ln)ﬂn pn <(I—S)Z,xn_z>

1

Y APz
(f —YP><(A Yf) ) (f _Yp>an

S NG SR G S L /5

6 (G

From (C1) and (C2), we have g, — 0. Hence, from (3.1), we deduce |y, — x,]| — 0 and
|%n1 = Tynl| — 0. Therefore,

(I =T)yn, xn — z)

”wn - PC[wn] ”

19 = Tyall < Ny = 2]l + 20 = 2sll + |1 = Tym]| — 0. (342)

Sincev, — 0, I -T)y, — 0, A(Ty, — x,) — 0, and |lw, — w,1||/ (¥ =yp) — O,
every weak cluster point of {x,} is also a strong cluster point. Note that the sequence {x,} is
bounded, thus there exists a subsequence {x,, } converging to a point X € H. For all z € F(T),
it follows from (3.39) that

<(A - Yf)xnk"xnk - Z>

_ (1 B “nk)ﬁnk
L7

1 n

(Oner Xn, —2) = — (I = T) Yy, Xn, — 2) — &((I = S)Xpy, Xn, — Z)

Ay, Xy
1

- <A(Tynk - x"k)’x"k - Z> - _<wnk - Pc[wnk]/PC[wnkfl] - Z>

Mk
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< (1 B ank)ﬂnk

1 p
A, <Unk/xnk - Z) - [X_nk<(1 - T)ynk/xnk - Z> - CX_:,}:“I - S)xnk/xnk - Z)

- <A(Ty”k - x‘ﬂk)’x"lk - Z> - ai<w‘ﬂk _Pc[wnk]IPC[wﬂk—1] _PC[wnk]>

Nk

1
- <A(Tynk - xnk)/xnk - Z> - a_<w7’lk - Pc[wy, ], Pc[wn, ] - 2)

03

< (1 B ank)ﬁnk

1 ﬂn
A, <vnk1xnk - Z> - a_nk<(I - T)y‘r‘lk/xnk - Z> - a_k<(I - S)xnk/xnk - Z>

Nk

Wy, — W
- <A(Ty"k - xnk)fxnk - Z> + ” nka L ” ”wnk - PC[wnk]”-
Nk

(3.43)

Letting k — oo, we obtain

(A-yf)x,x-z) <-1((I-9)X,X-z), VzeF(T). (3.44)
By Lemma 2.6 and (3.27) having the unique solution, it follows that wy,(x,) = {X}. Therefore,
X, — X asn — oo. This completes the proof. O

From Theorem 3.3, we can deduce the following interesting corollary.

Corollary 3.4 (Yao et al. [9]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f : C — H be a p-contraction (possibly nonself) with p € (0,1). Let S,T : C — C be two
nonexpansive mappings with F(T) # 0. {a,} and {p,} are two sequences in (0,1) Starting with an
arbitrary initial guess xo € C and {x,} is a sequence generated by

Yn = PnSxn + (1 - ﬂn)xnr

(3.45)
Xni1 = Pelanf(xn) + (1= a,)Ty,], VYn>1.

Suppose that the following conditions are satisfied:
(C1) limy,— ot = 0and 3774 ay = 00,
(C2) limy, . on(Bu/an) = 7 € (0, 00),
(C5) limy— o (| = o] + B = Puct)/@nffn) = 0,
(C6) there exists a constant K > 0 such that (1/a)|1/pn —1/Pral < K.
Then the sequence {x,} converges strongly to a point X € H, which is the unique solution of the

variational inequality:

¥ e F(T), <%(1 —f)Z+(I-S)F,x- §> >0, VxeF(T). (3.46)



Journal of Applied Mathematics 19

Proof. As a matter of fact, if we take A = I and y = 1 in Theorem 3.3 then this completes the
proof. O

Corollary 3.5 (Yao et al. [9]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S,T : C — C be two nonexpansive mappings with F(T) #0. {a,} and {B,} are two sequences in
(0,1). Starting with an arbitrary initial guess xy € C and suppose {x,} is a sequence generated by

Yn = ﬂnsxn + (1 - ﬂn)xnr

(3.47)
Xpi1 = Pe[(1 - an)Tyn], Yn>1.

Suppose that the following conditions are satisfied:

(C1) lim, o, = 0and 377, ay, = 00,

)
(C2) limy— oo (B /atn) =11,
(C5) hmn—>oo((|an - an—1| + |ﬂn - ﬂn—ll)/anﬂn) = O/
(C6) there exists a constant K > 0 such that (1/a,)|1/pn —1/Pn-1] < K.

Then the sequence {x,} converges strongly to a point X € H, which is the unique solution of the
variational inequality:

X e F(T), <<1 - ;)ix - §> >0, VxeF(T). (3.48)

Proof . As a matter of fact, if we take A = I, f = 0, and y = 1 in Theorem 3.3 then this is
completes the proof. O

Remark 3.6. Prototypes for the iterative parameters are, for example, a, = n°% and f, = n°%
(with 6,w > 0). Since |a, — a,-1| = 7% and |B, — fu-1| = n7%, it is not difficult to prove that
(Cb) is satisfied for 0 < 6, w < 1 and (C6) is satisfied if 0 + w < 1.

Remark 3.7. Our results improve and extend the results of Yao et al. [9] by taking A = I and
y = 1in Theorems 3.1 and 3.3.

The following is an example to support Theorem 3.3.

Example 3.8. Let H = RC = [-1/4,1/4], T =1,S = -1, A =1, f(x) = x3,Pc =16, =

1/v/n, a, =1/+/nfor every n € N, we have 7 = 1 and choose }_”: 1/2,p=1/3 and y = 1. Then
{x,} is the sequence

Xpsl = j;—i% + <1 - %) (1 - %)xn, (3.49)

and x, — X =0asn — oo, where X = 0 is the unique solution of the variational inequality

11

xeF(T) = [_Z’ 1

], <<3§c-azz),x-fc>zo, VxeP(:r)=[-}l,}l]. (3.50)
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