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We introduce and study a system of generalized nonlinear mixed variational-like inequality
problems (SGNMVLIPs) in Banach spaces. The auxiliary principle technique is applied to study
the existence and iterative algorithm of solutions for the SGNMVLIP. First, the existence of
solutions of the auxiliary problems for the SGNMVLIP is shown. Second, an iterative algorithm for
solving the SGNMVLIP is constructed by using this existence result. Finally, not only the existence
of solutions of the SGNMVLIP is shown but also the convergence of iterative sequences generated
by the algorithm is also proven. The technique and results presented in this paper generalize and
unify the corresponding techniques and results given in the literature.

1. Introduction and Preliminaries

Variational inequality theory, which was introduced by Stampacchia [1] in 1964, is an impor-
tant part of nonlinear analysis. Various kinds of iterative algorithms to solve the variational
inequalities have been developed by many authors, see [2-8] and the references therein.
Variational-like inequality introduced by Parida et al. [9] is an important generalization of
the variational inequalities and has significant applications in nonconvex optimization. It is
worth mentioning that the projection method cannot be extended for constructing iterative
algorithms for variational-like inequalities. To overcome this drawback, one uses usually
the auxiliary principle technique which deals with finding a suitble auxiliary problems for
the original problem. Further, this auxiliary problem is used to construct an algorithm for
solving the original problems. Glowinski et al. [10] introduced this technique and used it to
study the existence of a solution of variational-like inequality. Later, many authors extended
this technique to suggest and analyze a number of algorithms for solving various classes of
variational inequalities (see [11-19]).
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Recently, the auxiliary principle technique was extended by Ding et al. [15] to study
the existence and iterative algorithm of solutions of generalized strongly nonlinear mixed
variational-like inequalities in Banach spaces. On the other hand, the auxiliary principle
technique was also extended by Kazmi and Khan [16] who studied a system of generalized
variational-like inequality problems in Hilbert spaces.

In this paper, we still extend the auxiliary principle technique to study a system of
generalized nonlinear mixed variational-like inequality problems (SGNMVLIPs) in Banach
spaces. At first, the existence of solutions of the auxiliary problems for the SGNMVLIP is
shown. Next, an iterative algorithm for solving SGNMVLIP is constructed by using this
existence and uniqueness result. Finally, we prove the existence of solutions of the
SGNMVLIP and the convergence of the algorithm. These results improve and generalize
many corresponding results given in [12, 13, 16-18].

Throughout the paper unless otherwise stated, let I = {1,2} be an index set. For each
i € I, let B; be a real Banach spaces with norm || - [|;, let B} be the topological dual space of B;,
and let (-, -); be the generalized duality pairing between B; and B}. Let F; : B x B, — B}, 7; :
B; x B; — B, be nonlinear mappings, then we consider the following system of generalized
nonlinear mixed variational-like inequality problems (SGNMVLIPs): for given w} € B}, find
(x,y) € By x By such that

<F1 (xry) - (,UI, 7’11(7)1,3(')>1 + bl(x/ Ul) - bl(x/x) >0 V’Ul € Bl/ (11)

(F2(x,y) — w5, m2(v2, %)), + ba(y,v2) —b2(y,y) 20 Vv, € By, (1.2)

where for each i € I, the bifunction b; : B; x B; — R is a real-valued nondifferential function
with the following properties:

(i) b; is linear in the first argument;
(ii) b; is convex in the second argument;

(iii) b; is bounded, that is, there exists a constant y; > 0 such that

bi(ui, vi) < yilluill;llvill;, Yui,vi € B; (1.3)

(iv) bi(ui, vi) — bi(ui, w;) < bi(u;, vi —w;), for all u;, v, w; € B;;

Remark 1.1 (see [15]). (1) It follows from property (i), for any u;,v; € B;, bi(-u;,v;) =
—bi(u;, v;). By property (iii), we have b;(—u;, v;) < yilluillil|vill;, and hence

|bi (ui, vi)| < yilluillillvill;;  Vui, vi € B;. (1.4)
This shows that for any u;, v; € B;, b;(u;,0) = b;(0,v;) =0.
(2) It follows from properties (iii) and (iv), for any u;, v;, w; € B;,

bi(ui, vi) = bi(wi, w;) < yilluil;llvi = will;,
(1.5)
bi(ui, w;) — bi(u;, v;) < yilluill;l|w; — vill;
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Therefore, we have
|bi (i, vi) = bi(wi, wi)| < yilluill;l[0i = will;- (1.6)
This implies that b; is continuous with respect to the second argument.

Some Special Cases

(1) If for each i € I, B; is a real Hilbert space and w; = 0, then the SGNMVLIP (1.1) and (1.2)
reduce to the problems: find (x,y) € By x B, such that

(Fi(x,y),m(v1,x)), +bi(x,v1) =bi(x,x) >0 Vo, € By, i
<F2(x/]/),712(02,x)>2+b2(y,‘02) _b2(y,y) 20 VUQ GBz. .

The problem (1.7) has been studied by Kazmi and Khan [16].

(2) If index set I = {1}, By = B, = Band Fy(x,x) = Fo(x,x) = Tx — Ax for each x € B,
where A, T : B — B* are two single-valued mappings, then the SGNMVLIP (1.1) and (1.2)
reduce to the problem: find x € B such that

(Tx — Ax —w*,1(v,x)) + b(x,v1) = b(x,x) >0 Vv € B. (1.8)

The problem (1.8) with w* = 0 was introduced and studied by Ding [17] in reflexive Banach
spaces.

In brief, for appropriate and suitable choice of the mappings Fi, F», 11,12, b1, by, and
the linear continuous functionals w] and w}, one can obtain a number of the known classes
of variational inequalities as special cases from SGNMVLIP (1.1) and (1.2) (see [6-8]).

We need the following basic concepts, basic assumptions and basic results which will
be used in the sequel.

Definition 1.2. Let D be a nonempty subset of a Banach space E with the dual space E*. Let
g:D — E*and 7 : D x D — E be two mappings, then

(i) g is said to be 5-strongly monotone if there exists a constant ¢ > 0 such that

(g(u) - g(v),n(w,v)) > ollu-v|’, Yu,veD, (1.9)

(ii) g is said to be Lipschitz continuous if there exists a constant y > 0 such that

lg() - g@)|| < pllu-o|, Yu,veD, (1.10)

(iii) 7 is said to be Lipschitz continuous if there exists a constant 6 > 0 such that

(u,v)|| <6|lu-v|, Yu,veD. (1.11)
y/
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Definition 1.3. Let D be a nonempty subset of a Banach space E with the dual space E*. Let
F:DxD — E*,: DxD — E betwo mappings, then F is said to be

(i) (A, ¢)-Lipschitz continuous if there exist constants .\, ¢ > 0 such that

||F(u1,01) — F(uz, 02)” < )L||u1 — u2|| + §||01 — Uz”, Vul,vl,uz,vz € D, (112)

(ii) -strongly monotone in the first argument if there exists a constant £; > 0 such that

(F(u1,v) - F(up,v),n(u1,u2)) > e1]juq — 2||>, Vs, up,v €D, (1.13)

(iii) 77-strongly monotone in the second argument if there exists a constant £, > 0 such
that

(F(u,v1) = F(u,v2),m(v1,02)) > &2|v1 - wl|?, Yoy, v,u€D. (1.14)

Assumption 1.4. For eachi € I, the mapping #; : BixB; — B; satisfies the following conditions:

(1) ni(u,v) = ni(u, z) + n:(z,v), for all u,v,z € B;;
(2) #; is affine in the second argument;
(3) for each fixed u € B, the function v — 7;(u,v) is continuous from the weak

topology to the weak topology.

Remark 1.5. 1t follows from Assumption 1.4 (1) that #;(u,v) = —-n;(v,u) and 7;(u,u) = 0
for any u,v € B;. Moreover, we can prove that 7; is also affine in the first argument by
Assumption 1.4 (1) and (2).

Lemma 1.6 (see [20]). Let X be a nonempty close convex subset of a Hausdorff linear topological
space E, and let ¢, ¢ : X x X — R be mappings satisfying the following conditions:
(i) foreach (x,y) € X x X, ¢(x,y) < ¢(x,y) and ¢ (x,x) > 0 for each x € X;
(ii) for each x € X, ¢(x,y) is upper semicontinuous with respect to y;
(iii) for each y € X, the set {x € X : ¢s(x, y) < 0} is convex;
(iv) there exists a nonempty compact set Q C X and xy € Q such that ¢(xo,y) < 0 for any
yeX\Q

Then, there exists an'y € Q such that ¢(x,y) > 0 for any x € X.

2. Auxiliary Problems and Algorithm

In this section, we introduce the auxiliary problems to study the SGNMVLIP (1.1) and (1.2),
and we give an existence theorem for a solution of the auxiliary problems. By using the
existence theorem, we construct the iterative algorithm for solving the SGNMVLIP (1.1) and
(1.2).
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For eachi € I, let g; : B; — B; be a single-valued mappings Given (x1,x2) € By x B,
we consider the following problems P(x1, x,): find (z1, 2z2) € By x B, such that

(81(z1) — g1(x1) + p[Fi(x1,x2) — wi], m1(v1,21) ), + p[br(x1,01) = b1(x1,21)] 20 Vo1 € By,

(82(22) = g2(x2) + p[Fa(x1, X2) — w}|, 12(v2, 22) ), + p[b2(X2,02) = b2(x2,22)] 20 Vo, € By,
2.1)

where p > 0 is a constant. The problems are called the auxiliary problems for SGNMVLIP
(1.1) and (1.2).

Remark 2.1. If for each i € I, B; is a real Hilbert spaces, w; = 0 and g; = I are the identity
mappings on B;, then the auxiliary problems reduce to Kazmi and Khan'’s auxiliary problems
in [16].

Theorem 2.2. Foreachi e I, let n; : B; x Bi — B; be Lipschtiz continuous with constant 6; > 0, and
let i : B — B; be n;-strongly monotone and Lipschtiz continuous with constant o; > 0 and p; > 0,
respectively. Let b; : B; x Bj — R satisfy the properties (i)—(iv). If Assumption 1.4 holds, then the
auxiliary problems P(x1,x2) have a unique solution.

Proof. For each i € I, define the mappings ¢;, ¢s; : B x B; — R by

$i(vi, zi) = (i(vi) — gi(xi) + p[Fi(x1, x2) — wi], i(vi, zi) ), + plbi(xi, vi) — bi(xi, zi)], 2.2)
wi(vi, zi) = (i(zi) — Gi(xi) + p[Fi(x1, x2) — w}|, mi(vi, zi) ), + plbi(xi, i) = bi(xi, z)], .
respectively.

We claim that the mappings ¢;, ¢s; satisfy all conditions of Lemma 1.6 in the weak
topology. Indeed, since g; is #;-strongly monotone with constant o; > 0 and Remark 1.5, it is
clear that ¢; and ¢; satisfy condition (i) of Lemma 1.6. Since the bifunction b; is convex in the
second argument and 7}; is affine in the second argument, it follows from Assumption 1.4 (3)
and Remark 1.1 (2) that z; — ¢i(vi, zi) is weakly upper semicontinuous. By Assumption 1.4
(1) and (2), and the property (ii) of b;, it is easy to prove that the set {v; € B; : ¢;(v;, z;) < 0}
is convex, hence the conditions (ii) and (iii) of Lemma 1.6 hold.

Let w; = 07" [6illgi(x:) — &i(0)|li + GipllFi(x1,x2) — willi + pyillxill:] and K; = {z; € B; :
llzilli £ wi}, then K; is a weakly compact subset of B;. For any z; € B; \ Kj, take v;, = 0 €
K;. From Assumption 1.4 (1), Remark 1.1 (1), Lipschitz continuity of 7;, and the #;-strongly
monotonicity of g;, we have

¥i(viy, zi) = ¢5i(0, z:)
= (gi(zi) = gi(xi) + p[Fi(x1, x%2) = w;], m:(0, z:) ), + p[bi(xi, 0) = bi(xi, zi)]
= —(£i(0) - i(zi),mi(0, i) ), — (gi(xi) — &i(0), 7:(0, z7)),

+ p([Fi(x1, x2) = w;],1i(0, i) ), + p[bi(xi, 0) — bi(x;, zi)]
< -aillzill? + 61| gi(xi) = &i(O) ||, 1zill; + Bip || Fi(x1, x2) — e

illzill; + pyillxillllz:ll;

= —0i||zi||i{ llz:ill; — O'i_l [5i||gi(xi) - gi(o)”i + 51‘P||Fi(x1/x2) - W?||i + PYi||xi||i] } <0.
(2.3)
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Therefore, the condition (iv) of Lemma 1.6 holds. By Lemma 1.6 there exists an z! € B; such
that ¢;(v;, z7) > 0 for all v; € B;, that is

(8i(i) = gi(xi) + p[Fi(x1, x2) — w}], i (vi, 27) ), + p[bixi, vi) — bi(xi,2])] 20 Vo; € B;.
(2.4)

For arbitrary t € (0,1] and v; € B;, let y;; = tv; + (1 - t)z}. Replacing v; by y;; in (2.4)
and utilizing Assumption 1.4 (1) and (2), Remark 1.5, and the property (ii) of b;, we obtain

0 <(gi(yit) = gi(xi) + p[Fi(x1, x2) = i ], mi(yie, 27) ); + p[bi(xi, yir) = bi(xi,27) ]
= —(8i(vir) = &i(xi) + p[Fi(x1, x2) = wi], 1 (2], yir) ); + p[0i (%0, yin) = bi(xi, 27)] (2.5)
< —t(gi(yir) — &i(xi) + p[Fi(x1, x2) — w}], mi(z},vi) ), + pt[bi(xi, vi) — bi(xi, 2])].

Hence, we derive

(8i(yir) = gi(xi) + p[Fi(x1, x2) = wi], mi(vi, 27) ), + p[bixi, vi) = bi(xi, 27)] 2 0. (2.6)
Lett — 0%, by the Lipschitz continuity of g;, we have

(8i(z}) - &i(xi) + p[Fi(x1, x2) — ], mi(vi, 27) ), + p[bi(xi, vi) — bi(xi, 2)] > 0. (2.7)
Therefore, (z}, z5) is a solution of the auxiliary problems P(x1, x2).

Now, let (z),z,) be another solution of the auxiliary problems P(x;,x;) which is
different from (z}, z3), then we have

(8i(z) — &i(xi) + p[Fi(x1,x2) = wi], mi(vi, 2}) ), + p[bi(xi, 03) = bi(xi, 2})] > 0. (2.8)
Taking v; = z; in (2.7) and v; = z} in (2.8) and adding these two inequalities, we obtain
(8i(z) = &i(2)), mi (2], 2))); 2 0. (2.9)
Since g; is 7;-strongly monotone, we obtain
aillz - =7 < (gi(=}) - &i(=0),mi(=5, ), <O, (2.10)

and so (z}, zy) = (2], z5). This completes the proof. O

By virtue of Theorem 2.2, we now construct an iterative algorithm for solving the
SGNMVLIP (1.1) and (1.2).

For given (x9,19) € Bi x By, from Theorem 2.2, we know that the auxiliary problems
P(x0,10) have a solution (x1,11) € By x By, that s,

(81(x1) = g1(x0) + p[F1(x0,y0) — wi], m1(v1,x1)), + p[b1(x0,v1) = bi(x0,x1)] 20 Vo1 € By,

(£2(y1) = &2(0) + p[F2(x0,y0) = W3], m2(v2,11) ), + p[b2(Y0,02) = b2(y0,y1)] 20 Yoz € By.
(2.11)
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Again by Theorem 2.2, the auxiliary problems P(x1,y1) have a solution (x3,1,) € By x B,, that
is,

(81(x2) = g1(x1) + p[F1(x1, 1) — wi], m1(v1,x2) ), + plb1(2x1,v1) — b1 (21, %2)] 20 Yoy € By,
(£2(12) = 2(y1) +p[F2(x1,11) = W3], m2 (02, y2) ), + p[02(y1,02) = b2(¥1,42)] 20 Yo, € By.
2.12)

By induction, we can get the iterative algorithm for solving the SGNMVLIP (1.1) and (1.2) as
follows.

Algorithm 2.3. For given (xo,Yo) € By x B, there exists a sequence {(x,, y,)} such that

(81(xne1) — g1(xn) + p[F1(Xn, Yn) — wi], 11(01, Xna1) ), + p[b1(2xn, v1) = b1 (X, Xns1)] = 0

Vv, € By;
(2.13)

(82(Yns1) — 82(yn) + p[F2(xn, Yu) — W31, 12(02, Yni1) )y + P [02(Yn, 02) = b2(Yn, Yui1)] 20
Voo,eB,, n=0,1,2,...,
(2.14)

where p > 0 is a constant.

3. Existence of Convergence Theorem

In this section, we will prove not only that the sequence {(x,, y,)} generated by Algorithm 2.3
converges strongly to (x*, y*), and also that (x*, y*) is a solution of SGNMVLIP (1.1) and (1.2).

Theorem 3.1. For each i € I, assume that the following conditions are satisfied:

(1) gi : Bi — B is n-strongly monotone and Lipschtiz continuous with constant o; > 0 and
ui > 0, respectively;

(2 : Bi x B; — B; is Lipschtiz continuous with constant 6; > 0;
(4
(5

) i

(3) Fi : By x By — B} is (A, &)-Lipschtiz continuous;
) Fi : By x By — B} is n;-strongly monotone in the ith argument with constant &; > 0;
) bi : Bi x B; — R satisfies the properties (i)—(iv).

If Assumption 1.4 holds and there exists a constant p > 0 such that
1
P, =20y - 4p_€1 [6%#? + p(‘)f‘ul)q + 2p261 (Yl + 61@1 + 261/\1)] >0,

3.1)
1
P2 = 20'2 - 4/7_82 [6%[1% + p6§‘ll2§2 + 2p2€2 (Yz + 6212 + 262(32)] > O,
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1 1 .
4_81 [6%[11/\1 + p(é%)»% + 281)/1)] + Ep/\262 < mln{Pl,PZ},
(3.2)
1 1 .
P, [5§ﬂ2§2 + P<5§§§ + 262}”2)] + §P§151 < min{Py, P},

then the sequence {(x,, y,)} generated by Algorithm 2.3 converges strongly to (x*, y*), and (x*,y*)

is a solution of SGNMVLIP (1.1) and (1.2).

Proof. For any (v1,v;) € By x By, it follows from Algorithm 2.3 that

(81(xn) — 1(xp-1) + p[F1(xn-1, Yn1) — Wi, m1(v1, X)), + p[b1(xp-1,01) = b1 (xp-1,%,)] 20,
(3.3)

(&2(¥n) = &2(yn1) + p[F2(xn-1, Yn-1) = W3], 112 (02, Yn) )y + P62 (Y1, 02) = b2 (Y1, Y) ] (23%

(81(xne1) = §1(xn) + p[F1(xXn, Yn) — wi], 11(01, Xna1) ), + p[b1(Xn, v1) = b1 (X, Xns1)] 20,
(3.5)

(2(yn+1) = &2(¥n) + p[F2(xn, Yn) = W3], M2(V2, Yns1) )y + P [02 (Y, 02) = b2 (Y, Y1) ] 2(2-6)

Taking v; = x541 in (3.3) and v; = x,, in (3.5), respectively, we get

(81(xn)=81(xn-1)+p [F1(Xn-1,Yn-1) — W3], 11 (Xns1, Xu) ), +p[b1 (X1, Xns1) =b1(xn-1, X4)] 20,
(3.7)
(81(xns1) — 81(xn) + p[F1(xn, Yn) — wi], M1 (Xn, Xps1) )y + pIb1 (X0, Xu) = b1 (X, Xps1)] 2 0.
(3.8)
Adding (3.7) and (3.8), we obtain

<gl (xn) - &1 (xn+1)r m (xnr xn+1)>1
< (g1 (xn-1) — §1(xn) = p[F1(xn-1, Yn-1) = F1 (X, Yn) |, 11 (X, X11) ), (3.9)

+plb1(xn = xn-1, Xn) = b1 (0 = Xp-1, Xp41) -
From conditions (1) and (2), we have

(g1(xn) = §1(na1), 11 (X, X))y > 0110 — XI5,
(81(xn-1) — 81(xn), M1 (%0, Xn11) )y = (81 (Xn-1) = §1(Xns1), M1 (X, Xni1) ), (3.10)
+ (81 (xn1) = g1(%n), 11 (Xn, Xn1) ), '

< 61/41||xn+1 - xn—1||1||xn+l - xn”l — 01| %ps1 — an%.
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From conditions (3) and (4), we obtain

<F1 (xn/ yn) - Fl (xn—ll yn—l)rrll (xnr xn+1)>1
= (F1(%n, Yn) = F1(Xns1, Yn-1), 11 (X, Xni1) ),
+ (F1 (%41, Yno1) = F1 (n-1, Yno1), 11 (X, Xn1) ),

(3.11)
+ (F1 (%1, Yno1) = F1(%n1, Yno1), 11 (Xnm1, Xna1) )4
< 81hallxnet = xallf + S1&1l1xne1 = Xnlly ||y = Yt ||,
+ 61)l1||xn+1 - xn—l”l”-xn - xn—l”l - 51||xn+1 - xn%“%'
From condition (5) and Remark 1.1 (2), we have
b1 (Xn = Xn-1,%n) = b1(Xn = Xp-1, Xp11) < Y1l X1 = Xnlly 160 = Xnally (3.12)
Therefore, from (3.9)—(3.12), we derive
(201 - p61A1) |2¢n = Xnaa I
< —perllxnin = xp-1 1T + [B1pallxner — xally + pE1 M 1|3n — Xl ] 1%ns1 — Xncally
+p61é1l|xns1 — xnlly ”yn ~ Yn ”2 +pnllxns = xally 160 = xn-1lly
< ey [l =l + pBralln = a1 ]
+ pO181l[xn+1 — xully ”yn ~ Yn ”2 + pyillxnr — xally 1260 = xn-1lly
61p poiM 2 (3.13)
E” nel = Xnll] + T”xn Xnlly
5%#1)%
+ 261 +pY1 12041 = Xnll1 1130 = Xn-1lly + pO1é1[|12X001 _xn”1”yn _]/n—1||2
2
S Tper [51#1 +pSiuihs +2p%: (11 + 51@1)] llo6n+1 = xnll1
S [62ms +p(8323 + 261 | lvw = x0a I} + L oSt llyn -
45 [ ™M 1t5
which implies
2 2 2
P1||xn - xn+1“1 < Ql“xn - xn—l”l + Rl ”yn - yn—1||2, (314)

where Q1 = (1/4€1)[65 1My + p(67A] + 2e111)], R1 = (1/2)pbiéa.
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Taking v, = Y41 in (3.4) and v, = y, in (3.6), respectively, we get

(82(¥n) =82 (Yn-1) +p [F2 (xn-t, Y1) = @3], 112 (Yns1, Y) )+ [02 (Y1, Y1) =02 (Y1, Yn) ] 20,
(&2(¥n+1) = 82(yn) + p[F2 (%, Yn) = @3], 12 (Y, Yns1) )y + P02 (Yns Yn) = b2 (Y, Yns1)] 2 0.

(3.15)
Adding (3.15), we obtain
(82(yn) = &2(yne1), M2 (Y, Y1),
<{(&2(yn-1) = &2(yn) = p[F2(xn-1,Yn-1) = F2(Xn, Yn) |, 12 (Y Yns1) ) (3.16)

+p[b2(Yn = Yn-1,Yn) = b2(Yn — Yn-1, Yni1)]-

From conditions (1) and (2), we have

(22(yn) = &2 (Y1), 12 (Yo Y1)y 2 02| Y = Yo |3,
(£2(n-1) = ©2(Yn), 2 (Y, Yns1) Yo = (£2(Yn1) = &2(Yn1), 12 (Y Yns1) )
+ (2 (Yn+1) = &2(Yn), 12 (Yn, Yns1) ),

< Eapio|| Yt = Ynr ||o | yner = Yall, — 02 || Y1 — ]/n||§-

(3.17)
From conditions (3) and (4), we obtain
(F2(xn, Yn) = F2(%n-1, Yn-1), 12 (Yn, Yns1) ),
= (F2(xn, Yn) = F2(Xn-1, Y1), 12 (Yns Yns1) ),
+ (Fa (xu-1, Yne1) = Fo (n1, Yn1), 12 (Y, Yn1) ),
(3.18)

+ (F2 (%1, Yns1) = F2(Xn-1, Yn-1), 12(Yn-1, Yns1) ),
< 6282 | Va1 — yn||§ + 6202 || Y1 = Y |50 = xnally

+ 62821yt = Yo [ [y = vt 5 = 2| Ymer = yacr |15
From condition (5) and Remark 1.1 (2), we have

b2 (Yn = Yn-1,Yn) = b2(Yn = Yn-1, Yne1) < V2l|Vne1 = Yl llyn — Y ||- (3.19)
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Therefore, from (3.16)—(3.19), we derive

(202 = p6282) | Yn = Y |I3

< —pea||yue1 = Yuar |3 + [6242]| Yt = Yl + pE222 || Y = Yer [lo] | Yot = Y ||

+ p6212 || Yt = Yl n = Xncally + p12||Yner = Y|y |y = yua |l

1
< Tp [Batallynes =yl + pBaal|yn - yo I,]?

+ P62-)L2”]/n+1 - ]/n”z”xn - xn—l”l + PY2||]/n+1 - ]/n||2||]/n — Yn-1 ”2

5%#% 2 P5§§§ 2
= %”ynﬂ - yn||z + 4e, llyn - yn—1||z
&3p2én
* [227 P12 | [Yner =yl Y = yn-all, + pO2 2|y =yl ln = xcaly

< 4/)%2 [6§y§ + pBypads +2p7er (12 + 5212)] Y1 = yall3
+ 12z [Botate + p(838 + 26072) v = s [+ 5p8aal — o,
which implies
Po[yn = yusa |13 < Qalyn = yanr I3 + Rellta = xaa I,

where Q, = (1/46:)[65p2é2 + p(6383 + 2e272)], Ro = (1/2)p6ahs.
Adding (3.14) and (3.21), we have

Pl = Xt I3 + Pal| Y = Ymst |5 < (Q1 + Ro)lIxn = Xt I} + (Q2 + R0 || Y = Y ||5-

Define the norm || - ||, on B; x B; by

Il(w,0)|l, =\ llull; +lol3 Y(u,0) € By x By,

it is easy to prove that (B x By, || - ||«) is a Banach space.
From (3.22), by conditions (3.1), we have

|| (xn+1/ yn+1) - (xn/ yn) ”i S max{@l, 62 } ” (xnr yn) - (xn—l/ yn—l)

11

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

where 01 = (Q1 + Rp)/ min{ Py, P>}, 6, = (Q2 + Ry)/ min{ Py, P,}. From condition (3.2), which
implies 01,6, € (0,1), hence {(x,,y,)} is a cauchy sequence, let (x,, y,) — (x*,y*) (n — o).
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By the Lipschitz continuities of 77; and g, and x, — x* (n — o), we have

[(81(xns1) = 81(xXn), 11 (01, Xns1) ), | € G1piallner = Xullillor = Xpaall; — 0 as n — oo.
(3.25)

Since F is (A1, ¢1)-Lipschitz, x, — x* (n — oo0) and y, — y* (n — o), then we obtain

[(F1(2n, Yn) = i, (01, Xn1) )y = (F1(x", y") = wy, mi(v1,x7)), |
< [{Fr(xn yn) = Fr(x", y7), mi(o1, X))y | + [(F1 (3%, ") = @], (o1, xnia) = mi (o1, x7)), |
<1 (allxn = X[y + &llyn =y [l )l = xnaaly
+61||F1(x*, y*) —wi|| I%p —x*|l; — 0 as n — oo.
(3.26)

From condition (5) and Remark 1.1 (2), we have

|1 (%0, Xpa1) — b1 (X", x*)| < |b1(xp, Xps1) — b1 (%, X¥)| + b1 (20, X°) — by (x*, x7)|
<nillxally e = 2"y + b1 (3, = x7, x7)|

S1illxallillnsn ="My +yallen = x4 Ix7fl; — 0 as n — oo.

(3.27)
Hence, asn — oo in (2.13), we obtain
(F1(x*,y*) —wi, m(v1, x%)), + bi(x*,01) = b1 (x*,x*) 20 Vo; € By. (3.28)
It is similar as above, we can obtain
(F2(x*,y*) - wi,ﬂz(Uz,y*»z +b (v, v2) -ba(y',y*) 20 Vo, € By. (3.29)
Therefore, (x*, y*) is a solution of SGNMLVIP (1.1) and (1.2). O

Example 3.2. Let B; = B, = L*[0,1] = {x : [0,1] — R | x be Lebesgue measurable and
f; x%(t)dt < +oo}, then the dual space B} = B; = L?[0,1]. For each x € B;, (x,y) € By x By, let
the norm ||x|| = (fol x2(t)dt)'/?, and the inner product (x,y) = fol x(H)y(t)dt.

For each i € I, let the mappings F; : B x B, — B, 7n;: B;x B; — B;, b; : Bix B; — R,
gi : Bi — B!, be defined as for any (x,y) € By x By, (x',y') € B; x B;, z € B;,

Fi(x,y) = 19x + arctanx — v, F>(x,y) =19y + arctany — x;
! ! 9 ! !
ni(x,y') = 3¢ =v); (3.30)

bi(x',y') = é(x',y’), Qi(z) = 21—0(192 + arctan z),
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respectively, then we have

(1) F; is Lipschitz continuous with constant (11, ¢1) = (20, 1) and #;-strongly monotone
in the first argument with constant &; = 18;

(2) F; is Lipschitz continuous with constant (13, &) = (1,20) and #;-strongly monotone
in the second argument with constant &, = 18§;

(3) for each i € I, n; is Lipschitz continuous with constant §; = 9/10;
(4) for each i € I, b; satisfy properties (i)—(iv) with constant y; = 1/5;

(5) for each i € I, g; is Lipschitz continuous with constant y; = 1 and 7;-strongly
monotone with constant o; = 9/10.

After simple calculations, conditions (3.1) and (3.2) imply that p € (0.01,0.047).

Remark 3.3. Example 3.2 shows that the constant p which satisfies the conditions (3.1) and
(3.2) can be obtained.
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