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This paper studies the problems of global exponential robust stability of high-order hopfield neural
networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and
linear matrix inequality, some criteria of global exponential robust stability for the high-order
neural networks are established, which are easily verifiable and have a wider adaptive.

1. Introduction

Hopfield neural networks (HNNs) with time delays and their various generalization have
been successfully employed in many areas such as pattern recognition, associate memory,
and combinatorial optimization (see [1–11]). Recently, the dynamics of high-order Hopfield
neural networks (HOHNNs)with time delays have been considerable attention (see [12–18]),
due to the neural networks have stronger approximation properties, faster convergence rate,
greater storage capacity, and higher fault tolerance than lower order neural networks (see
[12]). So, the stability of HOHNNs with time delays should be a focused topic of theoretical
as wells as practical importance. This paper studies the problems of global exponential robust
stability of high-order hopfield neural networks with time-varying delays. This paper is also
an extension of our previous work [19]. By employing a new Lyapunov-Krasovskii functional
and linear matrix inequality, some criteria of global exponential robust stability for the high-
order neural networks are established, which are easily verifiable and have a wider adaptive.
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2. Model Description and Preliminaries

We consider the following HOHNNs with time-varying delays:

dui(t)
dt

= −aiui(t) +
n∑

j=1

Wijfj
(
uj(t)

)
+

n∑

j=1

Tijgj
(
uj(t − τ(t))

)

+
n∑

j=1

n∑

l=1

Tijlgj
(
uj(t − τ(t))

)
gl(ul(t − τ(t))) + Vi,

ui(t0 + θ) = ξi(θ), −τ0 ≤ θ ≤ 0, i = 1, . . . , n,

0 ≤ τ(t) ≤ τ0, ai ≤ ai, Wij ≤ Wij ≤ Wij, T ij ≤ Tij ≤ Tij ,

T ijl ≤ Tijl ≤ Tijl, V i ≤ Vi ≤ V i, i, j, l = 1, . . . , n,

(2.1)

where u(t) = (u1(t), . . . , un(t))
T ∈ Rn, ai > 0, Wij , fj , gj , Vi have the same meanings as those

in [13], Tij , Tijl are the first- and second-order synaptic weights of the system (2.1) (see [12]).
In this paper, the superscript “T” presents the transpose.
We assume throughout that the neuron activation functions fj(uj), gj(uj), j = 1, . . . , n,

satisfy the following conditions:

(H1) :
∣∣gj
(
uj

)∣∣ ≤ Mj, 0 ≤
∣∣fj
(
uj

) − fj
(
vj

)∣∣
∣∣uj − vj

∣∣ ≤ l0j , 0 ≤
∣∣gj
(
uj

) − gj
(
vj

)∣∣
∣∣uj − vj

∣∣ ≤ l1j ,

∀uj /=vj , uj , vj , l0j , l1j ∈ R.

(2.2)

From (2.2), we know

∣∣∣f
(
u1
)
− f
(
u2
)∣∣∣ ≤

∣∣∣L0

(
u1 − u2

)∣∣∣,
∣∣∣g
(
u1
)
− g
(
u2
)∣∣∣ ≤

∣∣∣L1

(
u1 − u2

)∣∣∣, ∀u1, u2 ∈ Rn,

(2.3)

where ui = [ui1, . . . , uin]
T ∈ Rn, f(ui) = [f1(ui1), f2(ui2), . . . , fn(uin)]

T , g(ui) =
[g1(ui1), g2(ui2), . . . , gn(uin)]

T , i = 1, 2. L0 = diag(l01, l02, . . . , l0n), and L1 = diag(l11, l12, . . . , l1n).
If there is an equilibrium point u∗ = [u∗

1, . . . , u
∗
n]

T of system (2.1), we can rewrite system
(2.1) as the following equivalent form:

d
(
ui(t) − u∗

i

)

dt
= −ai

(
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n∑

j=1

(
Tij +
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(
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ui(t0 + θ) = ξi(θ), −τ0 ≤ θ ≤ 0, i = 1, . . . , n.

0 ≤ τ(t) ≤ τ0, ai ≤ ai, Wij ≤ Wij ≤ Wij, T ij ≤ Tij ≤ Tij ,

T ijl ≤ Tijl ≤ Tijl, i, j, l = 1, . . . , n,

(2.4)

where ζl = (1/2)(gl(ul(t − τ(t))) + gl(u∗
l
)) and |ζl| ≤ Ml.

We easily obtain that system (2.4) is equivalent to system (2.1) (see [13]).
The notations in this paper are quite standard:

(i)

||u(t)|| =
(

n∑

i=1

|ui(t)|2
)1/2

, (2.5)

where |ui(t)| denotes Euclid’s norm.

(ii) A = (aij)n×n > 0(< 0): a positive (negative) definite matrix, that is, xTAx > 0(< 0)
for any x ∈ Rn.

(iii) A = (aij)n×n ≥ 0: a semipositive definite matrix, that is, xTAx ≥ 0 for any x ∈ Rn.

(iv) A ≥ B (resp., A > B): this means A − B is a semi-positive definite matrix (resp.,
positive definite).

(v) I: identity matrix with compatible dimension.

(vi) I◦ = (1, 1, . . . , 1)T .

(vii) λmax(A) (resp., λmin(A))means the largest (resp., smallest) eigenvalue of the matrix
A.

(viii) C([−τ0, 0], Rn) denotes a set of continuous functions.

Let u(t, ξ) = [u1(t, ξ), . . . , un(t, ξ)]
T denote the solution u(t, ξ) to system (2.1) from the initial

data u(t0 + θ, ξ) = ξ(θ) on −τ0 ≤ θ ≤ 0 in ξ(θ) ∈ C([−τ0, 0], Rn).

Definition 2.1. The equilibrium point u∗ of system (2.1) is called globally exponentially
robustly stable on norm ‖ · ‖, if for any ξ(θ) ∈ C([−τ0, 0], Rn) there exist scalars, J > 0 and
α > 0 such that the solution u(t, ξ) to system (2.1) with the initial condition u(t0 + θ, ξ) = ξ(θ)
on −τ0 ≤ θ ≤ 0 satisfies

‖u(t, ξ) − u∗‖2 ≤ Je−αt sup
−τ0≤θ≤0

‖ξ(θ) − u∗‖2. (2.6)

Lemma 2.2 (see [20]). The LMI

[
Q(t) S(t)

ST (t) R(t)

]
> 0, (2.7)
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where Q(t) = QT (t), R(t) = RT (t), and S(t) depend on t, is equivalent to any one of the following
conditions:

(K1), R(t) > 0, Q(t) − S(t)R−1(t)ST (t) > 0;

(K2), Q(t) > 0, R(t) − ST (t)Q−1(t)S(t) > 0.
(2.8)

Lemma 2.3 (see [20]). Let x ∈ Rn, y ∈ Rn, and ε > 0. Then, one has

xTy + yTx ≤ εxTx + ε−1yTy. (2.9)

3. Main Results

Let

M = [M1,M2, . . . ,Mn]T , Γ = diag(M,M, . . . ,M), ζ = [ζ1, ζ2, . . . , ζn]
T ,

Π = diag(ζ, ζ, . . . , ζ), A = diag
(
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)
, W =

(
Wij

)
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)
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(
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(
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n×n

TH =
(
T1 + TT

1 , T2 + TT
2 , . . . , Tn + TT

n

)T
n2×n

,

T+
H =

(
T+
1 +
(
TT
1

)+
, T+

2 +
(
TT
2

)+
, . . . , T+

n +
(
TT
n

)+)T
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,

TH =
(
T1 + T

T

1 , T2 + T
T

2 , . . . , Tn + T
T

n

)T
n2×n

,

WΠ = T + ΠTTH, WΠ = T + ΠTTH.

(3.1)

For the purpose of simplicity, we rewrite the system (2.4) as the following vector form:

dy

dt
= −Ay(t) +WF0

(
y(t)
)
+
(
T + ΠTTH

)
F1
(
y(t − τ(t))

)

y(t0 + θ) = ϕ(θ), −τ0 ≤ θ ≤ 0, 0 ≤ τ(t) ≤ τ0,

ai ≤ ai, Wij ≤ Wij ≤ Wij, T ij ≤ Tij ≤ Tij ,

T ijl ≤ Tijl ≤ Tijl, i, j, l = 1, . . . , n,

(3.2)
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where y = y(t) = u(t, ξ(θ)) − u∗ for any ξ(θ) ∈ C([−τ0, 0], Rn), F0(y(t)) = f(y(t) +
u∗) − f(u∗), f(y(t) + u∗) = [f1(y1(t) + u∗

1), f2(y2(t) + u∗
2), . . . , fn(yn(t) + u∗

n)]
T ,F1(y(t − τ(t))) =

g(y(t − τ(t)) + u∗) − g(u∗), g(y(t − τ(t)) + u∗) = [g1(y1(t − τ(t)) + u∗
1), g2(y2(t − τ(t)) +

u∗
2), . . . , gn(yn(t − τ(t)) + u∗

n)]
T , ϕ(θ) = ξ(θ) − u∗, ξ(θ) = (ξ1(θ), . . . , ξn(θ))

T .

Theorem 3.1. Given a positive definite matrix Q = LT
1L1 > 0. The equilibrium of system (2.1) is

globally exponentially robustly stable on norm ‖ · ‖ for any τ(t) satisfying τ̇(t) ≤ η < 1, if system
(2.1) satisfies (H1) and

(H2) : C = A −W+L0 −W+
ΓL1

is M-matrix,
(3.3)

whereW+
Γ = T+ + ΓTT+

H , and

(H3) :

⎡
⎢⎢⎢⎢⎢⎢⎣

Λ L0 βW
T

βW
T

Π

LT
0 −I 0 0

βW 0 −I 0

βWΠ 0 0 −(1 − η
)
I

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 0, (3.4)

whereWΠ = T + ΠTTH , and Λ = β(αI − 2A) + eατ0Q, β > 0.

Proof of Theorem 3.1. Let

hi(ui, Vi) = aiui −
n∑

j=1

Wijfj
(
uj

) −
n∑

j=1

Tijgj
(
uj

)

−
n∑

j=1

n∑

l=1

Tijlgj
(
uj

)
gl(ul) + Vi = 0, i = 1, . . . , n.

(3.5)

It is obvious that the solutions to (3.5) are the equilibrium points of system (2.1).
Let us define homotopic mapping as follows:

H(u, λ) = (H1(u1, λ), . . . ,Hn(un, λ))
T , (3.6)

where

Hi(ui, λ) = λhi(ui, Vi) + (1 − λ)ui, λ ∈ [0, 1]. (3.7)

By homotopy invariance theorem (see, [21]), topological degree theory (see, [22]),
(H1)-(H2), and the proof which is similar to Theorem 3.1 in [23], we can conclude that (3.5)
has at least one solution. That is, system (2.1) has at least an equilibrium point.
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3.1. Part 2- Globally Exponentially Stable

Define a Lyapunov-Krasovskii functional candidate by

V
(
y(t)
)
= βeαtyT (t)y(t) + eατ0

∫ t

t−τ(t)
eαθyT (θ)Qy(θ)dθ > 0, (3.8)

where Q = QT > 0.
From system (3.2), its Dini derivative can be calculated as

D+V
(
y(t)
)
= eαt

[
αβyT (t)y(t) + yT (t)

(
−βAT − βA

)
y(t)

+ β
(
FT
0
(
y(t)
)
WTy(t) + yT (t)WF0

(
y(t)
))

+ βFT
1

(
y(t − τ(t))

)(
T + ΠTTH

)T
y(t)

+yT (t)
(
T + ΠTTH

)
F1
(
y(t − τ(t))

)]

+ eατ0
[
eαtyT (t)Qy(t) − eα(t−τ(t))yT (t − τ(t))Qy(t − τ(t))(1 − τ̇(t))

]
.

(3.9)

Since 0 ≤ τ(t) ≤ τ0, τ̇(t) ≤ η < 1, and Q = LT
1L1 > 0, we have

−eατ0eα(t−τ(t))yT (t − τ(t))Qy(t − τ(t))(1 − τ̇(t)) ≤ −eαtyT (t − τ(t))Qy(t − τ(t))
(
1 − η

)
,

(3.10)

From Lemma 2.3 and (2.3), we have

eαtβ
(
FT
0
(
y(t)
)
WTy(t) + yT (t)WF0

(
y(t)
))

≤ eαtβ

(
βyT (t)WWTy(t) +

1
β
FT
0
(
y(t)
)
F0
(
y(t)
))

≤ eαtyT (t)
(
β2WWT + LT

0L0

)
y(t) ≤ eαtyT (t)

(
β2W W

T
+ LT

0L0

)
y(t),

eαtβ

(
FT
1

(
y(t − τ(t))

)(
T + ΠTTH

)T
y(t) + yT (t)

(
T + ΠTTH

)
F1
(
y(t − τ(t))

))

≤ eαtβ

((
1 − η

β

)−1
yT (t)WΠW

T
Πy(t) +

1 − η

β
FT
1

(
y(t − τ(t))

)
F1
(
y(t − τ(t))

)
)

≤ eαt
(

β2

1 − η
yT (t)WΠW

T
Πy(t) +

(
1 − η

)(
yT (t − τ(t))Qy(t − τ(t))

))

≤ eαt
(

β2

1 − η
yT (t)WΠW

T

Πy(t) +
(
1 − η

)(
yT (t − τ(t))Qy(t − τ(t))

))
.

(3.11)
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In view of Q > 0, τ̇(t) ≤ η < 1, (3.8)–(3.11), and (H3), it follows from Lemma 2.2 that

D+V
(
y(t)
) ≤ eαtyT (t)

(
β(αI − 2A) + eατ0Q

+β2
(
W W

T
+

1
1 − η

WΠW
T

Π

)
+ LT

0L0

)
y(t) ≤ 0.

(3.12)

From (3.12), we have

V
(
y(t)
) ≤ V

(
y(t0)

)
. (3.13)

From (3.9) and (3.13), we can know that the solution y(t) to system (3.2) satisfies

eαtβ
∥∥y(t)

∥∥2 = eαt
(
βyT (t)y(t)

)
≤ V
(
y(t)
) ≤ V

(
y(t0)

)

≤
(
β +

1
α
(eατ0 − 1)λmax(Q)

)
sup

−τ0≤θ≤0

∥∥ϕ(θ)
∥∥.

(3.14)

So,

‖u(t, ξ) − u∗‖2 ≤ Je−αt sup
−τ0≤θ≤0

‖ξ(θ) − u∗‖2, (3.15)

where J = 1 + 1/αβ(eατ0 − 1)λmax(Q), for any ξ(θ) ∈ C([−τ0, 0], Rn).
If there exists another equilibrium u∗∗ = [u∗∗

1 , u∗∗
2 , . . . , u∗∗

n ]T of system (2.1), we have
|u∗

i − u∗∗
i | ≤ |ui(t, ξ) − u∗

i | + |ui(t, ξ) − u∗∗
i | → 0, t → ∞, i = 1, . . . , n.

From the above proof, the system (2.1) has a unique equilibrium point u∗, which is
globally exponentially robustly stable. Theorem 3.1 is proved.

Remark 3.2. When ai = ai > 0, bij = bij = bij , wij = wij = wij , w
(k)
ijl

= w
(k)
ijl

= w
(k)
ijl

, V i = Vi = V i,
the system (2.1) becomes to system in [12, 14]. So, the system in [12, 14] is special case of
system (2.1).

4. Conclusion

We have investigated global exponential robust stability of high-order hopfield neural
networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional
and linear matrix inequality, some criteria of global exponential robust stability for the neural
networks are established, which are easily verifiable.The systems found in the literature are
special cases of the system (2.1). So the problem addressed in this paper should be a focused
topic of theoretical as well as practical importance.
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