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The main purpose of this paper is to obtain the unique solution of the constant coefficient
homogeneous linear fractional differential equations Dq

t0
X(t) = PX(t), X(a) = B and the constant

coefficient nonhomogeneous linear fractional differential equationsDq
t0
X(t) = PX(t) +D,X(a) = B

if P is a diagonal matrix and X(t) ∈ C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T] and prove the
existence and uniqueness of these two kinds of equations for any P ∈ L(Rm) and X(t) ∈
C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T]. Then we give two examples to demonstrate the main
results.

1. Introduction

System of fractional differential equations has gained a lot of interest because of the
challenges it offers compared to the study of system of ordinary differential equations.
Numerous applications of this system in different areas of physics, engineering, and
biological sciences have been presented in [1–3]. The differential equations involving the
Riemman-Liouville differential operators of fractional order 0 < q < 1 appear to be
more important in modeling several physical phenomena and therefore seem to deserve an
independent study of their theory parallel to the well-known theory of ordinary differential
equations. The existence and uniqueness of solution for fractional differential equations with
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any X(t) ∈ C[t0, T] ×C[t0, T] × · · · ×C[t0, T] have been studied in many papers, see [4–28]. In
[4] Daftradar-Gejji and Babakhani have studied the existence and uniqueness of

D
q

0(X(t) −X0) = PX(t), (1.1)

where D
q

0 denotes the standard Riemman-Liouville fractional derivative, 0 < q < 1, X(t) =
(x1(t), x2(t), . . . xm(t))

T , X(0) = X0 = (x10, x20, . . . , xm0)
T , P ∈ L(Rm) which is an m

dimensional linear space. They have obtained that the system (1.1) has a unique solution
defined on [0,T] if P ∈ L(Rm) and X(t) ∈ C[t0, T] × C[t0, T] × · · · × C[t0, T]. In [17] Belmekki
et al. have studied the existence of periodic solution for some linear fractional differential
equation in C1−q[0, 1]. In [21] Ahmad and Nieto have studied the Riemann-Liouwille
fractional differential equations with fractional boundary conditions. In comparison with the
earlier results of this type we get more general assumptions. We assume X(t) ∈ C1−q[t0, T] ×
C1−q[t0, T] × · · · × C1−q[t0, T] instead of X(t) ∈ C[t0, T] × C[t0, T] × · · · × C[t0, T] and consider
the following system of fractional differential equations:

D
q
t0
X(t) = PX(t), X(a) = B,

D
q
t0
X(t) = PX(t) +D, X(a) = B,

(1.2)

where D
q

0 denotes the standard Riemman-Liouville fractional derivative, 0 < q < 1, P ∈
L(Rm),

X(t) ∈ C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T], (1.3)

(a, B) ∈ (t0, T]×Rm andD is a constant vector. We completely generalize the results in [4] and
obtain the new results ifX(t) ∈ C1−q[t0, T]×C1−q[t0, T]×· · ·×C1−q[t0, T]. Furthermore, we also
obtain some results of the unique solution of the homogeneous and nonhomogeneous initial
value problems with the classical Mittag-Leffler special function [5] which is similar to the
ordinary differential equations. Now we introduce the first Mittag-Leffler function eq(t − t0)
defined by

eq(t − t0) =
+∞∑

k=1

(t − t0)kq−1

Γ
(
kq
) . (1.4)

The function eq(t − t0) belongs to C1−q[t0, T]. Indeed, taking the norm in C1−q[t0, T], we have

∥∥eq(t − t0)
∥∥
1−q ≤

+∞∑

k=1

(T − t0)(k−1)q

Γ
(
kq
) < +∞. (1.5)
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The formula remains valid for q → 1−. In this case, e1(t − t0) = exp(t − t0). Then we introduce
the second Mittag-Leffler function Eq(t − t0) defined by

Eq(t − t0) =
+∞∑

k=1

(t − t0)kq

Γ
(
kq + 1

) . (1.6)

The formula remains also valid for q → 1−. In this case, E1(t − t0) = exp(t − t0) − 1.
The paper is organized as follows. In Section 2 we recall the definitions of fractional

integral and derivative and related basic properties and preliminary results used in the text.
In Section 3 we obtain the unique solution of the constant coefficient homogeneous and
nonhomogeneous linear fractional differential equations for P being the diagonal matrix. In
Section 4 we prove the existence and uniqueness of these two kinds of equations for any
P ∈ L(Rm). In Section 5 we give some specific examples to illustrate the results.

2. Definitions and Preliminary Results

Let us denote by C[t0, T] the space of all continuous real functions defined on [t0, T], which
turns out to be a Banach space with the norm

‖x‖ = max
t∈[t0,T]

|x(t)|. (2.1)

We define similarly another Banach space C1−q[t0, T], in which function x(t) is
continuous on (t0, T] and (t − t0)

1−qx(t) is continuous on [t0, T]with the norm:

‖x‖1−q = max
t∈[t0,T]

(t − t0)1−q|x(t)|. (2.2)

L[t0, T] is the space of real functions defined on [t0, T] which are Lebesgue integrable
on [t0, T].

Obviously C1−q[t0, T] ⊂ L(t0, T).
The definitions and results of the fractional calculus reported below are not exhaustive

but rather oriented to the subject of this paper. For the proofs, which are omitted, we refer the
reader to [6] or other texts on basic fractional calculus.

Definition 2.1 (see [6]). The fractional primitive of order q > 0 of function x(t) ∈ C1−q[t0, T] is
given by

I
q
t0
x(t) =

1
Γ
(
q
)
∫ t

t0

(t − s)q−1x(s)ds. (2.3)

From [17] we know I
q
t0
x(t) exists for all q > 0, when x ∈ C1−q[t0, T]; consider also that

when x ∈ C[t0, T] then I
q
t0
x(t) ∈ C[t0, T] and moreover

I
q
t0
x(t0) = 0. (2.4)
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Definition 2.2 (see [6]). The fractional derivative of order 0 < q < 1 of a function x(t) ∈
C1−q[t0, T] is given by

D
q
t0
x(t) =

1
Γ
(
1 − q

)
d

dx

∫ t

t0

(t − s)−qx(s)ds. (2.5)

We have Dq
t0
I
q
t0
x(t) = x(t) for all x(t) ∈ C1−q[t0, T].

Lemma 2.3 (see [6]). Let 0 < q < 1. If one assumes x(t) ∈ C1−q[t0, T], then the fractional differential
equation

D
q
t0
x(t) = 0 (2.6)

has x(t) = c(t − t0)
q−1, c ∈ R, as solutions.

From this lemma we can obtain the following law of composition.

Lemma 2.4 (see [6]). Assume that x(t) ∈ C1−q[t0, T] with a fractional derivative of order 0 < q < 1
that belongs to C1−q[t0, T]. Then

I
q
t0
D

q
t0
x(t) = x(t) + c(t − t0)q−1, (2.7)

for some c ∈ R. When the function x is in C[t0, T], then c = 0.

Lemma 2.5 (see [6]). Let U be a nonempty closed subset of a Banach space E, and let αn ≥ 0 for
every n and such

∑∞
n=0 αn converges. Moreover, let the mapping A : U → U satisfy the inequality

‖Anu −Anv‖ ≤ αn‖u − v‖, (2.8)

for every n ∈ N and any u, v ∈ U. Then, A has a uniquely defined fixed point u∗. Furthermore, for
any u0 ∈ U, the sequence (Anu0)

∞
n=1 converges to this fixed point u∗.

Lemma 2.6 (see [12]). Let P ∈ L(Rm) and have real eigenvalues λ1, λ2, . . . , λr . Then there exists a
basis of Rm in which the matrix representation of P assumes Jordan form, that is, the matrix of P is
made of diagonal blocks of the form diag(J1, J2, . . . , Jr), where each Ji consists of diagonal blocks of the
form
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⎛
⎜⎜⎜⎜⎜⎜⎝

λi 0 · · · 0 0
1 λi · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λi

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.9)

Lemma 2.7 (see [12]). Let P ∈ L(Rm) and have complex eigenvalues μj = αj + iβj , j = 1, 2, . . . , r,
with multiplicity. Then there exists a basis of Rm, where P has matrix form diag(Ĵ1, Ĵ2, . . . , Ĵr), where
each Ĵi consists of diagonal blocks of the type

⎛
⎜⎜⎜⎜⎜⎜⎝

D 0 · · · 0 0
I2 D · · · 0 0
0 I2 · · · 0 0
...

...
. . .

...
...

0 0 · · · I2 D

⎞
⎟⎟⎟⎟⎟⎟⎠

, D =
(
αi −βi
βi αi

)
, I2 =

(
1 0
0 1

)
. (2.10)

Lemma 2.8 (see [12]). Let P ∈ L(Rm). Then Rm has a basis giving P a matrix representation
composed of diagonal blocks of type Ji and/or matrices Ĵi, where Ji and Ĵi are as defined in the preceding
lemmas.

Now, we will introduce Lemma 2.9 to prove the following Theorem 4.4 in Section 4.

Lemma 2.9. Let 0 < q < 1. Assume that x(t) and f(t) belong to C1−q[t0, T]. Then For the initial
value problem

D
q
t0
x(t) = λx(t) + f(t), x(a) = b (2.11)

has a unique solution x(t) ∈ C1−q[t0, T] provided t0 < a < a0, where a0 is a suitable constant
depending on t0, q, and λ.

Proof. The initial value problem (2.11)will be solved in two steps.

(1) Local existence.

Our problem is equivalent to the problem of determination of fixed points of the
following operator:

Ax(t) = c(t − t0)q−1 +
1

Γ
(
q
)
∫ t

t0

(t − s)q−1
(
λx(s) + f(s)

)
ds, (2.12)

with

c =

(
b − 1

Γ
(
q
)
∫a

t0

(a − s)q−1
(
λx(s) + f(s)

)
ds

)
(a − t0)1−q. (2.13)
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It is immediate to verify that A : C1−q[t0, T] → C1−q[t0, T] is also well defined.
Indeed,

∣∣∣(t − t0)1−qAx(t)
∣∣∣

≤ |λ|
∣∣∣∣∣

1
Γ
(
q
)
∫ t

t0

(t − s)q−1(s − t0)q−1(s − t0)1−qx(s)ds

∣∣∣∣∣

+

∣∣∣∣∣
1

Γ
(
q
)
∫ t

t0

(t − s)q−1(s − t0)q−1(s − t0)1−qf(s)ds

∣∣∣∣∣

≤ |c| + |λ|‖x‖1−q
∣∣∣Iq(t − t0)q−1

∣∣∣ +
∥∥f
∥∥
1−q
∣∣∣Iq(t − t0)q−1

∣∣∣

≤ |c| + |λ|‖x‖1−q
Γ
(
q
)

Γ
(
2q
) (t − t0)q +

∥∥f
∥∥
1−q

Γ
(
q
)

Γ
(
2q
) (t − t0)q ,

(2.14)

for x(t) and f(t) belong to ∈ C1−q[t0, T].

Then we can also prove A is a contraction operator. Indeed,

(t − t0)1−q
∣∣Ax(t) −Ay(t)

∣∣ ≤ |λ| Γ
(
q
)

Γ
(
2q
) (a − t0)q

∥∥x − y
∥∥
1−q + |λ| Γ

(
q
)

Γ
(
2q
) (t − t0)q

∥∥x − y
∥∥
1−q

≤ |λ| Γ
(
q
)

Γ
(
2q
) (a − t0)q

∥∥x − y
∥∥
1−q + |λ| Γ

(
q
)

Γ
(
2q
) (T − t0)q

∥∥x − y
∥∥
1−q ,

(2.15)

for all x(t), y(t) ∈ C1−q[t0, T]. Let us assume

|λ| Γ
(
q
)

Γ
(
2q
) (a − t0)q <

1
2
, (2.16)

that is,

a < a0 =

(
Γ
(
2q
)

2|λ|Γ(q)
)1/q

+ t0. (2.17)

Taking T − a > 0 sufficiently small, we also have

|λ| Γ
(
q
)

Γ
(
2q
) (T − t0)q <

1
2
, (2.18)

and then

∥∥Ax(t) −Ay(t)
∥∥
1−q ≤ L

∥∥x − y
∥∥
1−q , (2.19)
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with L < 1. Therefore A is a contraction operator. This shows that initial problem
(2.11) has a unique solution.

(2) Continuation of solution.

Since we know the value of x(t) on (t0, a], then we can compute

c∗ =

(
b − 1

Γ
(
q
)
∫a

t0

(a − s)q−1
(
λx(s) + f(s)

)
ds

)
(a − t0)1−q. (2.20)

We can solve the integral problem

y(t) = c∗(t − t0)q−1 +
1

Γ
(
q
)
∫ t

t0

(t − s)q−1
(
λy(s) + f(s)

)
ds, (2.21)

obtaining a unique solution y(t) ∈ C1−q[t0, T] for all T > t0. Now x(t) and y(t)
agree on (t0, a]. Thus the solution admits y(t) as its continuation. Hence the proof
of Lemma 2.9 is complete .

3. Initial Value Problem: Continuous Solutions on (t0, T]

We open this section with some basic examples, concerning the case when the solutions in
C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T] are submitted to an initial condition.

Theorem 3.1. Let 0 < q < 1. For all (a, B) ∈ (t0, T] × Rm the initial value problem

D
q
t0
X(t) = 0, X(a) = B (3.1)

admits

X(t) = B(a − t0)1−q(t − t0)q−1, (3.2)

as unique solution in C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T].

Proof. According to Lemma 2.4, the initial value problem (3.1) is equivalent to the following
equations:

X(t) = C(t − t0)q−1, C = B(a − t0)1−q. (3.3)

Hence the proof of Theorem 3.1 is complete.

Theorem 3.2. Let 0 < q < 1. Assume

F(t) =
(
f1(t), f2(t), . . . , fm(t)

)T ∈ C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T]. (3.4)
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Then for all (a, B) ∈ (t0, T] × Rm the initial value problem

D
q
t0
X(t) = F(t), X(a) = B (3.5)

has a unique solution in

C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T], (3.6)

given by

X(t) = (x1(t), x2(t), . . . , xm(t))T , (3.7)

with

xi(t) =

(
bi − 1

Γ
(
q
)
∫a

t0

(a − s)q−1fi(s)ds

)
(a − t0)1−q(t − t0)q−1 +

1
Γ
(
q
)
∫ t

t0

(t − s)q−1fi(s)ds,

(i = 1, 2, . . . , m).
(3.8)

Proof. According to Lemma 2.4, the initial value problem (3.5) is equivalent to the following
equations:

X(t) = C(t − t0)q−1 +
1

Γ
(
q
)
∫ t

t0

(t − s)q−1F(s)ds,

C =

(
B − 1

Γ
(
q
)
∫a

t0

(a − s)q−1F(s)ds

)
(a − t0)1−q.

(3.9)

Hence the proof of Theorem 3.2 is complete.

The result remains true even if q → 1−. In this case, (3.5) is reduced to the ordinary
differential equations

X′(t) = F(t), X(a) = B, (3.10)

which have a unique solution in

C[t0, T] × C[t0, T] × · · · × C[t0, T], (3.11)

given by

X(t) = (x1(t), x2(t), . . . , xm(t))T , (3.12)
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with

xi(t) = bi −
∫a

t0

fi(s)ds +
∫ t

t0

fi(s)ds, (i = 1, 2, . . . , m). (3.13)

Theorem 3.3. Let 0 < q < 1. For all (a, B) ∈ (t0, T] × Rm the initial value problem

D
q
t0
X(t) = PX(t), X(a) = B, (3.14)

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0 0
0 λ2 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λm

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.15)

has a unique solution in

C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T], (3.16)

given by

X(t) = (x1(t), x2(t), . . . , xm(t))T , (3.17)

with

xi(t) = bie
−1
q

(
λ
1/q
i (a − t0)

)
eq
(
λ
1/q
i (t − t0)

)
, (i = 1, 2, . . . , m). (3.18)

Proof. We can write (3.27) in the following form:

D
q
t0
x1(t) = λ1x1(t),

D
q
t0
x2(t) = λ2x2(t),

...

D
q
t0
xm(t) = λmxm(t),

x1(a) = b1, . . . , xm(a) = bm.

(3.19)

According to Lemma 2.4,

D
q
t0
xi(t) = λixi(t) (3.20)
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is equivalent to the following equations:

xi(t) = ci(t − t0)q−1 + I
q
t0
(λixi(t)), (3.21)

for some ci ∈ R. From (3.21)we obtain, by iteration,

xi(t) = ciΓ
(
q
)
(

(t − t0)q−1

Γ
(
q
) +

λi(t − t0)2q−1

Γ
(
2q
) + · · · + λn−1i (t − t0)nq−1

Γ
(
nq
)

)
+ λni I

nq
t0
xi(t). (3.22)

Letting n → +∞, ‖λni I
nq
t0
xi(t)‖1−q → 0 if xi(t) ∈ C1−q[t0, T]. Indeed,

∥∥∥λni I
nq
t0
xi(t)

∥∥∥
1−q

≤ ∣∣λni
∣∣‖xi(t)‖1−q

Γ
(
q
)

Γ
(
(n + 1)q

) (t − t0)nq. (3.23)

On the other hand,

eq(t − t0) =
+∞∑

k=1

(t − t0)kq−1

Γ
(
kq
) , (3.24)

then we can obtain

xi(t) = ciΓ
(
q
)
λ
(1/q−1)
i eq

(
λ
1/q
i (t − t0)

)
. (3.25)

Since xi(a) = bi,

xi(t) = bie
−1
q

(
λ
1/q
i (a − t0)

)
eq
(
λ
1/q
i (t − t0)

)
, (i = 1, 2, . . . , m). (3.26)

Hence the proof of Theorem 3.3 is complete.
The result remains valid even if q → 1−. In this case,

X′(t) = PX(t), X(a) = B (3.27)

has a unique solution in

C[t0, T] × C[t0, T] × · · · × C[t0, T], (3.28)

given by

X(t) = (x1(t), x2(t), . . . , xm(t))T , (3.29)
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with

xi(t) = bi exp(−λi(a − t0)) exp(λi(t − t0)), (i = 1, 2, . . . , m). (3.30)

Theorem 3.4. Let 0 < q < 1. For all (a, B) ∈ (t0, T] × Rm the initial value problem

D
q
t0
X(t) = PX(t) +D, X(a) = B, (3.31)

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0 0
0 λ2 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λm

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.32)

and D = (d1, d2, . . . , dm) has a unique solution in

C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T], (3.33)

given by

X(t) = (x1(t), x2(t), . . . , xm(t))T , (3.34)

with

xi(t)=
(
bi − diλ

−1
i Eq

(
λ
1/q
i (a − t0)

))
e−1q
(
λ
1/q
i (a − t0)

)
eq
(
λ
1/q
i (t − t0)

)
+diλ

−1
i Eq

(
λ
1/q
i (t − t0)

)

(i = 1, 2, . . . , m).
(3.35)

Proof. We can write (3.44) in the following form:

D
q
t0
x1(t) = λ1x1(t) + d1,

D
q
t0
x2(t) = λ2x2(t) + d2,

...

D
q
t0
xm(t) = λmxm(t) + dm,

x1(a) = b1, . . . , xm(a) = bm.

(3.36)
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According to Lemma 2.4, the equation

D
q
t0
xi(t) = λixi(t) + di (3.37)

is equivalent to the following equations:

xi(t) = ci(t − t0)q−1 + I
q
t0
(λixi(t)) + I

q
t0
(di), (3.38)

for some ci ∈ R. From (3.38)we obtain, by iteration,

I
q
t0
λixi(t) = I

q
t0

(
ciλi(t − t0)q−1

)
+ I

2q
t0

(
λ2i xi(t)

)
+ I

2q
t0
(λidi),

xi(t) = ci(t − t0)q−1 + I
q
t0

(
λici(t − t0)q−1

)
+ I

2q
t0

(
λ2i xi(t)

)
+ I

q
t0
(di) + I

2q
t0
(λidi),

I
q
t0
xi(t) = I

q
t0

(
ci(t − t0)q−1

)
+ I

2q
t0
(λixi(t)) + I

2q
t0
(di),

xi(t) = ciΓ
(
q
)
(

(t − t0)q−1

Γ
(
q
) +

λi(t − t0)2q−1

Γ
(
2q
) + · · · + λn−1i (t − t0)nq−1

Γ
(
nq
)

)

+ di

(
(t − t0)q

Γ
(
q + 1

) +
λi(t − t0)2q

Γ
(
2q + 1

) + · · · + λn−1i (t − t0)nq

Γ
(
nq + 1

)
)

+ λni I
nq
t0
xi(t).

(3.39)

Letting n → +∞, ‖λni I
nq
t0
xi(t)‖1−q → 0 if xi(t) ∈ C1−q[t0, T]. Indeed,

∥∥∥λni I
nq
t0
xi(t)

∥∥∥
1−q

= max
t∈[t0,T]

(t − t0)1−q
∣∣∣∣∣λ

n
i

1
Γ
(
q
)
∫ t

t0

(t − s)nq−1xi(s)ds

∣∣∣∣∣

≤ ∣∣λni
∣∣‖xi(t)‖1−q

Γ
(
q
)

Γ
(
(n + 1)q

) (t − t0)nq.

(3.40)

On the other hand,

eq(t − t0) =
+∞∑

k=1

(t − t0)kq−1

Γ
(
kq
) ,

Eq(t − t0) =
+∞∑

k=1

(t − t0)kq

Γ
(
kq + 1

) .

(3.41)

Then we can obtain

xi(t) = ciΓ
(
q
)
λ
(1/q−1)
i eq

(
λ
1/q
i (t − t0)

)
+ diλ

−1
i Eq

(
λ
1/q
i (t − t0)

)
. (3.42)

We know that diλ
−1
i Eq(λ

1/q
i (t−t0)) is satisfied for the fractional nonhomogeneous linear

differential equationD
q
t0
xi(t) = λ1xi(t)+di. So we can also deduce that the general solution of
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the fractional nonhomogeneous linear differential equation is equal to the general solution of
the corresponding homogeneous linear differential equation plus the special solution of the
nonhomogeneous linear differential equation. If X(a) = B, xi(a) = bi, then

xi(t)=
(
bi − diλ

−1
i Eq

(
λ
1/q
i (a − t0)

))
e−1q
(
λ
1/q
i (a − t0)

)
eq
(
λ
1/q
i (t − t0)

)
+diλ

−1
i Eq

(
λ
1/q
i (t − t0)

)

(i = 1, 2, . . . , m).
(3.43)

Hence the proof of Theorem 3.4 is complete.

The result remains valid even if q → 1−. In this case,

X′(t) = PX(t) +D, X(a) = B, (3.44)

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0 0
0 λ2 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λm

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.45)

and D = (d1, d2, . . . , dm) has a unique solution in

C[t0, T] × C[t0, T] × · · · × C[t0, T], (3.46)

given by

X(t) = (x1(t), x2(t), . . . , xm(t))T , (3.47)

with

xi(t)=
(
bi − diλ

−1
i E1(λi(a − t0))

)
e−11 (λi(a − t0))e1(λi(t − t0))+diλ

−1
i E1(λi(t − t0))

=
(
bi + diλ

−1
i exp(−λ(a − t0))

)
exp(λi(t − t0)) − dλ−1, (i = 1, 2, . . . , m).

(3.48)

4. Existence and Uniqueness of the Solution

In Section 3 we have obtained the unique solution of the constant coefficient homogeneous
and nonhomogeneous linear fractional differential equations for P being the diagonal matrix.
In the present section we will prove the existence and uniqueness of these two kinds of
equations for any P ∈ L(Rm).
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Theorem 4.1. Let 0 < q < 1 and P ∈ L(Rm). If the matrix P has distinct real eigenvalues, then for
all (a, B) ∈ (t0, T] × Rm the initial value problem

D
q
t0
X(t) = PX(t), X(a) = B (4.1)

has the unique solution X(t) ∈ C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T].

Proof. Since the matrix P has distinct real eigenvalues, there exists an invertible matrixQ such
that

Q−1PQ =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0 0
0 λ2 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λm

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.2)

where λ1, λ2, . . . , λm are the eigenvalues of the matrix P . If we define Y (t) = Q−1X(t),

D
q
t0
Y (t) = D

q
t0
Q−1X(t) = Q−1Dq

t0
X(t) = Q−1PX(t) = RY (t), (4.3)

with R = diag(λ1, λ2, . . . , λm). From the above Theorem 3.3 we know the initial value problem

D
q
t0
Y (t) = RY (t), Y (a) = Q−1B (4.4)

has a unique solution Y (t) ∈ C1−q[t0, T] × C1−q[t0, T] × · · · × C1−q[t0, T] defined on [t0, T].
Then X(t) = QY (t) uniquely solves the equations (4.1), where t ∈ [t0, T]. Hence the proof of
Theorem 4.1 is complete .

Theorem 4.2. Let 0 < q < 1. For all (a, B) ∈ (t0, T] × R2 the initial value problem

D
q
t0
X(t) = PX(t), X(a) = B, (4.5)

where

P =
(
α −β
β α

)
(4.6)

has the unique solution X(t) ∈ C1−q[t0, T] × C1−q[t0, T] defined on [t0, T].

Proof. Let us define

Z(t) = x1(t) + ix2(t), μ = α + iβ. (4.7)

We can find that (4.5) is equivalent to the following equation

D
q
t0
Z(t) = μZ(t), Z(a) = x1(a) + x2(a) = b1 + ib2. (4.8)
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Obviously, Z(t) ∈ C1−q[t0, T] if x1(t) and x2(t) belong to C1−q[t0, T]. From the above
Theorem 3.3 in Section 3, we know the complex Equation (4.7) has a unique solution defined
on [t0, T]. Hence the proof of Theorem 4.2 is complete.

Theorem 4.3. Let 0 < q < 1 and P ∈ R2. If P has eigenvalues α ± iβ, for all (a, B) ∈ (t0, T] × R2 the
initial value problem

D
q
t0
X(t) = PX(t), X(a) = B (4.9)

has a unique solution X(t) ∈ C1−q[t0, T] × C1−q[t0, T].

Proof. Since P has eigenvalues α± iβ, there exists an invertible matrixQ such that P = QSQ−1

where

S =
(
α −β
β α

)
. (4.10)

Define

Y (t) = Q−1X(t), (4.11)

then

D
q
t0
Y (t) = D

q
t0
Q−1X(t) = Q−1Dq

t0
X(t) = Q−1PX(t) = SY (t). (4.12)

From the above Theorem 4.2, we know the initial value problem

D
q
t0
Y (t) = SY (t), Y (a) = Q−1B (4.13)

has a unique solution defined on [t0, T]. Hence the proof of result is complete.

Theorem 4.4. Let 0 < q < 1 and P ∈ Rm be an elementary Jordan matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 0 · · · 0 0
1 λ · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.14)

The initial value problem

D
q
t0
X(t) = PX(t), X(a) = B (4.15)

has a unique solutionX(t) ∈ C1−q[t0, T]×C1−q[t0, T] ×· · ·× C1−q[t0, T] provided (a, B) ∈ (t0, a0] ×
Rm, where a0 is a suitable constant depending on t0, q, and λ.
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Proof. From the (4.15), we can write the equations in the following form:

D
q
t0
x1(t) = λx1(t),

D
q
t0
x2(t) = x1(t) + λx2(t),

...

D
q
t0
xm(t) = xm−1(t) + λxm(t),

x1(a) = b1, . . . , xm(a) = bm.

(4.16)

Consider the first equation

D
q
t0
x1(t) = λx1(t), x1(a) = b1. (4.17)

We can obtain the solution of this equation

x1(t) = b1e
−1
q

(
λ1/q(a − t0)

)
eq
(
λ1/q(t − t0)

)
. (4.18)

Consider the second equation

D
q
t0
x2(t) = x1(t) + λx2(t), x2(a) = b2, (4.19)

where now x1(t) ∈ C1−q[t0, T] is a known function. Since x1(t), x2(t) ∈ C1−q[t0, T], according
to Lemma 2.9, (4.19) has a unique solution in C1−q[t0, T]. Now x1(t) and x2(t) are known
functions which will be substituted in

D
q
t0
x3(t) = x2(t) + λx3(t), x3(a) = b3 (4.20)

and so on. Thus the system of equations given in (4.15) has unique solution in C1−q[t0, T] ×
C1−q[t0, T] × · · · × C1−q[t0, T].

Theorem 4.5. Let 0 < q < 1 and P ∈ L(Rm). The initial value problem

D
q
t0
X(t) = PX(t), X(a) = B (4.21)

has the unique solutionX(t) ∈ C1−q[t0, T]×C1−q[t0, T]×· · ·×C1−q[t0, T] provided (a, B) ∈ (t0, a0]×
Rm, where a0 is a suitable constant depending on t0, q, and λ.
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Proof. In view of Lemma 2.8, there exists an invertible matrixQ such thatQ−1PQ is composed
of diagonal blocks of the type Ji and Ĵi, as defined in the preceding Lemmas 2.7 and 2.8. Let
B = Q−1PQ and Y (t) = Q−1X(t). Consider the initial value problem:

D
q
t0
Y (t) = D

q
t0
Q−1X(t) = Q−1Dq

t0
X(t) = Q−1PX(t) = BY (t),

Y (a) = Q−1X(a) = Q−1B.
(4.22)

Then in view of Theorems 4.1–4.5, (4.22) has a unique solution: Y (t) ∈ C1−q[t0, T] ×
C1−q[t0, T] × · · · × C1−q[t0, T]. Therefore (4.21) has a unique solution Q−1Y (t) ∈ C1−q[t0, T] ×
C1−q[t0, T] × · · · × C1−q[t0, T].

Remark 4.6. All the above results are valid for q → 1−. Moreover, we can also discuss the
case if a = t0, in this case, we cannot consider the usual initial condition x(t0) = b, but
limt→ t0(t − t0)

1−qx(t) = b. We can also obtain some similar results by the same method, So
we did not give the detailed process and conclusion in this paper.

5. Illustrative Examples

In this section, we give some specific examples to illustrate the above results.

Example 5.1. Consider the following system, where 0 < q < 1, t ∈ [t0, T], (a, B) ∈ (t0, T] ×
R3,B = (b1, b2, b3),

D
q
t0
x1(t) = 3x1(t) − x2(t) + x3(t),

D
q
t0
x2(t) = −x1(t) + 5x2(t) − x3(t),

D
q
t0
x3(t) = x1(t) − x2(t) + 3x3(t),

x1(a) = b1, x2(a) = b2, x3(a) = b3.

(5.1)

Here

P =

⎛

⎝
3 −1 1
−1 5 −1
1 −1 3

⎞

⎠, (5.2)

having the eigenvalues 2, 3, and 6. Choose the eigenvectors g1 = (1, 0,−1)T , g2 = (1, 1, 1)T ,
and g3 = (1,−2, 1)T . Then

⎛

⎝
2 0 0
0 3 0
0 0 6

⎞

⎠ = Q−1

⎛

⎝
3 −1 1
−1 5 −1
1 −1 3

⎞

⎠Q, (5.3)



18 Journal of Applied Mathematics

where

Q−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

0 −1
2

1
3

1
3

1
3

1
6

−1
3

1
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.4)

Define the Y = Q−1X. Then the system of equation in Y is decoupled, namely,

D
q
t0
y1(t) = 2y1(t),

D
q
t0
y2(t) = 3y2(t),

D
q
t0
y3(t) = 6y3(t),

y1(a) =
1
2
b1 − 1

2
b3,

y2(a) =
1
3
b1 +

1
3
b2 +

1
3
b3,

y3(a) =
1
6
b1 − 1

3
b2 +

1
6
b3.

(5.5)

In view of (3.30), we can obtain

y1(t) =
(
1
2
b1 − 1

2
b3

)
e−1q
(
21/q(a − t0)

)
eq
(
21/q(t − t0)

)
,

y2(t) =
(
1
3
b1 +

1
3
b2 +

1
3
b3

)
e−1q
(
31/q(a − t0)

)
eq
(
31/q(t − t0)

)
,

y3(t) =
(
1
6
b1 − 1

3
b2 +

1
6
b3

)
e−1q
(
61/q(a − t0)

)
eq
(
61/q(t − t0)

)
.

(5.6)

Hence

x1(t) = y1(t) + y2(t) + y3(t),

x2(t) = y2(t) − 2y3(t),

x3(t) = −y1(t) + y2(t) + y3(t).

(5.7)
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Example 5.2. Consider the following system, where 0 < q < 1, t ∈ [t0, T], (a, B) ∈ (t0, T] ×
R2,B = (b1, b2),

D
q
t0
x1(t) = −2x1(t) − x2(t)

D
q
t0
x2(t) = 13x1(t) + 4x2(t)

x1(a) = b1, x2(a) = b2.

(5.8)

Here

P =
(−2 −1
13 4

)
(5.9)

having the eigenvalues 1 ± 2i. Choose the eigenvectors g1 = (1,−3 − 2i)T , and g2 =
(1,−3 + 2i)T , Then

(
1 + 2i 0
0 1 − 2i

)
= Q−1

(−2 −1
13 4

)
Q, (5.10)

where

Q =
(

1 1
−3 − 2i −3 + 2i

)
,

Q−1 =

⎛
⎜⎜⎜⎜⎝

2 + 3i
4

i

4
2 − 3i
4

− i

4

⎞
⎟⎟⎟⎟⎠

.

(5.11)

Define the Y = Q−1X. Then the system of equation in Y is decoupled, namely,

D
q
t0
y1(t) = (1 + 2i)y1(t), y1(a) =

1
2
b1 +

(
3
4
b1 +

1
4
b2

)
i

D
q
t0
y2(t) = (1 − 2i)y2(t), y2(a) =

1
2
b1 −

(
3
4
b1 +

1
4
b2

)
i.

(5.12)

In view of (3.30), we can obtain

y1(t) =
(
1
2
b1 +

(
3
4
b1 +

1
4
b2

)
i

)
e−1q
(
(1 + 2i)1/q(a − t0)

)
eq
(
(1 + 2i)1/q(t − t0)

)

y2(t) =
(
1
2
b1 −

(
3
4
b1 +

1
4
b2

)
i

)
e−1q
(
(1 − 2i)1/q(a − t0)

)
eq
(
(1 − 2i)1/q(t − t0)

)
.

(5.13)
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Hence

x1(t) = y1(t) + y2(t)

x2(t) = −3(y1(t) + y2(t)
) − 2i

(
y1(t) − y2(t)

)
.

(5.14)
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