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We study the Cauchy problem of aweakly dissipativemodified two-component periodic Camassa-
Holm equation. We first establish the local well-posedness result. Then we derive the precise blow-
up scenario and the blow-up rate for strong solutions to the system. Finally, we present two blow-
up results for strong solutions to the system.

1. Introduction

In this paper, we consider the Cauchy problem of the following weakly dissipative modified
two-component Camassa-Holm system:

mt + umx + 2mux + ρρx + λm = 0, t > 0, x ∈ R,

ρt +
(
ρu
)
x + λρ = 0, t > 0, x ∈ R,

m(0, x) = m0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

m(t, x + 1) = m(t, x), t ≥ 0, x ∈ R,

ρ(t, x + 1) = ρ(t, x), t ≥ 0, x ∈ R,

(1.1)

where m = (1 − ∂2x)u, ρ = (1 − ∂2x)(ρ − ρ0), and λ is a nonnegative dissipative parameter.
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The Camassa-Holm equation [1] has been recently extended to a two-component
integrable system (CH2)

mt + umx + 2mux = ρρx, t > 0, x ∈ R,

ρt +
(
ρu
)
x = 0, t > 0, x ∈ R,

(1.2)

withm = u−uxx, which is a model for wave motion on shallow water, where u(t, x) describes
the horizontal velocity of the fluid, and ρ(t, x) is in connectionwith the horizontal deviation of
the surface from equilibrium, all measured in dimensionless units. Moreover, u and ρ satisfy
the boundary conditions: u → 0 and ρ → 1 as |x| → ∞. The system can be identified
with the first negative flow of the AKNS hierarchy and possesses the interesting peakon
and multikink solutions [2]. Moreover, it is connected with the time-dependent Schrödinger
spectral problem [2]. Popowicz [3] observes that the system is related to the bosonic sector of
an N = 2 supersymmetric extension of the classical Camassa-Holm equation. Equation (1.2)
with ρ ≡ 0 becomes the Camassa-Holm equation, which has global conservative solutions [4]
and dissipative solutions [5].

Since the system was derived physically by Constantin and Ivanov [6] in the context
of shallow water theory (also by Chen et al. in [2] and Falqui et al. in [7]), many researchers
have paid extensive attention to it. In [8], Escher et al. establish the local well-posedness
and present the precise blow-up scenarios and several blow-up results of strong solutions to
(1.2) on the line. In [6], Constantin and Ivanov investigate the global existence and blow-up
phenomena of strong solutions of (1.2) on the line. Later, Guan and Yin [9] obtain a new
global existence result for strong solutions to (1.2) and get several blow-up results, which
improve the recent results in [6]. Recently, they study the global existence of weak solutions
to (1.2) [10]. In [11], Henry studies the infinite propagation speed for (1.2). Gui and Liu [12]
establish the local well-posedness for (1.2) in a range of the Besov spaces, they also derive a
wave breakingmechanism for strong solutions. Mustafa [13] gives a simple proof of existence
for the smooth travelling waves for (1.2). Hu and Yin [14, 15] study the blow-up phenomena
and the global existence of (1.2) on the circle.

Recently, the CH2 systemwas generalized into the followingmodified two-component
Camassa-Holm (MCH2) system:

mt + umx + 2mux = −gρρx, t > 0, x ∈ R,

ρt +
(
ρu
)
x = 0, t > 0, x ∈ R,

(1.3)

where m = (1 − ∂2x)u, ρ = (1 − ∂2x)(ρ − ρ0), u denotes the velocity field, ρ0 is taken to be a
constant, and g is the downward constant acceleration of gravity in applications to shallow
water waves. ThisMCH2 system admits peaked solutions in the velocity and average density,
we refer this to [16] for details. There, the authors analytically identified the steepening
mechanism that allows the singular solutions to emerge from smooth spatially confined
initial data. They found that wave breaking in the fluid velocity does not imply singularity
in the pointwise density ρ at the point of vertical slope. Some other recent work can be
found in [17–25]. We find that the MCH2 system is expressed in terms of an averaged or
filtered density ρ in analogy to the relation between momentum and velocity by setting
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ρ = (1 − ∂2x)(ρ − ρ0), but it may not be integrable unlike the CH2 system. The important
point here is that MCH2 has the following conservation law:

∫

R

(
u2 + u2

x + ρ2 + ρ2x

)
dx, (1.4)

which play a crucial role in the study of (1.3). Noting that for the CH2 system, we cannot
obtain the conservation of H1 norm.

In general, it is quite difficult to avoid energy dissipation mechanisms in a real world.
Ghidaglia [26] studies the long time behaviour of solutions to the weakly dissipative KdV
equation as a finite-dimensional dynamical system. Recently, Hu and Yin [27] study the
blow-up and blow-up rate of solutions to a weakly dissipative periodic rod equation. In
[28, 29], Hu considered global existence and blow-up phenomena for a weakly dissipative
two-component Camassa-Holm system on the circle and on the line. However, (1.1) on the
circle (periodic case) has not been studied yet. The aim of this paper is to study the blow-
up phenomena of the strong solutions to (1.1). We find that the behavior of solutions to the
weakly dissipative modified two-component periodic Camassa-Holm system (1.1) is similar
to that of the modified two-component Camassa- Holm system (1.3), such as the local well-
posedness and the blow-up scenario. In addition, we also find that the blow-up rate of (1.1) is
not affected by the weakly dissipative term, but the occurrence of blow-up of (1.1) is affected
by the dissipative parameter.

This paper is organized as follows: In Section 2, we establish local well-posedness
of the Cauchy problem associated with (1.1). In Section 3, we derive precise the blow-
up scenario of strong solution and the blow-up rate. In Section 4, we discuss the blow-up
phenomena of (1.1).

2. Local Well-Posedness

In this section, by applying Kato’s semigroup theory [30], we can obtain the local well-
posedness for the Cauchy problem of (1.1) in Hs × Hs, s > 3/2, with with S = R/Z (the
circle of unit length).

First, we introduce some notations. All spaces of functions are assumed to be over S;
for simplicity, we drop S in our notation for function spaces if there is no ambiguity. IfA is an
unbounded operator, we denote by D(A) the domain of A. [A;B] denotes the commutator
of two linear operators A and B. ‖ · ‖X denotes the norm of Banach space X. We denote the
norm and the inner product of Hs; s ∈ R+, by ‖ · ‖s and (·, ·)s, respectively.

For convenience, we state here Kato’s theorem in the form suitable for our purpose.
Consider the following abstract quasilinear evolution equation:

du

dt
+A(u) = f(u), t > 0, u(0) = u0. (2.1)

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X and
letQ : Y → X be a topological isomorphism. L(Y,X) denotes the space of all bounded linear
operator from Y to X (and we write L(X), if X = Y ).
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Theorem 2.1 (see [30]). Assume that

(i) A(y) ∈ L(Y,X) for y ∈ X with

∥
∥(A

(
y
) −A(z)

)
w
∥
∥
X ≤ μ1

∥
∥y − z

∥
∥
X‖w‖Y , y, z,w ∈ Y, (2.2)

and A(y) ∈ G(X, 1, β) uniformly on bounded sets in Y .

(ii) QA(y)Q−1 = A(y) +B(y), where B(y) ∈ L(X) is bounded, uniformly on bounded sets in
Y . Moreover,

∥
∥(B
(
y
) − B(z)

)
w
∥
∥
X ≤ μ2

∥
∥y − z

∥
∥
Y‖w‖X, y, z,∈ Y, w ∈ X. (2.3)

(iii) f : Y → Y and extends also to a map from X into X, f is bounded on bounded sets in Y
and

∥∥f
(
y
) − f(z)

∥∥
Y ≤ μ3

∥∥y − z
∥∥
Y , y, z ∈ Y,

∥∥f
(
y
) − f(z)

∥∥
X ≤ μ3

∥∥y − z
∥∥
X, y, z ∈ Y,

(2.4)

where, μ1, μ2, and μ3 depend only on max{‖y‖X, ‖z‖X} and μ4 depends only on
max{‖y‖Y , ‖z‖Y}. If the above conditions (i), (ii), and (iii) hold, given u0 ∈ Y , there is
a maximal T > 0 depending only on ‖u0‖Y and a unique solution u to (2.1) such that

u = u(·, u0) ∈ C([0, T];Y ) ∩ C1([0, T];X). (2.5)

Moreover, the map u0 → u(·, u0) is continuous from Y to C([0, T];Y ) ∩ C1([0, T];X).

We now provide the framework in which we will reformulate system (1.1). With m =
u − uxx, ρ = γ − γxx, and γ = ρ − ρ0, we can rewrite (1.1) as follows:

mt + umx + 2mux + ργx + λm = 0, t > 0, x ∈ R,

ρt +
(
ρu
)
x + λρ = 0, t > 0, x ∈ R,

m(0, x) = u0(x) − u0,xx(x), x ∈ R,

ρ(0, x) = γ0(x) − γ0,xx(x), x ∈ R,

m(t, x + 1) = m(t, x), t ≥ 0, x ∈ R,

ρ(t, x + 1) = ρ(t, x), t ≥ 0, x ∈ R.

(2.6)

Note that if p(x) := cosh(x − [x] − (1/2))/2 sinh(1/2), x ∈ R is the kernel of (1 − ∂2x)
−1, where

[x] stands for the integer part of x ∈ R, then (1 − ∂2x)
−1
f = p ∗ f for all f ∈ L2(S), p ∗m = u,
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and p ∗ ρ = γ . Here we denote by ∗ the convolution. Using this identity, we can rewrite (2.6)
as follows:

ut + uux = −∂xp ∗
(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− λu, t > 0, x ∈ R,

γt + uγx = −p ∗ ((uxγx
)
x + uxγ

) − λγ, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

γ(0, x) = γ0(x), x ∈ R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R,

γ(t, x + 1) = γ(t, x), t ≥ 0, x ∈ R,

(2.7)

or we can write it in the following equivalent form:

ut + uux = −∂x
(
1 − ∂2x

)−1(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− λu, t > 0, x ∈ R,

γt + uγx = −∂x
(
1 − ∂2x

)−1(
uxγx

) −
(
1 − ∂2x

)−1
uxγ − λγ, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

γ(0, x) = γ0(x), x ∈ R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R,

γ(t, x + 1) = γ(t, x), t ≥ 0, x ∈ R.

(2.8)

Theorem 2.2. Given z0 = z(x, 0) = (u0, γ0) ∈ Hs × Hss > 3/2, then there exist a maximal
T = T(z0) > 0 and a unique solution z = (u, γ) to (1.1) or (2.7) such that

z = z(·, z0) ∈ C([0, T);Hs ×Hs) ∩ C1
(
[0, T);Hs−1 ×Hs−1

)
. (2.9)

Moreover, the solution depends continuously on the initial data, that is, the mapping z0 → z(·, z0) :
Hs ×Hs → C([0, T);Hs ×Hs) ∩ C1([0, T);Hs−1 ×Hs−1) is continuous and the maximal time of
existence T > 0 can be chosen to be independent of s.

The remainder of this section is devoted to the proof of Theorem 2.2.
Let z =

( u
γ
)
, A(z) =

(
u∂x, 0
0, u∂x

)
and

f(z) =

⎛

⎝−∂x
(
1 − ∂2x

)−1
(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− λu

−∂x
(
1 − ∂2x

)−1(
uxγx

) − (1 − ∂2x
)−1

uxγ − λγ.

⎞

⎠. (2.10)
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Set Y = Hs × Hs, X = Hs−1 × Hs−1, Λ = (1 − ∂2x)
1/2 and Q =

(
Λ 0
0 Λ

)
. Obviously, Q is an

isomorphism of Hs × Hs onto Hs−1 × Hs−1. In order to prove Theorem 2.2 by applying
Theorem 2.1, we only need to verify A(z) and f(z) which satisfy the conditions (i)–(iii).
We break the argument into several lemmas.

Lemma 2.3. The operatorA(z) =
(

u∂x, 0
0, u∂x

)
, with z ∈ Hs×Hs, s > 3/2, belongs toG(L2×L2, 1, β).

Lemma 2.4. The operator A(z) =
(

u∂x, 0
0, u∂x

)
, with z ∈ Hs × Hs, s > 3/2, belongs to G(Hs−1 ×

Hs−1, 1, β).

Lemma 2.5. A(z) =
(

u∂x, 0
0, u∂x

)
, with z ∈ Hs×Hs, s > 3/2. The operatorA(z) ∈ L(Hs×Hs,Hs−1×

Hs−1). Moreover,

∥∥(A
(
y
) −A(z)

)
w
∥∥
Hs−1×Hs−1 ≤ μ1

∥∥y − z
∥∥
Hs×Hs‖w‖Hs×Hs, y, z,w ∈ ×Hs. (2.11)

Lemma 2.6. The operator B(z) = [Q,A(z)]Q−1 with z ∈ Hs×Hs, s > 3/2. Then B(z) ∈ L(Hs−1×
Hs−1) and

∥∥(B
(
y
) − B(z)

)
w
∥∥
Hs−1×Hs−1 ≤ μ2

∥∥y − z
∥∥
Hs×Hs‖w‖Hs−1×Hs−1 , (2.12)

for y, z ∈ Hs ×Hs and w ∈ Hs−1 ×Hs−1.

The proof of the above five lemmas can be done similarly as in [8], therefore we omit
it here.

Hence, according to Kato’s theorem (Theorem 2.1), in order to prove Theorem 2.2, we
only need to verify condition (iii), that is, we need to prove the following lemma.

Lemma 2.7. Let z ∈ Hs ×Hs, s > 3/2 and

f(z) =

⎛

⎜⎜⎜⎜
⎝

−∂x
(
1 − ∂2x

)−1
(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− λu

−∂x
(
1 − ∂2x

)−1(
uxγx

) − (1 − ∂2x
)−1

uxγ − λγ

⎞

⎟⎟⎟⎟
⎠

. (2.13)

Then f is bounded on bounded sets inHs ×Hs and satisfies

(a) ‖f(y) − f(z)‖Hs×Hs ≤ μ3‖y − z‖Hs×Hs, y, z ∈ Hs ×Hs,

(b) ‖f(y) − f(z)‖Hs−1×Hs−1 ≤ μ4‖y − z‖Hs−1×Hs−1 , y, z ∈ Hs ×Hs.
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Proof. Let y, z ∈ Hs ×Hs, s > 3/2. Since Hs−1 is a Banach algebra, it follows that

∥∥f
(
y
) − f(z)

∥∥
Hs×Hs

≤
∥
∥
∥
∥−∂x

(
1 − ∂2x

)−1((
y2
1 − u2

)
+
1
2

(
y2
1x − u2

x

)
+
1
2

(
y2
2 − γ2

)
− 1
2

(
y2
2x − γ2x

))
− λ
(
y1 − u

)
∥
∥
∥
∥
Hs

+
∥
∥
∥
∥−∂x

(
1 − ∂2x

)−1(
y1xy2x − uxγx

) −
(
1 − ∂2x

)−1(
y1xy2 − uxγ

) − λ
(
y2 − γ

)
∥
∥
∥
∥
Hs

≤ ∥∥(y1 − u
)(
y1 + u

)∥∥
Hs−1 +

1
2
∥
∥(y1x − ux

)(
y1x + ux

)∥∥
Hs−1 +

1
2
∥
∥(y2 − γ

)(
y2 + γ

)∥∥
Hs−1

+
1
2
∥
∥(y2x − γx

)(
y2x + γx

)∥∥
Hs−1 + λ

∥
∥y1 − u

∥
∥
Hs +

∥
∥ux

(
y2x − γx

)∥∥
Hs−1

+
∥∥(y1x − ux

)
y2x
∥∥
Hs−1 +

∥∥ux

(
y2 − γ

)∥∥
Hs−2 +

∥∥(y1x − ux

)
y2
∥∥
Hs−2 + λ

∥∥y2 − γ
∥∥

≤ c

(∥∥y1 − u
∥∥
Hs−1
∥∥y1 + u

∥∥
Hs−1 +

1
2
∥∥y1 − u

∥∥
Hs

∥∥y1 + u
∥∥
Hs +

1
2
∥∥y2 − γ

∥∥
Hs−1
∥∥y2 + γ

∥∥
Hs−1

)

+
1
2
∥∥y2 − γ

∥∥
Hs

∥∥y2 + γ
∥∥
Hs−1 + λ

∥∥y1 − u
∥∥
Hs + ‖u‖Hs

∥∥y2 − γ
∥∥
Hs +

∥∥y1 − u
∥∥
Hs

∥∥y2
∥∥
Hs

+ λ
∥∥y2 − γ

∥∥
Hs + ‖u‖Hs−1

∥∥y2 − γ
∥∥
Hs−2 +

∥∥y1 − u
∥∥
Hs−1
∥∥y2
∥∥
Hs−2

≤ c
(∥∥y
∥∥
Hs×Hs + ‖z‖Hs×Hs + λ

)∥∥y − z
∥∥
Hs×Hs.

(2.14)

This proves (a). Taking y = 0 in the above inequality, we obtain that f is bounded on bounded
set inHs ×Hs.

Next, we prove (b). Note that Hs−1 is a Banach algebra. Then, we have

∥∥f
(
y
) − f(z)

∥∥
Hs−1×Hs−1

≤
∥∥∥∥−∂x

(
1 − ∂2x

)−1((
y2
1 − u2

)
+
1
2

(
y2
1x − u2

x

)
+
1
2

(
y2
2 − γ2

)
− 1
2

(
y2
2x − γ2x

))
−λ(y1 − u

)
∥∥∥∥
Hs−1

+
∥∥∥∥−∂x

(
1 − ∂2x

)−1(
y1xy2x − uxγx

) −
(
1 − ∂2x

)−1(
y1xy2 − uxγ

) − λ
(
y2 − γ

)
∥∥∥∥
Hs−1

≤ ∥∥(y1 − u
)(
y1 + u

)∥∥
Hs−2 +

1
2
∥∥(y1x − ux

)(
y1x + ux

)∥∥
Hs−2 +

1
2
∥∥(y2 − γ

)(
y2 + γ

)∥∥
Hs−2

+
1
2
∥∥(y2x − γx

)(
y2x + γx

)∥∥
Hs−2 + λ

∥∥y1 − u
∥∥
Hs−1 +

∥∥ux

(
y2x − γx

)∥∥
Hs−2

+
∥∥(y1x − ux

)
y2x
∥∥
Hs−2 +

∥∥ux

(
y2 − γ

)∥∥
Hs−3 +

∥∥(y1x − ux

)
y2
∥∥
Hs−3 + λ

∥∥y2 − γ
∥∥

≤ c

(∥∥y1 − u
∥∥
Hs−2
∥∥y1 + u

∥∥
Hs−1+

1
2
∥∥y1 − u

∥∥
Hs−1
∥∥y1 + u

∥∥
Hs−1+

1
2
∥∥y2 − γ

∥∥
Hs−2
∥∥y2 + γ

∥∥
Hs−2

)
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+
1
2
∥
∥y2 − γ

∥
∥
Hs−1
∥
∥y2 + γ

∥
∥
Hs−2 + λ

∥
∥y1 − u

∥
∥
Hs−1 + ‖u‖Hs

∥
∥y2 − γ

∥
∥
Hs−1

+
∥
∥y1 − u

∥
∥
Hs−1
∥
∥y2
∥
∥
Hs−1 + λ

∥
∥y2 − γ

∥
∥
Hs−1 + ‖u‖Hs−2

∥
∥y2 − γ

∥
∥
Hs−3 +

∥
∥y1 − u

∥
∥
Hs−2
∥
∥y2
∥
∥
Hs−3

≤ c
(∥∥y
∥
∥
Hs×Hs−1 + ‖z‖Hs−1×Hs−1 + λ

)∥∥y − z
∥
∥
Hs−1×Hs−1 .

(2.15)

This proves (b) and completes the proof of the Lemma 2.7.

Proof of Theorem 2.2. Combining Theorem 2.1 and Lemmas 2.3–2.7, we can get the statement
of Theorem 2.2.

3. The Precise Blow-Up Scenario and Blow-Up Rate

In this section, we present the precise blow-up scenario and the blow-up rate for strong
solutions to (2.7).

Lemma 3.1. Let z0 = (u0, γ0) ∈ Hs × Hs, s > 3/2, and let T be the maximal existence time of the
solution z = (u, γ) to (2.7) with the initial data z0. Then for all t ∈ [0, T), we have

‖u(t, ·)‖2H1 +
∥∥γ(t, ·)∥∥2H1 = e−2λt

(
‖u0‖2H1 +

∥∥γ0
∥∥2
H1

)
. (3.1)

Proof. Denote

f
(
u, γ
)
= u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x, g = g

(
u, γ
)
=
(
uxγx

)
x + uxγ. (3.2)

In view of the identity −∂2xp ∗ f = f − p ∗ f , we can obtain from (2.7),

utx = −u2
x − uuxx + f − p ∗ f, γtx = −uxγx − uγxx − ∂xp ∗ g. (3.3)

Therefore, an integration by parts yields

1
2
d

dt

(
‖u‖2H1 +

∥∥γ
∥∥2
H1

)
=
∫

R

(
uut + uxutx + γγt + γxγtx

)
dx

=
∫

R

u
(
−uux − ∂2xp ∗ f − λu

)
+ ux

(
−u2

x − uuxx + f − p ∗ f − λux

)

+ γ
(−uγx − p ∗ g − λγ

)
+ γx
(−uγx − uγxx − ∂xp ∗ g − λγx

)
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=
∫

R

[
−1
2
u3
x + ux

(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− uγγx − γ

(
uxxγx + uxγ

)

−uγxγ2x − uγxγxx − λ
(
u2 + u2

x + γ2 + γ2x

)]
dx

= −λ
∫

R

(
u2 + u2

x + γ2 + γ2x

)
dx.

(3.4)

Thus, the statement of the conservation law follows.

Lemma 3.2 (see [31]). (i) For every f ∈ H1(S), we have

max
x∈[0,1]

f2(x) ≤ e + 1
2(e − 1)

∥∥f
∥∥2
H1 , (3.5)

where the constant (e + 1)/2(e − 1) is sharp.

(ii) For every f ∈ H3(S), we have

max
x∈[0,1]

f2(x) ≤ c
∥∥f
∥∥2
H1 , (3.6)

with the best possible constant c lying within the range (1, 13/12]. Moreover, the best constant c is
(e + 1)/2(e − 1).

So, if z ∈ H3 ×H3, then by Lemmas 3.1 and 3.2, we have

‖u(t, ·)‖2L∞ +
∥∥γ(t, ·)∥∥2L∞ ≤ e + 1

2(e − 1)
‖u‖2H1 +

e + 1
2(e − 1)

∥∥γ
∥∥2
H1

=
e + 1

2(e − 1)

(
‖u0‖2H1 +

∥
∥γ0
∥∥2
H1

)

=
e + 1

2(e − 1)
‖z0‖2H1×H1 ,

(3.7)

for all t ∈ [0, T).

Theorem 3.3. Let z0 = (u, γ) ∈ Hs × Hs, s > 3/2 be given and assume that T is the maximal
existence time of the corresponding solution z = (u, γ) to (2.7) with initial data z0, if there exists
M > 0 such that

‖ux(t, ·)‖L∞ +
∥∥γx(t, ·)

∥∥
L∞ ≤ M, t ∈ [0, T), (3.8)

then theHs ×Hs norm of z(t, ·) does not blow-up on [0, T).
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The proof of the theorem is similar to the proof of Theorem 3.1 in [20], we omit it here.
Consider the following differential equation equation:

dq(x, t)
dt

= u
(
q(x, t), t

)
, t ∈ [0, T),

q(0, t) = x, x ∈ R,

(3.9)

where u denotes the first component of the solution z to (2.7). Applying classical results in
the theory of ordinary differential equations, one can obtain the following result on q which
is crucial in the proof of blow-up scenario.

Lemma 3.4 (see [8]). Let u0 ∈ ∩C1([0, T);Hs−1), s > 3/2, and T be the maximal existence time of
the corresponding solution u(t, x) to (3.7). Then (3.7) has a unique solution q ∈ C1([0, T) × R,R).
Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx(x, t) = exp

(∫ t

0
ux

(
q(x, s), s

)
ds

)

> 0, qx(x, 0) = 1, x ∈ R, 0 ≤ t < T. (3.10)

The following result is proved only with regard to r = 3, since we can obtain the same
conclusion for the general case r > 3/2 by using Theorem 2.1 and a simple density argument.

We now present a precise blow-up scenario for strong solutions to (2.6).

Theorem 3.5. Let y0 = (u0, γ0) ∈ Hs × Hs, s > 3/2, and let T be the maximal existence of the
corresponding solution z = (u, γ) to (2.7). Then the solution blows up in finite time if and only if

lim inf
t→ T,x∈R

ux(t, x) = −∞ or lim sup
t→ T

{∥∥γx(t, ·)
∥∥
L∞
}
= +∞. (3.11)

Proof. Multiplying the first equation in (2.6) by m = u − uxx and integrating by parts, we
obtain

d

dt

∫

S

m2dx = 2
∫

S

mmtdx = 2
∫

S

m
(−umx − 2mux − ργx

)
dx − 2λ

∫

S

m2dx

= −3
∫

S

m2uxdx − 2
∫

S

mργxdx − 2λ
∫

S

m2dx.

(3.12)

Repeating the same procedure to the second equation in (2.6) we get

d

dt

∫

S

ρ2dx = −
∫

S

ρ2ux − 2λ
∫

S

ρ2dx. (3.13)

A combination of (3.7) and (3.9) yields

d

dt

∫

S

(
m2 + ρ2

)
dx = −3

∫

S

m2uxdx − 2
∫

S

mργxdx −
∫

S

ρ2ux − 2λ
∫

S

(
m2 + ρ2

)
dx. (3.14)
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Differentiating the first equation in (2.6) with respect to x, multiplying by mx = ux − uxxx,
then integrating over S, we obtain

d

dt

∫

S

m2
xdx = −5

∫

S

m2
xuxdx + 2

∫

S

m2uxdx − 2
∫

S

mxρxγxdx

− 2
∫

S

mxργxxdx − 2λ
∫

S

m2
xdx.

(3.15)

Similarly,

d

dt

∫

S

ρ2xdx = −3
∫

S

ρ2xuxdx +
∫

S

ρ2uxxxdx − 2λ
∫

S

ρ2xdx. (3.16)

A combination of (3.12)–(3.16) yields

d

dt

∫

S

(
m2 + ρ2 +m2

x + ρ2x

)
dx

= −
∫

S

m2uxdx − 5
∫

S

m2
xuxdx − 2

∫

S

mργxdx − 2
∫

S

mxρxγxdx − 2λ
∫

S

(
m2 + ρ2

)
dx

− 2
∫

S

mxργxxdx −
∫

S

ρ2uxdx − 3
∫

S

ρ2xuxdx +
∫

S

ρ2uxxxdx − 2λ
∫

S

(
m2

x + ρ2x

)
dx

= −
∫

S

m2uxdx − 5
∫

S

m2
xuxdx −

∫

S

ρ2uxdx − 3
∫

S

ρ2xuxdx − 2λ
∫

S

(
m2 + ρ2

)
dx

+
∫

S

ρ2uxxxdx − 2
∫

S

mργxdx − 2
∫

S

mxρxγxdx − 2
∫

S

mxργxxdx − 2λ
∫

S

(
m2

x + ρ2x

)
dx.

(3.17)

Assume that there exists M1 > 0 and M2 > 0 such that ux(t, x) ≥ −M1 and ‖γx(t, ·)‖L∞ ≤ M2

for all (t, x) ∈ [0, T) × R, then it follows from Lemma 2.4 that
∥∥ρ(t, ·)∥∥L∞ ≤ eM1T

∥∥ρ0(·)
∥∥
L∞ . (3.18)

Therefore,

d

dt

∫

S

(
m2 + ρ2 +m2

x + ρ2x

)
dx

≤ (5M1)
∫

S

(
m2 + ρ2 +m2

x + ρ2x

)
dx

+
(
M2 + eM1T

∥∥ρ0(·)
∥∥
L∞

)∫

S

(
m2 + ρ2 +m2

x + ρ2x + u2
xxx + γ2xx

)
dx

≤ (5M1)
∫

S

(
m2 + ρ2 +m2

x + ρ2x

)
dx + 2

(
M2 + eM1T

∥∥ρ0(·)
∥∥
L∞

)∫

S

(
m2 + ρ2 +m2

x + ρ2x

)
dx

≤
(
5M1 + 2

(
M2 + eM1T

∥∥ρ0(·)
∥∥
L∞

))∫

S

(
m2 + ρ2 +m2

x + ρ2x

)
dx.

(3.19)
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The above discussion shows that if there exist M1 > 0 and M2 > 0 such that ux(t, x) ≥ −M1

and ‖γx(t, ·)‖ ≤ M2 for all (t, x) ∈ [0, T) × S, then there exist two positive constants K and k
such that the following estimate holds

‖u(t, ·)‖2Hs +
∥
∥γ(t, ·)∥∥2Hs ≤ Kekt, t ∈ [0, T). (3.20)

This inequality, Sobolev’s embedding theorem and Theorem 3.3 guarantee that the
solution does not blow-up in finite time.

On the other hand, we see that if

lim inf
t→ T,x∈R

ux(t, x) = −∞ or lim sup
t→ T

{∥∥γx(t, ·)
∥
∥
L∞
}
= +∞, (3.21)

then by Sobolev’s embedding theorem, the solution will blow-up in finite time. This
completes the proof of the theorem.

Lemma 3.6 (see [32]). Let T > 0 and v ∈ C1([0, T);H2). Then for every t ∈ [0, T), there exists at
least one point ξ ∈ R with

ζ(t) := inf
x∈R

[vx(t, x)] = vx(t, ξ(t)). (3.22)

The function ζ(t) is absolutely continuous on (0, T) with

dζ

dt
= vtx(t, ξ(t)), a.e., on (0, T). (3.23)

Theorem 3.7. Let z0 = (u0, γ0) ∈ Hs × Hs, s > 3/2, z = (u, γ) be the corresponding solution to
(2.7) with initial data z0 and satisfies ‖γx(t, x)‖L∞ ≤ M, for all (t, x) ∈ [0, T) × S, T be the maximal
existence time of the solution. Then we have

lim
t→ T

(
inf
x∈R

ux(t, x)(T − t)
)

= −2. (3.24)

Proof. Applying Theorems 2.1 and a simple density argument, we only need to show that the
above theorem holds for some s > 3/2. Here, we assume s = 3 to prove the above theorem.

Define now

g(t) = inf
x∈s

ux(t, x), t ∈ [0, T), (3.25)

and let ξ ∈ S be a point where this minimum is attained. Clearly, uxx(t, ξ(t)) = 0 since u(t, ·) ∈
H3 ⊂ C2(S). Differentiating the first equation of (2.7) with respect to x, in view of ∂2xp ∗ f =
p ∗ f − f , we have

utx + uuxx = −1
2
u2
x + u2 +

1
2
γ2 − 1

2
γ2x − p ∗

(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− λux. (3.26)
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Evaluating (3.26) at ξ(t) and using Lemma 3.6, we obtain

d

dt
g(t) +

1
2
g2(t) + λg(t) = u2(t, ξ(t)) +

1
2
γ2(t, ξ(t)) − 1

2
γ2x(t, ξ(t)) −

[
p ∗ f](t, ξ(t)), (3.27)

where f = u2 + (1/2)u2
x + (1/2)γ2 − (1/2)γ2x . By Lemma 3.1 and Young’s inequality, we have

for all t ∈ [0, T) that

∥
∥p ∗ f∥∥L∞ ≤ ‖G‖L∞

∥
∥
∥
∥u

2 +
1
2
u2
x +

1
2
γ2 − 1

2
γ2x

∥
∥
∥
∥
L1

≤ cosh(1/2)
2 sinh(1/2)

(
‖u‖2H1 +

∥
∥γ
∥
∥2
H1

)

=
cosh(1/2)
2 sinh(1/2)

‖z‖2H1×H1 ≤ cosh(1/2)
2 sinh(1/2)

‖z0‖2H1×H1 .

(3.28)

This relation together with (3.7) and ‖γx(t, x)‖L∞ ≤ M implies that there is a constant K > 0
such that

∣∣∣∣g
′(t) +

1
2
g(t) + λg(t)

∣∣∣∣ ≤ K, (3.29)

where K depends only on ‖u0‖H1 and ‖γ0‖H1 . It follows that

−K − 1
2
λ2 ≤ g ′(t) +

1
2
(
g(t) + λ

)2 ≤ K +
1
2
λ2 a.e., on (0, T). (3.30)

Choose ε ∈ (0, 1/2). Since lim inft→ T (y(t) + λ) = −∞ by Theorem 3.5, there is some t0 ∈ (0, T)
with g(t0) + λ < 0 and (g(t0) + λ)2 > K + (1/2)λ2/ε. Let us first prove that

(
g(t) + λ

)2
>

1
ε

(
K +

1
2
λ2
)
, t ∈ [t0, T). (3.31)

Since g is locally Lipschitz, there is some δ > 0 such that

(
g(t) + λ

)2
>

1
ε

(
K +

1
2
λ2
)
, t ∈ (t0, t0 + δ). (3.32)

Note that g is locally Lipschitz (it belongs to W1,∞
loc (s) by Lemma 3.6) and therefore

absolutely continuous. Integrating the previous relation on (t0, t0 + δ) yields that

g(t0 + δ) + λ ≤ g(t0) + λ < 0. (3.33)

It follows from the above inequality that

(
g(t0 + δ) + λ

)2 ≥ (g(t0) + λ
)2

>
1
ε

(
K +

1
2
λ2
)
. (3.34)
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The obtained contradiction completes the proof of the relation (3.31). By (3.30)-(3.31), we
infer

1
2
− ε ≤ − g ′(t)

(m + λ)2
≤ 1

2
+ ε, a.e. on (0, T). (3.35)

For T ∈ (t0, T), integrating (3.35) on (t, T) to get

(
1
2
− ε

)
(T − t) ≤ − 1

g(t) + λ
≤
(
1
2
+ ε

)
(T − t), t ∈ (t0, T). (3.36)

Since g(t) + λ < 0 on [t0, T), it follows that

1
(1/2) + ε

≤ −(g(t) + λ
)
(T − t) ≤ 1

(1/2) + ε
, t ∈ (t0, T). (3.37)

By the arbitrariness of ε ∈ (0, 1/2), the statement of the theorem follows.

4. Blow-Up

In this section, we discuss the blow-up phenomena of (2.7) and prove that there exist strong
solutions to (2.7) which do not exist globally in time.

Theorem 4.1. Let z0 = (u0, γ0) ∈ Hs × Hs, s > 3/2 and T be the maximal existence time of the
solution z = (u, γ) to (2.7) with the initial data z0. If there exists some x0 ∈ S such that

u′
0(x0) < −λ −

√

λ2 +
(
e + 1
e − 1

+
cosh(1/2)
2 sinh(1/2)

)
‖z0‖2H1×H1 , (4.1)

then the existence time T is finite and the slope of u tends to negative infinity as t goes to T while u
remains uniformly bounded on [0, T).

Proof. As mentioned earlier, here we only need to show that the above theorem holds for
s = 3. Differentiating the first equation of (2.7)with respect to x, in view of ∂2xp ∗ f = p ∗ f − f ,
we have

utx + uuxx = −1
2
u2
x + u2 +

1
2
γ2 − 1

2
γ2x − p ∗

(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− λux. (4.2)

Define now

g(t) := min
x∈S

[ux(t, x)], t ∈ [0, T), (4.3)

and let ξ(t) ∈ S be a point where this minimum is attained. It follows that

g(t) = ux(t, ξ(t)). (4.4)
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Clearly uxx(t, ξ(t)) = 0 since u(t, ·) ∈ H3(S) ⊂ C2(S). Evaluating (4.2) at ξ(t), we obtain

utx(t, ξ(t)) +
1
2
u2
x(t, ξ(t)) + λux(t, ξ(t)) = u2(t, ξ(t)) +

1
2
γ2(t, ξ(t)) − 1

2
γ2x(t, ξ(t))

− p ∗
(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
(t, ξ(t))

≤ u2(t, ξ(t)) +
1
2
γ2(t, ξ(t)) +

1
2
p ∗ γ2x(t, ξ(t))

≤ e + 1
2(e − 1)

‖z0‖2H1×H1 +
cosh(1/2)
4 sinh(1/2)

∥
∥
∥γ2x
∥
∥
∥
L1

≤
(

e + 1
2(e − 1)

+
cosh(1/2)
4 sinh(1/2)

)
‖z0‖2H1×H1 ,

(4.5)

here, we used Lemma 3.2 and

∥∥∥p ∗ γ2x
∥∥∥
L∞

≤ ∥∥p∥∥L∞

∥∥∥γ2x
∥∥∥
L1

=
cosh(1/2)
2 sinh(1/2)

∥∥∥γ2x
∥∥∥
L1
. (4.6)

Inequality (4.5) and Lemma 3.4 imply

d

dt
g(t) +

1
2
g2(t) + λg(t) ≤

(
e + 1

2(e − 1)
+

cosh(1/2)
4 sinh(1/2)

)
‖z0‖2H1×H1 , (4.7)

that is,

d

dt
g(t) ≤ −1

2
g2(t) − λg(t) +

(
e + 1

2(e − 1)
+

cosh(1/2)
4 sinh(1/2)

)
‖z0‖2H1×H1 , (4.8)

Take

K :=

√
e + 1

2(e − 1)
+

cosh(1/2)
4 sinh(1/2)

‖z0‖H1×H1 . (4.9)

It then follows that

g ′(t) ≤ −1
2
g2(t) − λg +K2

= −1
2

(
g(t) + λ +

√
λ2 + 2K2

)(
g(t) + λ −

√
λ2 + 2K2

)
.

(4.10)
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Note that if g(0) = u′
0(ξ(0)) ≤ u′(x0) ≤ −λ −

√
λ2 + 2K2, then g(t) ≤ −λ −

√
λ2 + 2K2, for all

t ∈ [0, T). Therefore, we can solve the above inequality to obtain

g(0) + λ +
√
λ2 + 2K2

g(0) + λ −
√
λ2 + 2K2

e
√
λ2+2K2t − 1 ≤ 2

√
λ2 + 2K2

g(t) + λ −
√
λ2 + 2K2

≤ 0. (4.11)

Due to 0 < (g(0) + λ+
√
λ2 + 2K2)/(g(0) + λ−

√
λ2 + 2K2) < 1, then there exists T , and 0 < T <

(1/
√
λ2 + 2K2) ln((g(0)+λ+

√
λ2 + 2K2)/(g(0)+λ−

√
λ2 + 2K2)), such that limt→ Tg(t) = −∞.

This completes the proof of the theorem.

Theorem 4.2. Let z0 = (u0, γ0) ∈ Hs × Hs, s > 3/2, z = (u, γ) be the corresponding solution to
(2.7) with initial data z0 and satisfies ‖γx(t, x)‖L∞ ≤ M, for all (t, x) ∈ [0, T) × S, T be the maximal
existence time of the solution. If z0 satisfies the following condition:

∫

S

u3
0xdx < −3λ‖z0‖2H1×H1 −

√
9λ2‖z0‖4H1×H1 − 2K2‖z0‖2H1×H1 , (4.12)

where K :=
√
((9(e + 1)/4(e − 1)) + (3 cosh(1/2)/4 sinh(1/2)))‖z0‖4H1×H1 . Then the correspond-

ing solution to (2.7) blows up in finite time.

Proof. In view of (4.2), we obtain

d

dt

∫

S

u3
x = 3

∫

S

u2
xuxtdx

= 3
∫

S

u2
x

(
−uuxx − 1

2
u2
x + u2 +

1
2
γ2 − 1

2
γ2x − p ∗

(
u2 +

1
2
u2
x +

1
2
γ2 − 1

2
γ2x

)
− λux

)
dx

= 3
∫

S

(
−uu2

xuxx + u2
xu

2 − 1
2
u4
x +

1
2
u2
xγ

2 − 1
2
u2
xγ

2
x − u2

xp ∗
(
u2 +

1
2
u2
x +

1
2
γ2
)

+
1
2
u2
xp ∗ γ2x − λu2

x

)
dx

≤ 3
∫

S

(
−uu2

xuxx + u2
xu

2 − 1
2
u4
x +

1
2
u2
xγ

2 +
1
2
u2
xp ∗ γ2x − λu3

x

)
dx

= −1
2

∫

S

u4
xdx + 3

∫

S

u2
xu

2dx +
3
2

∫

S

uxγ
2dx +

3
2

∫

S

u2
xp ∗ γ2xdx − 3λ

∫

S

u3
xdx.

(4.13)
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Note that

∥
∥
∥p ∗ γ2x

∥
∥
∥
L∞

≤ ‖G‖L∞

∥
∥
∥γ2x
∥
∥
∥
L1

=
cosh(1/2)
2 sinh(1/2)

∥
∥
∥γ2x
∥
∥
∥
L1
,

∫

S

u2
xu

2dx ≤
∥
∥
∥u2
∥
∥
∥
L∞

∫

S

u2
xdx ≤ e + 1

2(e − 1)
‖z0‖4H1×H1 ,

∫

S

u2
xγ

2dx ≤
∥
∥
∥γ2
∥
∥
∥
L∞

∫

S

u2
xdx ≤ e + 1

2(e − 1)
‖z0‖4H1×H1 ,

∫

S

u2
xp ∗ γ2xdx ≤ cosh(1/2)

2 sinh(1/2)

∥
∥
∥γ2x
∥
∥
∥
L1

∫

S

u2
xdx ≤ cosh(1/2)

2 sinh(1/2)
‖z0‖4H1×H1 .

(4.14)

Thus,

d

dt

∫

S

u3
xdx ≤ −1

2

∫

S

u4
x − 3λ

∫

S

u3
xdx +

(
9(e + 1)
4(e − 1)

+
3 cosh(1/2)
4 sinh(1/2)

)
‖z0‖4H1×H1 . (4.15)

Using the following inequality:

∣∣∣∣

∫

S

u3
xdx

∣∣∣∣ ≤
(∫

S

u4
xdx

)1/2(∫

S

u2
xdx

)1/2

≤
(∫

S

u4
xdx

)1/2

‖z0‖H1×H1 . (4.16)

and letting

g(t) =
∫

S

u3
xdx, (4.17)

we obtain

d

dt
g(t) ≤ − 1

2‖z0‖2H1×H1

g2(t) − 3λg(t) +
(
9(e + 1)
4(e − 1)

+
3 cosh(1/2)
4 sinh(1/2)

)
‖z0‖4H1×H1 . (4.18)

Taking

K :=

√(
9(e + 1)
4(e − 1)

+
3 cosh(1/2)
4 sinh(1/2)

)
‖z0‖4H1×H1 , (4.19)

we get

d

dt
g(t) ≤ − 1

2‖z0‖2H1×H1

(
g(t) + 3λ‖z0‖2H1×H1 +

√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

)

×
(
g(t) + 3λ‖z0‖2H1×H1 −

√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

)
.

(4.20)
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Note that if

g(0) < −3λ‖z0‖2H1×H1 −
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1 , (4.21)

then

g(t) < −3λ‖z0‖2H1×H1 −
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1 , (4.22)

for all t ∈ [0, T). From the above inequality, we obtain

g(0) + 3λ‖z0‖2H1×H1 +
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

g(0) + 3λ‖z0‖2H1×H1 −
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

e

√
9λ2‖z0‖4H1×H1+2K2‖z0‖2H1×H1 t − 1

≤
2
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

g(t) + 3λ‖z0‖2H1×H1 −
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

≤ 0.

(4.23)

Since 0 < (g(0) + 3λ‖z0‖2H1×H1 +
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1)/(g(0) + 3λ‖z0‖2H1×H1 −

√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1) < 1 then there exists

0 < T ≤ 1
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

× ln

⎛

⎜
⎝

g(0) + 3λ‖z0‖2H1×H1 +
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

g(0) + 3λ‖z0‖2H1×H1 −
√
9λ2‖z0‖4H1×H1 + 2K2‖z0‖2H1×H1

⎞

⎟
⎠.

(4.24)

such that limt→ Tg(t) = −∞. On the other hand,

∣∣∣∣

∫

S

u3
xdx

∣∣∣∣ ≤ ‖ux‖L∞

∫

S

u2
x ≤ ‖ux‖L∞‖u‖2LH1 ≤ ‖ux‖L∞‖z0‖2H1×H1 . (4.25)

Applying Theorem 3.5, the solution z blows up in finite time.
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