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This paper describes an algorithm for implementing a perturbation method based on an
asymptotic expansion of the solution to a second-order differential equation. We also introduce
a new symbolic computation system which works with the so-called modified quasipolynomials,
as well as an implementation of the algorithm on it.

1. Introduction

The origin of symbolic manipulation derives from the sheer magnitude of the work involved
in the building of perturbation theories, which made inevitable that scientific community
became interested in the possibility of constructing those theories with the help of computers.

Perturbation theories for differential equations containing a small parameter € are
quite old. The small perturbation theory originated by Sir Isaac Newton has been highly
developed by many others, and an extension of this theory to the asymptotic expansion,
consisting of a power series expansion in the small parameter, was devised by Poincaré (1892)
[1]. The main point is that for the most of the differential equations, it is not possible to obtain
an exact solution. In cases where equations contain a small parameter, we can consider it as
a perturbation parameter to obtain an asymptotic expansion of the solution. In practice, the
work involved in the application of this approach to compute the solution to a differential
equation cannot be performed by hand, and algebraic processors seem to be a very useful
tool.

As explained in [2], the first symbolic processors were developed to work with Poisson
series, that is, multivariate Fourier series whose coefficients are multivariate Laurent series,
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where C].ll""’!;" € R, i,...,in ji,---sjm € Z, and xy,...,x, and ¢1,..., ¢, are called
polynomial and angular variables, respectively. These processors were applied to problems
in nonlinear mechanics or nonlinear differential equations problems, in the field of Celestial
Mechanics.

One of the first applications of these processors was concerned with the theory of
the Moon. Delaunay invented his perturbation method to treat it and spent 20 years doing
algebraic manipulations by hand to apply it to the problem. Deprit et al. [3, 4] prolongated
the solution of Delaunay’s work with the help of a special purpose symbolic processor, and
Henrard [5] pushed it to order 25. This solution was improved by iteration by Chapront-
Touzé [6], and planetary perturbations were also introduced by Chapront-Touzé [7]. At
present, the most complete solution, ELP (Ephemeride Lunaire Parisien) contains more than
50000 periodic terms.

But the motion of the Moon is not the only application of algebraic processors. There
are many problems where the facilities provided by Poisson series processors can lead rather
quickly to very accurate results. As examples, we would like to mention planetary theories,
the theory of the rotation of the Earth (e.g., [8]), and artificial satellite theories (AST). Abad
et al. [9] have analysed the convenience of developing specific computer algebra systems
in order to deal with AST. As it is explained in detail in their work, the series involved in
the computation of the solution through the application of a Lie transformation have a total
amount of almost 2000000 terms.

Nowadays, many general purpose computer algebra packages—as, for example,
Maple, Mathematica, and Matlab—contain tools for the calculation of the solution of
certain classes of ODEs. All these packages have the advantage of being very general, so
they can deal with a lot of problems of different nature. However, if one is interested in
higher order solutions, the most common perturbation methods tend to produce expressions
containing thousands of terms, and their treatment with those general processors becomes
inefficient.

To achieve better accuracies in the applications of analytical theories, high orders of
the approximate solution must be computed, making a continuous maintenance and revision
of the existing symbolic manipulation systems necessary, as well as the development of new
packages adapted to the peculiarities of the problem to be treated.

In order to contribute to the solution of this problem, we have developed a
symbolic computation package (called MQSP) based on the object-oriented philosophy which
manipulates objects of the form

ST X x TSQ te®t (X, cos(wyt) + py sin(wyt)), (12)
30

where n, € N, a,,w,, 0,4, € R, 0, € Z, and 7y,...,7g are real constants with
unknown value. We will refer to those elements as modified quasipolynomials [10].
The kernel of this symbolic processor has been developed in C++. The operations
on series implemented in the manipulator are the usual operations of the Algebra
of quasipolynomials: addition, subtraction, multiplication, multiplication by a scalar,
differentiation with respect to t, and substitution of a quasipolynomial into an undetermined
coefficient.
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We have also constructed a set of subroutines to deal with the solution to the perturbed
differential equation

X+ a1xX +apx =u(t) +ef(x, %), x(tg) = xo, x(tg) = Xo, (1.3)

where ay, a1, to, xo, X0 € R, u(t) is given by (1.2), and

M
f,X) =D foxw X" X7, foey €R (1.4)

x=0 0<v<k

In a previous contribution, the author employed the kernel of this processor to
compute periodic solutions in equations of type (1.3) via the Poincaré-Lindstedt method
[11, 12]. If the unperturbed equation (¢ = 0) has periodic solutions and € is a measure of
the size of the perturbing terms, then the trajectories for the full system will remain pretty
close to those of the nonperturbed system, for any finite period of time ty < t <ty + a (a > 0)
with an error not larger than O(a). In general, even a small perturbation is enough to destroy
periodicity, that is, nonlinearity will end with most of the periodic orbits of the unperturbed
system, but some of them may persist. To calculate those periodic orbits, the solution and the
modified frequency are expanded with respect to the small parameter, allowing to kill secular
terms which appear in the recursive scheme.

The aim of this paper is to construct an algorithm to implement the asymptotic
expansion method [13]. This new implementation is general and does not depend on the
function f(x, x) as given in (1.4), that is, the user does not need to programme the algorithm
described in this paper, and only has to introduce the adequate parameters when calling
the corresponding routine of the package. The code of this specific symbolic system is not
available on internet but it can be provided by contacting its author.

2. Data Structure

The algorithms that can be implemented to perform the basic manipulation on a series and
their efficiency depend on the way a series is coded. An overcoded structure that makes good
use of memory generally requires complex algorithms, which increase the computational
cost in terms of time. On the other hand, an undercoded computational representation of
the terms generates simple algorithms, because the location of all the coefficients can be
obtained directly. However, this scheme presents the inconvenience of being very wasteful
in the memory resources required for the storage of the series [2].

In this section, we follow San-Juan and Abad [14] to introduce the representation of a
mathematical object in a computer. To that purpose, let us introduce the concepts of normal
and canonical functions. Let E be a set of symbolic objects, and let ~ be an equivalence relation
in E, defined as follows: a ~ b if a = b, with a, b € E. Here, the operator = is considered as the
equality on the mathematical object level. Moreover, a = b if a and b are identical as symbolic
objects. A function f : E — E is said to be normal in (E,~) if f(a) ~ aforalla € E, and f
is said to be canonical in (E,~) if it is normal and a ~ b = f(a) = f(b) for all a,b € E. Thus,
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a canonical function provides identical objects when objects are equivalent, that is, when they
represent the same mathematical object.

For the sake of simplicity, let us focus our attention on the set of quasipolynomials in
the independent variable Q[t]. A quasipolynomial is a map u : R — R, defined by

u(t) = Ztnveavt()w cos(wyt) + py sin(wyt)), (2.1)

>0

wheren, € N, a,, w,, A,, and p,, € R. Let us now consider the set of quasipolynomials in the
independent variable t, Q[¢].

2.1. QuasiPolynomials as Symbolic Objects

We look for a canonical representation for each equivalence class defined in Q[t]. For that
purpose, the following operations must be performed over each quasipolynomial.

(1) Let us consider a quasipolynomial u(t) = 3 5o t™e®" (A, cos(wyt) + py, sin(wyt)). If
wy < 0, the following rules must be applied:

sin(—wyt) = —sin(wyt), cos(—wyt) = cos(w,t). (2.2)

(2) The terms of a quasipolynomial will be ordered as follows: let us consider two term
of a quasipolynomial: 7; = "1 e (A1 cos wit+ pp sinwit) and 1, = te%! (A, cos wyt +
U cos wyt). We say that 71 < 7 if (11 < mp) or (n; = np and a; < ap) or (ny = ny,
a1 = ap,and wy < wy) or (11 = Ny, a1 = ap, w1 = wy, and Ay < Ap) or (ng = 1y, ag = ay,
w1 = Wy, )Ll < )Lz, and M1 < ‘uz)

(3) The terms of a quasipolynomial

u(t) = Ztnveavt(lv cos(wyt) + py sin(wyt)) (2.3)

v>0

with identical values of n,, a,, and w, must be grouped together.

2.2, QuasiPolynomials as Computational Objects

In this section, we will consider the basic information which characterizes a quasipolynomial,
as well as the data structure to store it in the computer. This must be done preserving the
canonical representation we have chosen.

Each quasipolynomial is collected in a sorted dynamical list: a sorted list is one in
which the order of the items is defined by some collating sequence. The codification of
each term of the list contained in a quasipolynomial is statical, and given by the following
elements.

(1) A, u € R are the coefficients of the term.

(2) n € Nis the degree of the monomial ¢.
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| (13, 43, w3, A3, p3) @

| (12, a2, w2, Ao, p2) ( )

(m, a1, w1, M, p) ( )

Scheme 1

(3) a € Ris the exponent of the exponential part of the term.

(4) w > 0 is the frequency of the periodic part.

In Scheme 1 we represent the way a quasipolynomial is stored in memory by using a
simple list.

As pointed out in [14], most of the operations involving a series are based on
navigating and searching through the structure that represents the series. For example, the
addition of two quasipolynomials is equivalent to inserting each term of one series into the
other one. So, a good choice of the data structure results in simple and efficient algorithms.
The binary tree resulting seems to be a very useful data structure for rapidly storing sorted
data and rapidly retrieving saved data. A binary tree is composed of parent nodes, or leaves,
each of which stores data and also links to up to two other child nodes (leaves), which can
be visualized spatially as below the first node with one placed to the left and the other to the
right. In this structure, the relationship between the linked leaves and the linking leaf makes
the binary tree an efficient data structure: the leaf on the left has a lesser key value, and the
leaf on the right has an equal or greater key value.

A special type of tree is the red-black tree. In a red-black tree, each node has a color
attribute, the value of which is either red or black. In addition to the ordinary requirements
imposed on binary search trees, the following additional requirements of any valid red-black
tree apply: A node is either red or black. The root is black. All leaves are black, even when
the parent is black. Both children of every red node are black. Every simple path from a node
to a descendant leaf contains the same number of black nodes. A critical property of red-
black trees is enforced by these constraints: the longest path from the root to a leaf is no more
than twice as long as the shortest path from the root to a leaf in that tree. The result is that
the tree is roughly balanced. Since operations such as inserting, deleting, and finding values
requires worst-case time proportional to the height of the tree, this fact makes the red-black
tree efficient, for instance, the search-time results to be O(log n).

With the use of this structure, the complexity of the algorithms for addition,
multiplication, derivation, and integration of quasipolynomials is significantly reduced.
Unfortunately, this structure, which results to be ideal for Poisson series, cannot be applied
directly in our case due to the fact that the numbers which identify each term of a
quasipolynomial are not indexed arrays. However, an alternative aggrupation of terms in
a quasipolynomial can be performed in order to introduce this balanced structure. To do that,
let us express a quasipolynomial as follows:

u(t) = > Cpr(t)e™ cos(wyt) + Sgp(t)e™ sin(wyt), (2.4)

v>0



6 Journal of Applied Mathematics

02, + l/,u2,i +1 [—

02,i, H2,i
SIN o2i=Lpi=1 |—:
<0> (az, wn) <9—>
COs vyi+1, A0 +1 —>
Vo, Ao
vi—1,4i -1 —
oL+l +1 >
O1,i, H1,i
SIN oi-Lpu,i-1|—
ORZNCES
vii+LAi+1 —
CcOs
Vi, Ay
vi-L-1—"
Scheme 2

where C,,(t) and S, ,,(t) are polynomials in the variable t with constant coefficients, of degree
p and g respectively, being p, g € N:

Cp,v(t) =g+ Mt + )thZ 4ot /\ptp/
2.5)
Sq,v(t) = o + pat + /121’2 e qutq,

with Ao, Ay, ..., Ay, po, p1, ..., 1g € R. If we aggrupate terms of a quasipolynomial in such a
manner, we can use a tree structure to store it, saving only significant terms. In Scheme 2 we
show the tree structure in which the quasipolynomial is stored.
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c=7,u=3
c=4,pu=-1
SIN oc=lu=1
OEmC
COSs v=71=-1
v=3,1=8
v=1,1=3
Scheme 3

In Scheme 2 we show how we store in memory the quasipolynomial

u(t) = C1(t)e™! cos(wit) + Sy (t)e ! sin(wit) + Co(t)e™! cos(wst) + Sy (t)e™ sin(wyt),
(2.6)

where

Ci(t) = Z .lLitvl'i, S1(t) = Z i, o

iEHC,l iEHS,l
(2.7)
CZ(t) = Z ./\,2,itV2,i, Sz(t) — Zﬂz,itaz’i/

i€lcy i€lsy

with I¢,; and Is; being sets of indices forany j = 1,2, v;; > 0and A;; #0 forany i € Ic,1, v, > 0
and A,;#0 forany i € Icp, 01; 2 0 and p1;#0 for any i € Ig, and 02; > 0 and pp; #0 for any
i € I55. Moreover, vj;1 < vj; < vj;;1 and 0j;-1 < 0j,; < 041 for any j =1, 2 and i belonging to
the corresponding set of indices.

To illustrate the way a quasipolynomial is stored by means of the tree structure
described above, we show in Scheme 3 the structure associated to the quasipolynomial given

by

u(t) = <3t + 83— t7> e? cost + e* sin t<t -t 3t7>. (2.8)
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Table 1: Some examples of representation of terms.

Term A " o1 1o 03 Oy n a w
37774 cos(5t) 3 0 2 0 0 0 0 5
-T2t e sin(3t) 0 -1 1 2 0 7 -1 3
271, 7ite* cos(3t) 2 0 0 1 2 0 1 2 3

2.3. Modified QuasiPolynomials as Computational Objects

In our symbolic system, we represent a modified quasipolynomial by an ordered and
dynamical list of terms, keeping in memory only significant terms. The codification of a term
is statical, and given by the following elements.

(1) A, p € R are the coefficients of the term (for cos and sin, resp.).

(2) (01,...,09) € ZR. For each 0 < v < Q, 0, represents the exponent of the
undetermined coefficient 7,,.

(3) n € Nis the degree of the monomial ¢.
(4) a € Ris the exponent of the exponential part of the term.

(5) w > 0 is the frequency of the periodic part.

We have included the two following additional vectors, which are common to all the
terms of a modified quasipolynomial:

(1) (my,...,mq) € {0,1}Q. For each 0 < v < Q, m, = 0 indicates that 7, is a coefficient
with unknown value, while m, = 1 implies that 7, has a real value assigned,

(2) T = (11,...,79) € RO If the coefficient 7, has a real value assigned, its content is
given by 7,, foreach 0 <v < Q.

It is also absolutely essential to store the number of undetermined coefficients that are
currently in use, to generate correctly new undetermined constants if needed. In Table 1 we
illustrate the way a term is coded with a few examples, where it has been assumed that Q = 4.

3. Design of the Symbolic System in C++

As pointed out in [15], object-oriented programming using C++ provides many advantages
in the design of computer algebra systems, as this programming technique combines both
the data and the functions that operate on that data into a single unit (called class). The main
reasons given by Hardy et al. to use C++ to implement a symbolic system are as follows.

(1) C++ allows the introduction of abstract data types. Thus, we can define a modified
quasipolynomial as an abstract data type.

(2) The language C++ supports encapsulation, inheritance, polymorphism, and
operator overloading. Consequently, we can overload the operators +, —, and *
for modified quasipolynomials, as well as * and/for multiplication and division
of modified quasipolynomials by real numbers.

Some symbolic computation systems have been constructed in C++. MuPAD is a
computer algebra system developed by the MuPAD research group at the University of
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typedef Term *serie;
class MQ
{
public:
[definition of functions]
private:
serie first;

Algorithm 1: C++ code for the definition of a modified quasipolynomial.

Paderborn, in Germany. This symbolic system manipulates formulas symbolically and
provides packages for linear algebra, differential equations, number theory, statistics, and
functional programming, as well as an interactive graphic system that supports animations
and transparent areas in 3D. MuPAD also offers a programming language that supports object-
oriented programming and functional programming [16].

Symbolic C++ also uses C++ to develop a computer algebra system. This package
introduces the Symbolic class which is used for all symbolic computation, and provides
almost all of the features required for symbolic computation including symbolic terms,
substitution, noncommutative multiplication, and vectors and matrices.

Both symbolic systems could have been used to implement the algorithm over a
general symbolic class. However, as the goal of the symbolic system we are developing is
to handle modified quasipolynomial to apply perturbation methods to solve some types of
differential equations, we have constructed it directly over C++, instead of using some other
symbolic processor.

The specific symbolic processor designed is written in clean C++ code, is very portable,
it can compile stand-alone, and is easily embeddable. It implements a new data type, called
MQ, which represents a series of the form given by (1.2). The class MQ is defined as an ordered
and dynamical list of terms. To that end, we have also defined a class associated to the
structure of a term of a modified quasipolynomial, called Term. The definition of these two
classes in C++ code is shown in Algorithms 1 and 2, respectively.

The set of routines developed includes: addition, subtraction and product of series,
multiplication of a series by a-real number, differentiation with respect to ¢, and computation
of the solution to a linear second-order differential equation of type

X+ a1x + apx = u(t), (3.1)

where u(t) is a modified quasipolynomial presenting undetermined coefficients, and
computation of the solution to (1.3) via the asymptotic expansion method. These two
algorithms are described in detail in Sections 4 and 5, respectively.

The basic algebra associated to quasipolynomials is easily implemented because
of the undercoded data scheme chosen for their computational representation. Thus, for
example, the addition of two quasipolynomials is performed by directly juxtaposing both
quasipolynomials, arranging the resulting series, and joining terms with equal elements. In a
similar way;, the rest of algebraic operations are simply implemented.
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class Term
{
public:
Term ();
Term (double L, double M,
int *sigm, int m, double alph, double omeg,
Term *nxt);
~Term ();
private:
double lambda, mu;
int *sigma, n;
double alpha, omega;
Term *next;
friend class MQ;

};

Algorithm 2: C++ code for the definition of a term of a modified quasipolynomial.

4. Solution of a Linear Second-Order ODE

The general solution to a nonhomogeneous differential equation can be expressed as the sum
of general solutions to the corresponding homogenous, linear differential equation and any
solution to the complete equation [17]. The solution to the homogeneous ODE is expressed
in terms of the roots of the characteristic equation, a% + aja + ap = 0, and it is well-known.
We will resume now the formulae that are required to construct a particular solution to a
complete ordinary differential equation of second-order (3.1). Without loss of generality, we
will assume that u(t) is written as follows:

u(t) = Ze“”t(pv,n(t, T) cos(wyt) + Gym(t, T) sin(wyt)), (4.1)

v>0

where a,w € R, and p,,(t, T), and g, (t, T) are nth and mth degree polynomials in t with
undetermined coefficients respectively, of the form

Pon(t, T) = Uy + Upit + -+ Uy ut", q,, wET) =00+ 0yt + oo Oyt (4.2)
being
ok Ov,p,1 Ov,p,Q ok O-::,p,l a:,p,Q
Upp = Uy, Ty " X X T, Uyp =Ty, Ty X X T, (4.3)
with u:‘,,p, v;‘;,p €R, 0y, G:W. €7,1<i<Q,0<p<nforuy,, and 0 < p <mforo,,.

The principle of superposition is applied to calculate the particular solution, so we can
focus our attention on the computation of a particular solution to the equation

¥+ a1k + apx = e (pu(t, 7) cos(wt) + gm(t, T) sin(wt)), (4.4)
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where
Pn(t, T) = up + ust + - + u,t", Gm(t,T) =vo + U1t + - +Opt", (4.5)
being
_ % Opl Op,Q % U*,l O-*,Q
up—up‘rl” x---XTQ”, vp—vprlp ><---><TQ”, (4.6)

withu;;,v; ER,O‘FI,',G;I- €7,1<i<Q,0<p<nforu, and 0 < p < m for v,.
At this point, we will distinguish two cases depending on if w = 0 or w #0.

Case 1. Let us consider the second-order ODE (4.4), with w = 0. Then, the equation is written

as

¥+ arx + apx = pu(t, 7)e™, (4.7)

where p,(t, T) is given by (4.5).

Subcase 1.1. 1f a* + a1a + ag # 0, the particular solution to the complete differential equation is
expressed as

x(t) = <a0(7') +a (Tt +ap(T) + -+ zxn(T)t")e“t. (4.8)

Thus, substituting x(t) and its derivatives in (4.7), we get that

uy(T) Uy-1(7) — (a1 + 2a)na, (1)

— , 49
a’+aja+ a (49)

an(T) = an-1(7) =

a’+aja+ ag

and, foranyp <n-1,

up(1) = (a1 +2a)(p+ D apa () - (p+1)(p+ 2)a,,+2(‘r).

4.10
a’+aja+ ag (4.10)

ap (1) =

Subcase 1.2. If a® + a1 + ap = 0 and a% #4ay (i.e, a# — a1/2), the particular solution can be
written as

x(t) = (zxo(r)t o (TP + a(T) B + - + an(T)t"+1>e“t. (4.11)



12 Journal of Applied Mathematics

Now, the substitution of x(t) and its derivatives into (4.7) leads to the following formula for
“n (T) 7

__ ua(7)
an(7) = m, (4.12)
and, foranyp <n-1,
() = uy (1) — (p+1)(p +2)ap1 () ' (4.13)

Ra+a)(p+1)

Subcase 1.3. If a® + aja + ag = 0 and af = 4ay (i.e., a = —a1/2), the particular solution can be
written as

x(t) = (l)fo(T)f2 +ay (T)E + ()t + -+ an(’r)t"+2>e”t. (4.14)

Now, the substitution of x(f) and its derivatives into (4.7) leads to the following formula for
“P(T)/

up(T)

m, p=0,...,7’l. (415)

ap (7) =

Case 2. Let us consider the second-order differential equation (4.4), where now w #0. There
are two possible situations:

(1) a + iw is not a root of the characteristic equation, that is, a # — a;1/2 or

w#\[4ay— a3 /2,

(2) a £ iw is a root of the characteristic equation, that is, ¢ = —a;/2 and w =
\/4ag — a3/2.

Subcase 2.1. Let us call N = max{n, m}. Then,

x(t) = (ao(T) + a1 (T)t + -+ + an (1)) e cos(wt)

(4.16)
+(po(7) + p1(T)t+ -+ + pn ()Y ) e™ sin(wt).
Now, if we assume pn (t, 7) and gn (¢, T) to be
pn(t,T) = up(T) + ug ()t + -+ + uN(T)tN, gn(t, ) =vo(T) + o1 (T)t+ - + vN(T)tN,

(4.17)
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and substitute x(t) and its derivatives into (4.4), we get that

(7) 1 |un(7) w(a +2a)
an(t) = — ,
N Alon(T) ag+ aja + a® — w?
(4.18)
1 |ag + a1 + a® — w?

pn(r) = 1 e

—w(a; + 2a) oN(T) ’

where A = (ag + a1 + a2 — w?)? + w?(ay + 2a)*. Note that A #0, because ag + ara + a2 — w? #0
or w(2a + a;) #0. Now, we can compute an_1(T) and pn-1(T) by solving the system

un-1(7) = N(a; +2a) an(t) —2Nwpn(T)
= (ao +tma+a’ - w2>(xN_1(T) + (aiw + 2aw) pn-1(T),
(4.19)
ON-1(T) = N (a1 + 2a)pn(T) + 2Nwan (1)

=—w(a; +2a)an-1(T) + <a0 +aa+a’ - w2> pn-1(T).

As before, this system can be solved by applying the Cramer’s rule. Finally, forany p < N -1,
we have to solve the system in a,(7) and p,(7), as follows:

up(t) = (p+2)(p+1) apa(7) = (p+1) (a1 + 2a) ap1 (1) —2(p + 1) wpp (T)

= <a0 +aa+a® - an)DCP(T) +w(ar +2a)py (1),

(4.20)
(1) = (p+2)(p+1) ppaa(T) = (p+1) (a1 +2a) ppa1 (1) +2(p + 1) waty,1 (7)
= —w(ay +2a)ay(T) + <a0 +aa+a® - a)2)pp(r).
Subcase 2.2. Now we consider the case where a = —a;/2 and w = \/4ag — a%/ 2. This implies

that a; +2a = 0 and a® - w? + aja + ag = 0. In this case, the particular solution adopts the form

x(t) = (th (D)t + a1 () + ap(T)E + -+ + aN(T)tN”)e”‘t cos(wt)
(4.21)
+ <po(7')t +p1 (1)t + pz(T)t3 +ot pN(T)tN”)e”‘t sin(wt),
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and substituting x(t), x(t), and %(t) into (4.4), we obtain

__un(?) ___oN(7)
O VS TINES 172L
(P+1D)(p+2) (P+)(p+2) -
(1) = (p+1)(p+2)apn (1) = (p+ 1) (p+2)ppa
pr(T) = 2(p+ 1w ’ o (7) = 2(p+1)w !
forany p < N.

From (4.8)—(4.22), it is a straightforward task; the derivation of an algorithm for the
computation of the solution to (4.4).

5. Computation of the Solution to the Perturbed Problem

The symbolic package is thought to compute the solution to (1.3). The standard approach
[13] is to try a power series solution of the form

x(t,€) = xo(t) + x1(t) €+ x2(t) €2 +--- . (5.1)

This series is inserted into the governing equation and initial conditions, and coefficients
of same powers of e are then grouped to obtain a collection of equations for the coefficient
functions x;(t), which are then solved in a sequential manner. The resulting series need not
converge for any value of €; nevertheless, the solution x(¢, €) can be useful in approximating
the function when € is small.

Considering the zero-order term in e yields

Xo + arxo + apxo = u(t), x(to) = xo, x(to) = Xo, (5.2)

the so-called nonperturbed problem. The symbolic manipulation system calculates the
solution to a differential equation of the form (5.2), and arranges it as a quasipolynomial,
as it has been described in detail in the previous section.

The coefficient x,(t) of the solution to the order g > 1 is computed by solving the
equation

M
g+ mig+aoxg =Y, D foxw (X7 ), xq(to) =0, %q(t)) =0, (5.3)

k=0 0<v<k

where the notation (x”x*7"), refers to the gth order term of the series x”x*™”.
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At each order of the solution, the series (x")q, (x%) @ and (x”x*7) ; must be computed
once the order g has been solved, for each g > 0, following the formulae

()= 3 (F7), @ (5.4)

0<p<q

(xvxkfv)q — Z (x'n))p (xk—v>q_p.

0<p<q

According to this, the algorithm to apply the asymptotic expansion method to solve
the initial value problem given by (1.3), consists of the following steps.

(1) Define a three-dimensional array of quasipolynomials X (p1, p2, q), where p1,p2,q €
N,0< p1, p2 £ M, and 0 < g < Q, Q being the order of the asymptotic expansion.

(2) Define an array of quasipolynomials x(p), where 0 < p < Q.

(3) Initialize X(0,0,0) = 1, and proceed as follows:

(3.1) Compute X(1,0,0) as the solution to (5.2).
(3.2) Compute X(0,1,0) = d/dt(X(1,0,0)).
(3.3) Calculate, for each p such that2 < p < M,

X(p,0,0) = X(1,0,0) x X(p - 1,0,0),

(5.5)
X(0,p,0) = X(0,1,0) x X(0,p —1,0).
(3.4) For each p1, ps such that 1 < py, p» < M, determine the quasipolynomial
X(p1,p2,0) = X(p1,0,0) x X(0,p,0). (5.6)
(4) For each g such that 1 < g < Q, do the following.
(4.1) Compute the quasipolynomial
M
U=> > forpxX(px-p,g-1). (5.7)
x=0 0<p<x
(4.2) Calculate X(1,0, q) as the solution to (5.3),
3'c’q + alxq + apxg = U, xq(to) =0, xq(to) =0. (58)

(4.3) Compute X(0,1,9) =d/dt(X(1,0,9)).



16 Journal of Applied Mathematics

(4.4) Calculate, for each p such that2 < p < M,

X(p,0,q) = X X(p~1,0,p) xX(1,0,4-p),

0<p<gq

(5.9)
X(0,p,9) = >, X(0,p-1,p) xX(0,1,4~p).
0<p<q
(4.5) For each p1, p> such that 1 < p;, p» < M, compute
X(p1p2,9) = D, X(p1,0,p) x X(0,p2,9 - p). (5.10)
0<p<q

(5) For each psuch that0 < p < Q,

x(p) =X(1,0,p),  x(t)= D, e’x(p). (5.11)

0<p<Q

The input arguments of the algorithm consist of the order Q of the asymptotic
approximation, the coefficients aj, ag of the differential equation, the real values ¢y, xp, and
xo which define the initial conditions of the problem, the quasipolynomial u(t), and the
perturbed part of the equation f(x,x). As f can be written as given in (1.4),

M
f(x,D'C) = Z Z fv,;cfv x¥ X7, (512)

k=0 0<v<k
it can be specified by a real (M + 1) x (M + 1) matrix,

foo  for - fom 1

fio fu - fim x
f,x)=(1 x - M o ‘ ) (5.13)

fmo fmr oo fmm x

The parameter M is also required as input.
The output argument of the algorithm is the array x(p) containing the coefficients of
the asymptotic expansion. The asymptotic approximation to the order Q is given by

x(t) = Z e’x(p). (5.14)

0<p<Q
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MQ xdx [M+ 1] [M+ 1] [ORDER + 1]; Define a three-dimensional array of quasi

polynomials X (p1,p2,q), where pi,p,q €
N,0<p,pp<M and0<g<Q, being
Q the order of the asymptotic expansion.

MQ *s; Define an array of quasipolynomials x(p),
s=new MQ [ORDER+1]; where 0 < p < Q.

int i, j, k, p, 9 nu Definition of auxiliary variables.

MQ U;

Algorithm 3: Implementation of the algorithm. Steps (1) and (2).

xdx [0] [0] [0].add Initialize X(0,0,0) = 1.

(1., 0., 0, 0., 0.);

xdx [1] [0] [0] = u.solvePVI Compute X(1,0,0) as the solution to (5.2),
(al, a0, t0, x0, dx0); and X(0,1,0) = d/dt(X(1,0,0)).

xdx [0] [1] [0] = xdx [1] [0] [0].der O);

Algorithm 4: Implementation of the algorithm. Steps (3.1) and (3.2).

for (i=2;i<=m i++){ Calculate, for each p such that2 < p < M,
xdx [i] [0] [0] =

xdx [1] [0] [0] *xdx [i—1] [0] [O]; X(p,0,0) =X(1,0,0) x X(p—-1,0,0),

xdx [0] [i] [O% =

xdx [0] [1] [0] *xdx [0] [i—-1] [0];  X(0,p,0) = X(0,1,0) x X(0,p - 1,0).
)
for (i=1; i<=m; i++) For each p;, p2 such that 1 < py,pp < M,
for (j=1; j<=m; j++) determine the quasipolynomial
xdx [i] [j] [0] =
xdx [i] [0] [0]+xax [0] [3] [0]; X(p1,p2,0) = X(p1,0,0) x X(0, p2, 0).

Algorithm 5: Implementation of the algorithm. Steps (3.3) and (3.4).

6. On the Implementation of the Algorithm

In Algorithms 3, 4, 5, 6, and 7 we show the C++ code for the implementation of the algorithm
as described in Section 5, omitting error control sentences for the sake of simplicity. The head
of the definition of the function that implements the algorithm is shown below.

MQ #solveAM (double al, double a0, double t0O, double x0, double dx0O, MQ
u, double *xf, int m, int order)
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for (gq=1; g<=order; q++)

U=Ux0. ;
for (k=0; k<=m; k++)
for (nu=0; nu<=k; nu++)

U =10+ xdx [nu] [k-nu] [q-1]
*f [nu] [k-nul;

xdx [1] [0] [q] = U.solvePVI
(a1, a0, t0, 0., 0.);
xdx [0] [1] [q] = xdx [1] [0] [q].der O;

for (i=2; i<=m; i++)
for (nu=0; nu<=q; nu++) {
xdx [i] [0] [q] = xdx [i] [0] [q]
+ xdx [i-1] [0] [nu]
xxdx [1] [0] [q —nu];
xdx [0] [i] [q] = xdx [0] [i] [q]
+ xdx [0] [i-1] [nu]
} *xdx [0] [1] [q—nu];

for (i=1; i<=m; i++)
for (j=1; j<=m; j++)
for (nu=0; nu<=q; nu++)
xdx [i] [3] [a] =
xax [i] [3] [a]
+ xdx [i] [0] [nu]
*xdx [0] [j] [q—nu];

For each g such that1 < g < Q, do:

Compute the quasipolynomial

u=3xY, Docpen forp X X(px = p,q-1).

Calculate X (1,0, q) as the solution to (5.3),
Xg+a1xy +aoxg = U,
x4(t0) =0, x4(to) =0,
and X(0,1,9) =d/dt(X(1,0,9)).
Calculate, for each p such that2 < p < M,
X(Pl 0/ Q) = Zogpgq X(P - 1/ 0/ P)

XX(ll 0/ q- P)/
X(0,p,9) = Zocpeq X(0,p = 1,p)

xX(0,1,9-p).
For each py1, po such that 1 < py,pp < M,
compute
X(Plf P2, 17)

= Z()gpgq X(Plr O/ P) X X(O/ pZIq - P)-

Algorithm 6: Implementation of the algorithm. Step (4).

7. Example

Let us consider the initial value problem given by

i+x=¢€ (—x3—x> =€ f(x,x),

x(0) =1, x(0) =0, (7.1)

where ¢ = 1071. Here, a; =0, a0 = 1,0 =0, x0 =1, %o = 0, M = 3, and f is defined by the

following 4 x 4 matrix:

0 -1

0 0
F =

0 0

00

00
(7.2)
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for (i=0; i<=order; i++){ Foreachpsuchthat0<p<Q,

[i] = xdx [1] [0] [i];

s [i] .normalice (); x(p) = X(1,0,p), and x(t) = S <0 €7 x(p)-
s [i].order ();

[i].join Q);

[i] .neglect (PREC);

n

S
S

Algorithm 7: Implementation of the algorithm. Step (5).

2 m

Figure 1: Comparison between a fourth order symbolic and a numerical solution.

In Table 2 we show the output generated from the symbolic manipulator, just to order
nine for the sake of simplicity, as the number of terms of the asymptotic expansion increases
very quickly with the order of the expansion.

In Figure 1, we show a comparison of the solution computed through the symbolic
method (to the fourth-order of the solution) presented in this paper, and the numeric solution
to the problem calculated by a Runge-Kutta fourth-order method with a step of h = 0.001. Let
us stress that the difference between both solutions at any time is smaller than 1077. The
numerical solution has been calculated with the only purpose of validating the symbolic
solution, as it is not the goal of this paper to develop a numerical tool.

In Table 3, we compare the CPU time of the algorithm implemented with MQSP and
Maple running on an iMac 2.8 GHz Intel Core 2 Duo. For the test problem described by (7.1),
we have calculated the solution up to order 14. In Table 3, we show the CPU time for the
different orders of the solution from xy(t) (nonperturbed problem) to x14(t). The computation
time of x4(t) with the use of the dsolve command of Maple in the implementation of the
algorithm is larger than 100 000 seconds. This is due to the fact that dsolve is a general solver
which handles different types of ordinary differential equations. We have also computed
the symbolic solution taking into account the linearity of (7.1) and implementing a routine
following the algorithm detailed in Section 4. These CPU times are given in the fourth column
of Table 3. For orders of the solution larger than 11, Maple does not give any response. We can
see that the difference between MQSP and Maple in terms of CPU time is significant.
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Table 2: Some coefficients of the asymptotic expansion of the solution to (7.1).

X0 = +1.000000 cos(t)

X1 = —0.031250 cos(t) +0.031250 cos(3t) +0.500000 sin(#)
—0.500000¢ cos(t) -0.375000¢ sin (t)

Xy = +0.022461 cos(t) —0.023438 cos(3t) +0.000977 cos(5t)
+0.226563 sin(t) +0.070313 sin(3¢) -0.390625¢ cos(t)
—0.046875t cos(3t) -0.031250¢ sin(t) -0.035156¢ sin(3t)
+0.05468812 cos(t) +0.375000£2 sin ()

X3 = +0.047760 cos(t) —0.046326 cos(3t) -0.001465 cos(5t)
+0.000031 cos(7t) +0.122640 sin(t) -0.005859 sin(3t)
+0.003988 sin (5¢) ~0.201660¢ cos(t) +0.079102¢ cos(3t)
—0.002441¢ cos(5t) -0.133057¢ sin(t) -0.059692¢ sin(3t)
—0.001831t sin(5¢) +0.103760¢2 cos(t) +0.0153812 cos(3t)
+0.140625t2 sin(t) +0.070313t2 sin(3t) +0.084635¢% cos(t)
—0.194336¢3 sin(t)

X4 = +0.031557 cos(t) -0.025802 cos(3t) —0.005688 cos(5t)
—0.000069 cos(7t) +0.000001 cos(9t) +0.314784 sin ()
+0.001236 sin(3t) -0.003563 sin(5¢) +0.000181 sin(7¢)
—0.329605t cos(f) +0.018219¢ cos(3t) +0.009552¢ cos(5¢)
—0.000107¢ cos(7t) -0.441519¢ sin(t) +0.023666t sin(3t)
~0.006212¢ sin(5¢) ~0.000080¢ sin(7t) +0.340805¢2 cos(t)
-0.113068t2 cos(3t) +0.001335¢2 cos (5t) +0.323486t2 sin(t)
-0.007141#2 sin(3t) +0.005493¢2 sin (5¢) -0.11356613 cos(t)
+0.031860¢° cos(3t) -0.168498¢% sin(t) -0.06436213 sin(3t)
-0.081533t* cos(t) +0.060547t* sin(t)

X5 = +0.101090 cos(t) -0.103018 cos(3t) +0.002327 cos(5t)
—0.000396 cos(7t) —0.000003 cos(9t) +0.000000 cos(11#)
+0.567049 sin(t) +0.011443 sin(3t) -0.003304 sin(5¢)
~0.000300 sin(7¢) +0.000007 sin(9¢) ~0.630124¢ cos(t)
+0.042347t cos(3t) +0.004305t cos(5t) +0.000649t cos(7t)
~0.000004 cos (9¢) ~0.861960¢ sin(t) ~0.136819¢ sin(3t)
+0.014968t sin(5¢) —0.000407¢ sin(7t) —0.000003¢ sin(9t)
+0.769419¢t? cos(t) +0.05682112 cos(3t) -0.019625¢2 cos(5t)
+0.000082t2 cos(7t) +0.653250¢2 sin(t) -0.00904712 sin(3t)
-0.002311#2 sin(5¢) +0.000320¢2 sin(7t) -0.271820¢3 cos(t)
+0.077614#3 cos(3t) +0.003465¢3 cos(5t) ~0.512211#3 sin(t)
+0.066607t> sin(3t) —0.007243¢° sin(5t) +0.084625t* cos(t)
~0.054769¢t* cos(3t) +0.110530#* sin(#) +0.027557#* sin(3t)
+0.046019#° cos(t) -0.005018t° sin(t)

Xg = +0.041699 cos(t) -0.035635 cos(3t) —0.006540 cos(5t)
+0.000498 cos(7t) —0.000022 cos(9t) —0.000000 cos(11t)
+0.000000 cos(13t) +1.753506 sin (f) -0.124680 sin(3t)
+0.000293 sin(5t) —0.000409 sin(7t) —-0.000018 sin(9t)
+0.000000 sin(11#) —1.732879¢ cos(t) +0.361830¢ cos(3t)
—0.007317t cos(5t) +0.000416¢ cos(7t) +0.000035¢ cos(9t)
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Table 2: Continued.

~0.000000¢ cos(11¢) ~1.950362¢ sin(t) +0.090323¢ sin(3t)
—0.009679¢ sin(5t) +0.001762¢ sin(7t) —0.000022¢ sin(9t)
~0.000000¢ sin(11f) +1.7532962 cos (t) ~0.260570#2 cos(3t)
+0.0147632 cos(5t) ~0.001785¢2 cos(7t) +0.000004£2 cos(9t)
+1.911049¢2 sin(t) +0.270222¢2 sin(3t) —0.022385¢2 sin(5¢)
-0.000220¢? sin(7t) +0.000016¢2 sin(9t) ~1.003710#3 cos(t)
~0.074659¢3 cos(3t) +0.018743% cos(5t) +0.000255£3 cos(7t)
~1.212436# sin(t) —0.124235¢3 sin(3t) +0.019212#3 sin(5¢)
-0.000552£3 sin(7t) +0.305366t* cos(t) -0.009847t* cos(3t)
-0.008565t* cos(5t) +0.511480#* sin(t) -0.077788t* sin(3t)
+0.004177t* sin(5¢t) —0.061540f° cos(t) +0.046341£° cos(3t)
—0.067702#° sin(t) +0.007443¢° sin(3t) —0.0188891° cos(t)
~0.007806t° sin ()

Xy = —0.030141 cos(t) +0.026721 cos(3t) +0.003535 cos(5¢)
~0.000160 cos(7t) +0.000046 cos(9¢) ~0.000001 cos(11¢)
—0.000000 cos(13t) +0.000000 cos(15¢) +5.481497 sin(t)
+0.136811 sin(3t) —0.022934 sin(5t) +0.000391 sin(7t)
—0.000032 sin(9t) —0.000001 sin(11¢) +0.000000 sin(13¢)
—5.726072t cos(t) —0.099462t cos(3t) +0.047957t cos(5t)
—0.002159¢ cos(7t) +0.000029t cos(9¢) +0.000002¢ cos(11¢)
~0.000000¢ cos(13t) ~5.240757 sin(t) +0.347041t sin(3t)
+0.020306¢ sin(5¢) —0.000669¢ sin(7t) +0.000136¢ sin(9¢)
—0.000001¢sin(11¢#) —0.000000¢ sin(13¢) +4.89856812 cos(t)
-0.633927t2 cos(3t) -0.017751#2 cos(5t) +0.00204442 cos(7t)
-0.000122#2 cos(9t) +0.000000#? cos(11t) +5.910751# sin(t)
—0.423093¢2 sin(3t) +0.042183¢2 sin(5¢) —0.003593¢2 sin(7¢)
-0.000015¢2 sin(9t) +0.000001#2 sin(11t) —3.289085¢3 cos(t)
+0.621827+ cos(3t) -0.037683t3 cos(5t) +0.002208¢3 cos(7t)
+0.000015£3 cos(9¢) -3.616263t3 sin () ~0.2888473 sin(3t)
+0.002661# sin(5¢t) +0.002305¢3 sin(7¢) —0.000034#3 sin(9¢)
+1.238058t* cos(t) —0.002983t* cos(3t) —0.002782t* cos(5t)
~0.000822t* cos(7t) +1.664171#* sin(f) +0.252574t* sin(3t)
—0.030580¢* sin(5¢) +0.000408¢* sin(7¢) —0.311598¢° cos(t)
-0.037610t° cos(3t) +0.009709¢#° cos(5t) —0.443419¢#° sin(t)
+0.0452861° sin(3t) +0.002005¢° sin(5t) +0.041874t° cos(t)
—0.0238621 cos(3t) +0.045263t6 sin(t) —0.022910¢° sin(3t)
+0.005561+” cos(t) +0.006555¢” sin(t)

Xg = +0.707697 cos(t) —0.737652 cos(3t) +0.029647 cos(5t)
+0.000299 cos(7¢) +0.000006 cos(9¢) +0.000003 cos(11¢)
~0.000000 cos(13t) ~0.000000 cos(15¢) +17.859287 sin(t)
+0.537553 sin(3t) +0.020622 sin(5¢) ~0.001769 sin(7¢)
+0.000063 sin(9t) —0.000002 sin(11¢) —0.000000 sin(13¢)
+0.000000 sin(15¢) ~19.388600¢ cos (t) ~0.105739¢ cos(3t)
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Table 2: Continued.

—0.072738t cos(5t) +0.004113¢ cos(7t) —0.000258t cos (9t)
+0.000002¢ cos (11¢) +0.000000¢ cos (13t) —0.000000¢ cos (15¢)
~16.767762t sin(t) —0.906868t sin(3t) +0.089594¢ sin(5¢)
+0.000388t sin (7t) —0.000052¢ sin (9¢t) +0.000008¢ sin (11¢)
~0.000000¢ sin (13t) —0.000000¢ sin (15¢) +16.120089¢2 cos(t)
+0.421931#2 cos(3t) —0.092803¢2 cos(5t) +0.0014182 cos(7t)
+0.000192#2 cos(9¢t) —0.000007#2 cos(11t) +0.000000¢2 cos(13t)
+19.608050¢ sin(t) —0.420458¢> sin(3t) —0.128984+2 sin(5t)
+0.005901#2 sin(7t) —0.000351#2 sin(9t) —0.000001#2 sin(11¢)
+0.000000#2 sin(13t) —11.0423561% cos(t) +0.8758713 cos(3t)
+0.101426¢3 cos(5t) —0.006986¢> cos(7t) +0.00018713 cos(9t)
+0.000001# cos(11t) —12.224352¢% sin(t) +0.801292+3 sin(3t)
—0.047084+° sin(5t) +0.002053# sin(7t) +0.000194£° sin(9t)
—0.000002t3 sin(11t) +4.715957t* cos(t) -0.906645t* cos(3t)
+0.033974t* cos(5t) —0.000385t* cos(7t) —0.000061#* cos(9t)
+5.809016t* sin(t) +0.172731#* sin(3t) +0.039748t* sin(5¢)
—0.004671t* sin(7t) +0.000031¢* sin(9t) —1.468495t5 cos(t)
+0.1324408° cos(3t) —0.017574# cos(5t) +0.001171#° cos(7t)
—1.830821#° sin(t) —0.280024° sin(3t) +0.025814+° sin(5t)
+0.000249¢° sin(7t) +0.278969t° cos(t) +0.0461801° cos(3t)
-0.006166t° cos(5t) +0.377937t° sin(t) -0.001896t° sin(3t)
—0.006983t° sin(5t) —0.028889¢+” cos(t) +0.004692t” cos(3t)
—0.029867t” sin(t) +0.021274+” sin(3t) —0.000816t° cos(t)
—0.003373t® sin(t)

Xg = +2.175721 cos(t) —2.094928 cos (3t) —0.084502 cos (5t)
+0.003726 cos (7t) —0.000018 cos(9t) +0.000001 cos (11¢)
+0.000000 cos (13t) —0.000000 cos (15¢) —0.000000 cos(17¢)
+64.332742 sin(t) +0.333348 sin (3t) +0.044040 sin (5¢t)
+0.002384 sin(7t) —0.000104 sin(9t) +0.000006 sin(11¢)
—0.000000 sin (13¢) —0.000000 sin(15¢) +0.000000 sin (17¢)
—68.359632t cos(t) +2.878461t cos(3t) —0.079121¢ cos(5t)
—0.008828t cos(7t) +0.000335¢ cos (9t) —0.000022t cos (11t)
+0.000000¢ cos (13t) +0.000000¢ cos (15¢) —0.000000¢ cos (17¢)
—64.047243¢ sin(t) —1.871954¢ sin(3t) —0.188447t sin(5¢)
+0.009868t sin (7t) —0.000169¢ sin (9¢) —0.000004¢ sin(11¢)
+0.000000¢ sin (13t) ~0.000000¢ sin (15¢) —0.000000¢ sin(17¢)
+61.716104+% cos(t) —0.768222f2 cos(3t) +0.29593612 cos(5t)
-0.011360#> cos(7t) +0.000383¢2 cos(9t) +0.000014#2 cos(11t)
—0.000000¢2 cos(13t) +0.000000£2 cos(15t) +69.633323t2 sin(t)
+2.498056t2 sin(3t) —0.113525¢2 sin(5t) —0.01276212 sin(7t)
+0.00067442 sin(9t) —0.000026¢2 sin(11t) —0.000000¢2 sin(13t)
+0.000000¢2 sin(15¢) —40.085044+% cos(t) —0.0289801> cos(3t)
+0.047373t° cos(5t) +0.009129¢° cos(7t) —0.000811# cos(9t)
+0.000013#° cos(11t) +0.000000£° cos(13t) —46.345112#° sin(t)
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+0.01421443 sin(3t) +0.32885413 sin(5t) -0.010719¢3 sin(7t)
+0.000291£ sin(9t) +0.000013£3 sin(11t) —0.000000¢ sin(13t)
+18.758768t* cos(t) —1.045383t* cos(3t) -0.199353t4 cos(5t)
+0.009593¢* cos(7t) —~0.000040¢* cos(9t) —0.000004* cos(11¢)
+21.493321¢* sin(t) ~0.827863t* sin(3t) —0.028074+* sin(5t)
+0.005286¢4 sin(7t) —~0.0004784 sin (9¢) +0.000002¢* sin(11)
—~6.218301£ cos(t) +0.995799£5 cos(3t) +0.007797£5 cos(5t)
—0.003375¢5 cos(7t) +0.000105£5 cos(9t) —7.65299815 sin(t)
+0.017785° sin(3t) 00704245 sin(5t) +0.004954£° sin(7t)
+0.000022#5 sin(9t) +1.549574£° cos(t) ~0.2296441 cos(3t)
+0.0280381° cos(5¢) —~0.0008986 cos(7t) +1.852341¢6 sin(t)
+0.2136971° sin(3t) —0.008050¢° sin(5t) -0.001065t° sin(7t)
0.2307987 cos(t) —~0.028635¢7 cos(3t) +0.000743¢" cos(5¢)
0309074 sin(t) ~0.025324” sin(3t) +0.008028¢” sin(5t)
+0.019906¢° cos(t) +0.0047458 cos(3t) +0.01798715 sin(t)
00127058 sin(3t) ~0.000299¢° cos(f) +0.001329¢° sin(f)

Table 3: CPU time (in seconds) for the implementation with the MQSP, dsolve, and Maple.

Maple dsolve

Xn MQsP (using dsolve) Maple
X0 0.000187 0.059 0.042
X1 0.000847 0.131 0.078
X2 0.004637 0.196 0.147
x3 0.020543 0.300 0.299
X4 0.070672 — 0.622
X5 0.209268 — 1.330
X 0.538049 — 2.694
X7 1.255629 — 5.426
X8 2.711981 — 10.715
X9 5.421418 — 21.052
X10 10.367602 — 39.304
x11 18.494896 — 73.471
X12 31.738276 — —
X13 52.468991 — —
X14 83.748298 — —

8. Conclusions

In this paper, we have described an algorithm for the computation of the solution to a
perturbed second-order differential equation through the asymptotic expansion technique.
This algorithm has been implemented via a symbolic computation system which handles
quasipolynomials.
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