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We have applied a famous engineering method, called model reference control, to control
hyperchaos. We have proposed a general description of the hyperchaotic system and its reference
system. By using the Lyapunov stability theorem, we have obtained the expression of the
controller. Four examples for the both certain case and the uncertain case show that our method
is very effective for controlling hyperchaotic systems with both certain parameters and uncertain
parameters.

1. Introduction

Chaos has received increasing attentions in the last thirty years. Compared with the ordinary
chaotic systems, the hyperchaotic systems hold at least two positive Lyapunov exponents
and then possess more complicated attractors. Hyperchaotic systems have the characteristics
of high capacity, high security, and high efficiency and have been studied in many fields,
such as secure communication [1, 2], cellular neural network [3, 4], chemical processing [5],
nonlinear circuit [6–8], and other fields [9, 10].

Controlling chaos (or hyperchaos) is very meaningful. The research has been started
since the pioneering work of OGY method [11] was published. As the development of
computational technique and controlling theory, many methods have been proposed for
controlling chaos such as, LMI-based approach [12, 13], sliding control [14], active control
[15], optimal control [16, 17], and passivity-based control [18, 19]. However, the hyperchaotic
systems are more complex than the ordinary chaotic ones. To obtain the satisfying effect of
control, we should focus on more advantage algorithms and ideas of controlling techniques.
There have been some results on controlling hyperchaotic systems, such as feedback control
[20, 21], adaptive control [22], backstepping control [23], and impulsive control [24].
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In this paper, we will show that although a hyperchaotic system is complex, its
dynamics can still be controlled along an expected trajectory. The controller is generated
by an advantage control method, called model reference control (MRC). Nowadays, MRC
is widely used in engineering, such as control of robots [25], mechanical oscillators [26],
economic cycle [27], and disease spread [28]. Our aim is to control a hyperchaotic system
to track with an expected trajectory with the aid of MRC. In the following section, the
formulation of the problem will be presented. In Section 3, we will propose the framework
of MRC on hyperchaotic systems with certain parameters and the systems with uncertain
parameters. In Section 4, we will give two numerical examples to show the effectiveness of
MRC on hyperchaotic systems with certain and uncertain parameters and also two examples
for the hyperchaotic systems with uncertain parameters. Finally, the conclusion will be given
in Section 5.

2. Problem Formulation

The first example of the hyperchaotic systems was presented by Rössler in 1979 [29]. Since
then, other hyperchaotic systems have been reported [30], and many researchers are focusing
on the discovery of new hyperchaotic systems and their control. In this section, we will
describe the basic formulation of generalized hyperchaotic system and the reference system.
Recently, nonlinear scientists are focusing on the control problem of chaotic and hyperchaotic
systems with uncertain parameters [31–37]. Hence, we will give the formulation of both the
hyperchaotic systems with certain parameters and the systems with uncertain parameters.

Since a hyperchaotic system with certain parameters should have quadratic terms at
least, we may formulate the system as follows:

Ẋ = XTAX + BX + u, (2.1)

where X is an n dimensional column vector, XT is its transposed matrix,A is an n2 ×nmatrix
including n matrices A1, A2, . . . , An in the form of n × n, B is an n × n matrix, and u is an n
dimensional input control column vector. It is worth noting that XTAX is only the nominal
expression of matrix multiplication, and it describes the quadratic terms in blocks as follows:

(
XTA1X,XTA2X, . . . , XTAnX

)T
. (2.2)

Equation (2.1) can cover a great many hyperchaotic systems, though it may not fit for
the systems with higher order terms or even a fractional order term. The uncertain form of
system (2.1) is as follows:

Ẋ = XTAX + BX + C(X)α + u, (2.3)

where C(X) is an n × m matrix, uncertain parameter α is an m dimensional column vector,
and other variables as above. Here, mmight be equal to n, also smaller or bigger than n.
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In this section, we will also introduce a reference system with only linear terms and
constants. Our aim is to control the hyperchaotic system track along with the reference model
system that exhibits asymptotic stability as follows

Ẋr = BXr + u, (2.4)

where the matrix B is a known constant matrix with appropriate dimensions, the eigenvalues
of thematrix B have negative real part such that the system is asymptotically stable. By letting
the system (2.4) be the reference system, we will control the hyperchaotic system (2.1) track
along with the system (2.4). Here, Xr is called state output vector of the reference model, and
u the reference input vector.

Particularly, if the reference system has a two-order term, we may write it as

Ẋr = XTAX + BXr + u, (2.5)

where A is a similar matrix as A.

3. Model Reference Control of Hyperchaotic Systems

In this section, MRC is applied to control a hyperchaotic system with both certain parameters
and uncertain parameters. Our objective is to obtain the exact control law u such that the
original system follows the dynamical behavior of the reference model. We will review the
Lyapunov stability theorem for autonomous systems and then give the explicit expression of
the controller.

Theorem 3.1 (Lyapunov stability theorem for autonomous systems). Let x = 0 be an
equilibrium point for a dynamical system described by

ẋ = f(x), (3.1)

where f : D → R
n is a locally Lipschitz andD ⊂ R

n a domain that contains the origin. Let V : D →
R be a continuously differentiable, positive definite function in D. Then x = 0 is an asymptotically
stable equilibrium point, if V̇ (x) is negative definite. The scalar function V is a Lyapunov function if
V̇ (x) is negative semidefinite in the region D : V̇ (x) ≤ 0.

Assume that the error system (3.1) satisfies the conditions of Theorem 3.1, and its
Lyapunov function has the form as

V (e) = eTPe, (3.2)

where P is a symmetric positive definite matrix. The derivative of V (e) with respect to time
is

V̇ (e) = ėTPe + eTPė. (3.3)
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In the whole process of MRC, the output of reference model and that of the controlled
system are compared, and the error vector e is

e = Xr −X. (3.4)

If we want to control the system (2.1) to track along with system (2.4), we may have
the following results. By using (2.1) and (2.4), we obtain the following error system:

ė = Ẋr − Ẋ = Be −XTAX +
(
B − B

)
X + u − u. (3.5)

We will try to design a control vector u such that the objective equation

lim
t→∞

‖e‖ = 0. (3.6)

From (3.1) and (3.2), the MRC problem is converted to the asymptotic stability of zero
vector of the error system (3.1). Here, we will use the Lyapunov stability theory to determine
the proper control law u. The theorem is as follows.

Theorem 3.2. Let P be any symmetric positive definite matrix, λmax is the largest eigenvalue of the

matrix (B
T
P +PB), the controller u = BX +u−XTAX −BX −λI(Xr −X). The hyperchaotic system

(2.1) will asymptotically follow the desired dynamical system (2.4), if λ < −λmax/2 and λ/= 0.

Proof. The fact that the hyperchaotic system (2.1) asymptotically follows the system (2.4)
is equivalent to asymptotical stability of the error system. Hence, we will try to prove the
inequality of V̇ (e) ≤ 0.

For the symmetric property, the scalar equation (3.3) may have the following
description:

V̇ (e) = ėTPe + eTPė

=
[
eTB

T −XTATX −XT
(
BT − B

T) − uT + uT
]
Pe

+ eTP
(
Be −XTAX −

(
B − B

)
X − (u − u)

)

= eT
(
B
T
P + PB

)
e + 2eTP

[
−XTAX −

(
B − B

)
X − (u − u)

]

= eT
(
B
T
P + PB

)
e + 2eT (λI)e

= eT
(
B
T
P + PB + 2λI

)
e.

(3.7)

For λ < −λmax/2, the matrix (B
T
P + PB + 2λI) is negative definite. Also, the scalar V̇ < 0 is

obtained.
Using the result of Theorem 3.1, it can be concluded that the error e will converge

to 0 asymptotically. Equivalently, the controller u will make the hyperchaotic system (2.1)
asymptotically follow the desired dynamical system (2.4).



Journal of Applied Mathematics 5

If we want to control the system (2.1) to track along with system (2.5), we may have
the following results. By using (2.1) and (2.4), we obtain the following error system:

ė = Ẋr − Ẋ = XT
r AXr + Be −XTAX +

(
B − B

)
X + u − u. (3.8)

It is easy to obtain the control law in the following theorem with similar process of
Theorem 3.2.

Theorem 3.3. Let P be any symmetric positive definite matrix, λmax is the largest eigenvalue of

the matrix (B
T
P + PB), and the controller u = XT

r AXr + BX + u − XTAX − BX − λI(Xr − X).
The hyperchaotic system (2.1) will asymptotically follow the desired dynamical system (2.4), if λ <
−λmax/2 and λ/= 0.

We can omit the proof of Theorem 3.3, for it is similar to that of Theorem 3.2.
Theorems 3.2 and 3.3 are fit for the hyperchaotic systems with certain parameters. In

the following, we will give two similar theorems for the systems with uncertain parameters.
To simplify the control process, we will make P = I.

Theorem 3.4. Let λmax is the largest eigenvalue of the matrix B
T
, the controller u = BX + u −

XTAX −BX −λI(Xr −X) +C(X)α̂, where α̂ is the estimation of uncertain parameter α, and satisfies
the differential equations ˙̂α = CT (X)e. The hyperchaotic system (2.3) will asymptotically follow the
desired dynamical system (2.4), if λ < −λmax and λ/= 0.

Proof. For the uncertain property of system (2.3), we should redefine the Lyapunov function
as follows

V1(e) = eTe + (α − α̂)T (α − α̂). (3.9)

Similar to the proof of Theorem 3.2, we have to prove the inequality of V̇1(e) ≤ 0:

V̇1(e) = 2ėTe − 2 ˙̂α
T
(α − α̂)

= 2
(
BXr + u −XTAX − BX − u − C(X)α

)T
e − 2eTC(X)(α − α̂)

= 2eT
(
B
T
+ λI

)
e.

(3.10)

For λ < −λmax, the matrix (B
T
+ λI) is negative definite. Also, the scalar V̇ < 0 is obtained.

Hence, the controller uwill make the hyperchaotic system (2.3) asymptotically follow
the desired dynamical system (2.4).

If we want to control the system (2.3) to track along with system (2.5), we may have
the following results. We have the following error system:

ė = XT
r AXr + Be −XTAX +

(
B − B

)
X + u − u − C(X)α. (3.11)
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It is easy to obtain the control law in the following theorem with similar process of
Theorem 3.4.

Theorem 3.5. Let λmax is the largest eigenvalue of the matrix B
T
, the controller u = BX + u −

XTAX −BX −λI(Xr −X) +C(X)α̂, where α̂ is the estimation of uncertain parameter α, and satisfies
the differential equations ˙̂α = CT (X)e. The hyperchaotic system (2.3) will asymptotically follow the
desired dynamical system (2.5), if λ < −λmax and λ/= 0.

We can also omit the proof of Theorem 3.5.

4. Numerical Examples

This section has two parts. The first part is the numerical examples for controlling
hyperchaotic systems, where all the parameters are certain. We will use the result in
Theorem 3.2 to control hyperchaotic Rössler system and use that of Theorem 3.3 to control
the hyperchaotic Lorenz system. The second part is the numerical examples for controlling
the systemswith uncertain parameters. Especially, Example III has four uncertain parameters,
and Example IV has six uncertain parameters.

The whole numerical results show that MRC is very suitable and efficient for
controlling hyperchaotic system with both certain parameters and uncertain parameters.

4.1. Example I

The four-variable hyperchaotic Rössler system is described by

ẋ1 = −x2 − x3,

ẋ2 = x1 + 0.25x2 + x4,

ẋ3 = x1x3 + 3,

ẋ4 = −0.5x3 + 0.05x4.

(4.1)

According to (2.1), we have

A3 =

⎡
⎢⎢⎣

0 0 0.5 0
0 0 0 0
0.5 0 0 0
0 0 0 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0 −1 −1 0
1 0.25 0 1
0 0 0 0
0 0 −0.5 0.05

⎤
⎥⎥⎦,

u =

⎡
⎢⎢⎣

u1

u2

u3 + 3
u4

⎤
⎥⎥⎦, A1 = A2 = A4 = diag[0, 0, 0, 0],

(4.2)

where u1, u2, u3, and u4 are equal to 0 in the initial state and need to be determined by
Theorem 3.2.
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The reference model with asymptotical stability is as follows:

ẋr1 = −xr2 − xr3,

ẋr2 = xr1 + 0.25xr2 + xr4,

ẋr3 = 20xr1 + 10xr2 − 50xr3 + 100xr4 + 3,

ẋr4 = −0.5xr3 + 0.05xr4.

(4.3)

According to (2.4), the matrix B and the control vector u of the 4-dimensional reference
system (4.3) have the following description:

B =

⎡
⎢⎢⎣

0 −1 −1 0
1 0.25 0 1
20 10 −50 100
0 0 −0.5 0.05

⎤
⎥⎥⎦, u =

⎡
⎢⎢⎣

0
0
3
0

⎤
⎥⎥⎦. (4.4)

According to Theorem 3.2, we may let matrix P = diag[1, 1, 1, 1], then the matrix

(
B
T
P + PB

)
=

⎡
⎢⎢⎣

0 0 19 0
0 0.5 10 1
19 10 −100 99.5
0 1 99.5 0.1

⎤
⎥⎥⎦, (4.5)

and its largest eigenvalue is λmax = 63.6297. By considering the conditions λ < −λmax/2 and
λ/= 0, we should obtain λ = −40. Then, the controller should be determined by Theorem 3.2,

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

40xr1 − 40x1

40xr2 − 40x2

(20 − x3)x1 + 10x2 − 90x3 + 100x4 + 40xr3 + 3
40xr4 − 40x4

⎤
⎥⎥⎦. (4.6)

Figure 1 shows that the controller can make the hyperchaotic Rössler system (4.1) track along
with its reference system (4.3). Here, the initials of these two systems are [−10, 6, 0, 10] and
[10,−6, 10,−10], respectively.

4.2. Example II

The four-variable hyperchaotic Lorenz system [30] is described by

ẋ1 = 10(x2 − x1), (4.7)

ẋ2 = 28x1 − x2 − x1x3 + x4, (4.8)

ẋ3 = x1x2 − 8
3
x3, (4.9)

ẋ4 = −5x1. (4.10)
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Figure 1: Comparison of the corresponding variables in the controlled hyperchaotic Rössler system and its
reference system: (a) x1 and xr1; (b) x2 and xr2; (c) x3 and xr3; (d) x4 and xr4.

According to (2.1), we have

A2 =

⎡
⎢⎢⎣

0 0 −0.5 0
0 0 0 0

−0.5 0 0 0
0 0 0 0

⎤
⎥⎥⎦, A3 =

⎡
⎢⎢⎣

0 0.5 0 0
0.5 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦,
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B =

⎡
⎢⎢⎢⎢⎣

−10 10 0 0
28 −1 0 1

0 0 −8
3

0

−5 0 0 0

⎤
⎥⎥⎥⎥⎦
, u =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦,

A1 = A4 = diag [0, 0, 0, 0],

(4.11)

where u1, u2, u3, and u4 are equal to 0 in the initial state and need to be determined by
Theorem 3.3.

The reference model with asymptotical stability is as follows:

ẋr1 = 10(xr2 − xr1) − 50xr2,

ẋr2 = 28xr1 − xr2 − xr1xr3 + xr4,

ẋr3 = xr1xr2 − 8
3
xr3,

ẋr4 = −5xr1.

(4.12)

According to (2.5), the matrix Ai (i = 1, . . . , 4) and B and the control vector u of the 4-
dimensional reference system (4.12) have the following description:

A2 =

⎡
⎢⎢⎣

0 0 −0.5 0
0 0 0 0

−0.5 0 0 0
0 0 0 0

⎤
⎥⎥⎦, A3 =

⎡
⎢⎢⎣

0 0.5 0 0
0.5 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦,

B =

⎡
⎢⎢⎢⎢⎣

−10 −40 0 0
28 −1 0 1

0 0 −8
3

0

−5 0 0 0

⎤
⎥⎥⎥⎥⎦
, u =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦,

A1 = A4 = diag[0, 0, 0, 0].

(4.13)

According to Theorem 3.3, we may let matrix P = diag[1, 1, 1], then the matrix

(
B
T
P + PB

)
=

⎡
⎢⎢⎢⎢⎣

−20 −12 0 −5
−12 −2 0 1

0 0 −16
3

0

−5 1 0 0

⎤
⎥⎥⎥⎥⎦
, (4.14)
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and its largest eigenvalue is λmax = 5.8387. By considering the conditions λ < −λmax/2 and
λ/= 0, we should obtain λ = −10. Then, the controller should be determined by Theorem 3.3,

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−10x2 − 40xr2

x1x3 − 9x2 − x4 + 9xr2 − xr1xr3 + xr4

−x1x2 − 22
3
x3 + xr1xr2 +

22
3
xr3

5x1 − 10x4 − 5xr4 + 10xr4

⎤
⎥⎥⎥⎥⎥⎦
. (4.15)

Figure 2 shows that the controller can make the hyperchaotic Lorenz system (4.7)–
(4.12) track along with its reference system (4.12). Here, the initials of these two systems are
[10, 0, 5, 8] and [2,−10, 1, 10], respectively.

4.3. Example III

The four-variable hyperchaotic Rössler system with uncertain parameters is described by

ẋ1 = a(x2 + x3),

ẋ2 = x1 + bx2 + cx4,

ẋ3 = x1x3 + 3,

ẋ4 = −0.5x3 + dx4.

(4.16)

According to (2.3), we have

A3 =

⎡
⎢⎢⎣

0 0 0.5 0
0 0 0 0
0.5 0 0 0
0 0 0 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 −0.5 0

⎤
⎥⎥⎦,

u =

⎡
⎢⎢⎣

u1

u2

u3 + 3
u4

⎤
⎥⎥⎦, C(X) =

⎡
⎢⎢⎣

x2 + x3 0 0 0
0 x2 x4 0
0 0 0 0
0 0 0 x4

⎤
⎥⎥⎦,

A1 = A2 = A4 = diag[0, 0, 0, 0],

(4.17)

where u1, u2, u3, and u4 are equal to 0 in the initial state and need to be determined by
Theorem 3.4. In Figure 3, α̂ is the estimation value of the column vector α, where α̂ =

(â, b̂, ĉ, d̂)
T
.
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Figure 2: Comparison of the corresponding variables in the controlled hyperchaotic Lorenz system and its
reference system: (a) x1 and xr1; (b) x2 and xr2; (c) x3 and xr3; (d) x4 and xr4.

The estimation system of uncertain parameters is

˙̂a = (x2 + x3)(xr1 − x1),

˙̂b = x2(xr2 − x2),

˙̂c = x4(xr2 − x2),

˙̂d = x4(xr4 − x4).

(4.18)
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Figure 3: The estimation of the uncertain parameters: (a) â is the estimation of a; (b) b̂ is the estimation of
b; (c) ĉ is the estimation of c; (d) d̂ is the estimation of d.

The reference model is the same as Example I,

ẋr1 = −xr2 − xr3,

ẋr2 = xr1 + 0.25xr2 + xr4,

ẋr3 = 20xr1 + 10xr2 − 50xr3 + 100xr4 + 3, (4.19)

ẋr4 = −0.5xr3 + 0.05xr4,

B =

⎡
⎢⎢⎣

0 −1 −1 0
1 0.25 0 1
20 10 −50 100
0 0 −0.5 0.05

⎤
⎥⎥⎦, u =

⎡
⎢⎢⎣

0
0
3
0

⎤
⎥⎥⎦.



Journal of Applied Mathematics 13

We have the largest eigenvalue λmax = −0.9675. By considering the conditions λ < −λmax and
λ/= 0, we should obtain λ = −1.

Figure 4 shows that the controller can make the hyperchaotic Rössler system with four
uncertain parameters (4.1) track along with its reference system (4.3). Here, the initials of the
hyperchaotic system, reference system, and estimation system of uncertain parameters are
[−10, 6, 0, 10], [10,−6, 10,−10], and [1, 2, 1, 2], respectively.

Comparing with Figures 1(c), 1(d), 4(c), and 4(d), we find that our method has even
a better performance in the uncertain case than the certain case. In Figure 4(a), we can see
some waves in time domain [0, 2], and it is not better than the certain case. In Figures 4(b)
and 1(b), the controlling performance is similar.

4.4. Examples IV

The four-variable hyperchaotic Lorenz system with uncertain parameters is described by

ẋ1 = a(x2 − x1),

ẋ2 = bx1 − cx2 − x1x3 + dx4,

ẋ3 = x1x2 − fx3,

ẋ4 = gx1,

(4.20)

where

A2 =

⎡
⎢⎢⎣

0 0 −0.5 0
0 0 0 0

−0.5 0 0 0
0 0 0 0

⎤
⎥⎥⎦, A3 =

⎡
⎢⎢⎣

0 0.5 0 0
0.5 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦,

B =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, u =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦, α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
f
g

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

C(X) =

⎡
⎢⎢⎣

x2 − x1 0 0 0 0 0
0 x1 −x2 x4 0 0
0 0 0 0 −x3 0
0 0 0 0 0 x1

⎤
⎥⎥⎦,

A1 = A4 = diag[0, 0, 0, 0],

(4.21)

where u1, u2, u3, and u4 are equal to 0 in the initial state and need to be determined by
Theorem 3.5. Figure 5 shows the estimation of α, and α̂ is the estimation value of the column
vector α, where α̂ = (â, b̂, ĉ, d̂, f̂ , ĝ)T .
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Figure 4: Comparison of the corresponding variables in the controlled hyperchaotic Rössler system and its
reference system: (a) x1 and xr1; (b) x2 and xr2; (c) x3 and xr3; (d) x4 and xr4.

The estimation system of uncertain parameters is

˙̂a = (x2 − x1)(xr1 − x1),

˙̂b = x1(xr2 − x2),

˙̂c = −x2(xr2 − x2),

˙̂d = x4(xr2 − x2),
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Figure 5: The estimation of the uncertain parameters: (a) â is the estimation of a; (b) b̂ is the estimation of
b; (c) ĉ is the estimation of c; (d) d̂ is the estimation of d; (e) f̂ is the estimation of f ; (f) ĝ is the estimation
of g.

˙̂f = −x3(xr3 − xr3),

˙̂g = x1(xr4 − x4).

(4.22)

The reference model is the same as Example II with asymptotical stability is as follows:

ẋr1 = 10(xr2 − xr1) − 50xr2,

ẋr2 = 28xr1 − xr2 − xr1xr3 + xr4,
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Figure 6: Comparison of the corresponding variables in the controlled hyperchaotic Lorenz system and its
reference system: (a) x1 and xr1; (b) x2 and xr2; (c) x3 and xr3; (d) x4 and xr4.

ẋr3 = xr1xr2 − 8
3
xr3,

ẋr4 = −5xr1,

(4.23)

and the largest eigenvalue of B
T
is λmax = 0.1767. By considering the conditions λ < −λmax

and λ/= 0, we should obtain λ = −1.
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Figure 6 shows that the controller can make the hyperchaotic Lorenz system with
uncertain parameters (4.20) track along with its reference system (4.23). Here, the initials
of the hyperchaotic system, the reference system, and the estimation system of uncertain
parameters are [10, 0, 5, 8], [2,−10, 1, 10], and [1, 2, 1, 3, 1, 0], respectively.

The performance in Figures 6(a)-6(b) is much better than the one in Figures 2(a)-2(b).
Other parts of the two figures have almost the same performance.

5. Conclusion

In this paper, we have used an MRC technique to control the hyperchaotic system to track
with an expected trajectory. The expression of the controller has been given. Four numerical
examples show that the MRC method is very effective for controlling both the hyperchaotic
systemwith all certain parameters and the systems with uncertain parameters. By comparing
the results in the corresponding figures, we find that our method does not only fit for
controlling hyperchaotic systems with certain parameters, but also is a robust for the systems
with uncertain parameters.
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