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We investigate successive matrix squaring (SMS) algorithms for computing the generalized
inverse A(2)

T,S of a given matrix A ∈ Cm×n.

1. Introduction

Throughout this paper, the symbol Cm×n denotes a set of all m × n complex matrices. Let
A ∈ Cm×n, and the symbols R(A),N(A), ρ(A), and ‖ · ‖ stand for the range, the null space, the
spectrum of matrix A, and the matrix norm, respectively.

A matrix B is called a {2}-inverse of matrix A if BAB = B holds. The symbols A†,
Ind(A), and AD denote, respectively, the Moore-Penrose inverse, the index, and the Drazin
inverse of A, and, obviously, rank(A†) = rank(A) (see [1] for details). Let A ∈ Cm×n

r , T ⊂ Cn,
S ⊂ Cm, and dim(T) = t ≤ r and dim(S) = m − t, and there exists and unique matrix B ∈ Cn×m

such that

BAB = B, R(B) = T, N(B) = S (1.1)

then B ∈ Cn×m is called {2}-inverse of A with the prescribed range T and null space S of A,
denoted by A

(2)
T,S.

In [1], it is well known that the generalized inverse A
(2)
T,S of a given matrix A ∈

Cm×n with the prescribed range T and null space S is very important in applications of
many mathematics branches such as stable approximations of ill-posed problems, linear and
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nonlinear problems involving rank-deficient generalized, and the applications to statistics
[2]. In particular, the generalized inverse A

(2)
T,S plays an important role for the iterative

methods for solving nonlinear equations [1, 2].
In recent years, successive matrix squaring algorithms are investigated for computing

the generalized inverse of a given matrix A ∈ Cm×n in [3–7]. In [3], the authors exhibit
a deterministic iterative algorithm for linear system solution and matrix inversion based
on a repeated matrix squaring scheme. Wei derives a successive matrix squaring (SMS)
algorithm to approximate the Drazin inverse in [4]. Wei et al. in [5] derive a successive matrix
squaring (SMS) algorithm to approximate the weighted generalized inverseA†

M,N , which can
be expressed in the form of successive squaring of a composite matrix T . Stanimirović and
Cvetković-Ilić derive a successive matrix squaring (SMS) algorithm to approximate an outer
generalized inverse with prescribed range and null space of a given matrix A ∈ Cm×n

r in [6].
In [7], authors introduce a new algorithm based on the successive matrix squaring (SMS)
method and this algorithm uses the strategy of ε-displacement rank in order to find various
outer inverses with prescribed ranges and null spaces of a square Toeplitz matrix.

In this paper, based on [3–5], we investigate successive matrix squaring algorithms for
computing the generalized inverse A

(2)
T,S of a matrix A in Section 2 and also give a numerical

example for illustrating our results in Section 3.
The following given lemma suggests that the generalized inverse A(2)

T,S is unique.

Lemma 1.1 (see [1, Theorem 2.14]). Let A ∈ Cm×n with rank r, let T be a subspace of C
n of

dimension s ≤ r, and let S be a subspace of C
m of dimensionm− s. Then,A has a {2}-inverse X such

that R(X) = T and N(X) = S if and only if

AT ⊕ S = C
m (1.2)

in which case X is unique.

The following nations are stated in Banach space but they are true in the finite
dimension space. Throughout this paper, let H,K denote the Banach space and let B(H,K)
stand for the set of all bounded linear operators fromH to K, in particular B(H,H) = B(H).

In the following, we state two lemmas which are given for Banach space but it can be
used also for the finite dimension space.

Lemma 1.2 (see [8, Section 4]). LetA ∈ B(H,K) and T and S, respectively, closed subspaces ofH
and K. Then the following statements are equivalent:

(i) A has a {2}-inverse B ∈ K,H such that R(B) = T and N(B) = S,

(ii) T is a complemented subspace of H, A|T : T → A(T) is invertible and A(T) ⊕ S = K.

Lemma 1.3 (see [9, Section 3]). Suppose that the conditions of Lemma 1.2 are satisfied. If we take
T1 = N(A(2)

T,SA), thenH = T ⊕ T1 holds and A has the following matrix form:

A =
[
A1 0
0 A2

]
:
[
T
T1

]
−→

[
A(T)
S

]
, (1.3)
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where A1 is invertible. Moreover, A(2)
T,S has the matrix following form:

A
(2)
T,S =

[
A−1

1 0
0 0

]
:
[
A(T)
S

]
−→

[
T
T1

]
. (1.4)

From (1.5), we obtain the following projections (see [9]):

PA(T),S = AA
(2)
T,S =

[
I 0
0 0

]
:
[
A(T)
S

]
−→

[
A(T)
S

]
,

PT,T1 = A
(2)
T,SA =

[
I 0
0 0

]
:
[
T
T1

]
−→

[
T
T1

]
.

(1.5)

2. Main Result

In this section, we consider successive matrix squaring (SMS) algorithms for computing the
generalized inverse A(2)

T,S.
Let A ∈ Cm×n and the sequence {Xn} in Cn×m, and we can define the iterative form as

follows ([10, Theorem 2.2] for computing the generalized inverse A
(2)
T,S in the infinite space

case):

Rk = PA(T),S − PA(T),SAXk,

Xk+1 = X0Rk +Xk, k = 0, 1, 2, . . . .
(2.1)

From [10], the authors have proved that the iteration (2.1) converges to the generalized
inverse A

(2)
T,S if and only if R(X0) ⊂ T, ρ(R0) < 1, where T ⊂ Cn and PA(T),S = AA

(2)
T,S (for

the proof see [11] and [10, Theorem 2.1] when p = 2).
In the following, we give the algorithm for computing the generalized inverse A(2)

T,S of
a matrix A ∈ Cm×n.

Let P = R0 = PA(T),S − PA(T),SAX0 and Q = X0. It is not difficult to see that the above
fact can be written as follows:

M =
[
R0 0
X0 I

]
=
[
P 0
Q I

]
. (2.2)

From (2.2) and letting Xk = Q
∑k

i=0 P
i, we have

Mk =

⎡
⎢⎣

Pk 0

Q
k−1∑
i=0

Pi I

⎤
⎥⎦ =

[
Pk 0
Xk−1 I

]
. (2.3)

By (2.3), we prove that the iterative (2.1) Xk is equal to the right upper block in the
matrix Mk. Note that we defined the new iterative form {Mk} as follows:

M0 = M, Mk+1 = M2
k, k = 0, 1, 2, . . . . (2.4)
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Input: Input the initial value matrices A,X0, PA(T),S and the accurate value ε;
Output: The algorithm export the matrix, that is X ≈ A

(2)
T,S;

Begin: Assignment the matrix Q by the initial value matrix X0, that is Q ⇐ X0;
Assigned the matrix P by PA(T),S − PA(T),SAQ, that is P ⇐ PA(T),S − PA(T),SAQ;
Computed matrix X1, that is X1 ⇐ I + P ;
Computed the error between X1 and X0, that is e ⇐ ‖X1 −X0‖;
Judged that whether e is lower than ε or not,
that is while e < ε, do P ⇐ P · P ;
Defined the loop function: Xk+1 ⇐ Xk + P ;
Computed the error between Xk and Xk+1, that is e ⇐ ‖Xk+1 −Xk‖;
Finished the loop function
The k + 1 matrix Xk+1 multiplied by Q and assigned to X, that is X ⇐ QXk+1;
End the algorithm.

Algorithm 1: SMS algorithm for computing the generalized inverse A(2)
T,S.

From the new iterative form (2.4), we arrive at

Mk = M2k =

⎡
⎢⎣

P 2k 0

Q
2k−1∑
i=0

Pi I

⎤
⎥⎦ =

[
P 2k 0
X2k−1 I

]
. (2.5)

Assume that X2k−1 = X̂k, and by (2.5), we have

Mk =

[
P 2k 0
X̂k I

]
=

[
P 2k 0
X2k−1 I

]
=

⎡
⎢⎣

P 2k 0

Q
2k−1∑
i=0

Pi I

⎤
⎥⎦. (2.6)

By (2.4)–(2.6), we have Algorithm 1.
From (2.4)–(2.6) and Algorithm 1, we obtain the following result.

Theorem 2.1. LetA ∈ Cm×n, and the sequence {X̂k} converges to the generalized inverseA(2)
T,S if and

only if R(X0) ⊂ T, ρ(R0) < 1. In this case
∥∥∥A(2)

T,S − X̂k

∥∥∥ ≤ q2
k+1(

1 − q
)−1‖X0‖, (2.7)

where q = ‖R0‖ and

T ⊂ Cn, PA(T),S = AA
(2)
T,S. (2.8)

Proof. From the proof in [11] and [10, Theorem 2.1] when p = 2 and according to (2.4), (2.5)
and (2.6), we easily finish the proof of the former of the theorem. In the following, we only
prove the last section, that is, prove that the inequality (2.7) holds.

By applying (2.5) and (2.6), we obtain

X̂k = X2k−1 =
2k−1∑
i=0

PiQ. (2.9)
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By the iteration (2.4) and (2.9), we arrive at

∥∥∥A(2)
T,S − X̂k

∥∥∥ =

∥∥∥∥∥∥X0(I − R0)−1 −X0

2k−1∑
i=0

Ri
0

∥∥∥∥∥∥ =

∥∥∥∥∥∥X0

∞∑
i=0

Ri
0 −X0

2k−1∑
i=0

Ri
0

∥∥∥∥∥∥

=

∥∥∥∥∥X0

∞∑
i=2k

Ri
0

∥∥∥∥∥ =

∥∥∥∥∥X0R
2k
0

∞∑
i=0

Ri
0

∥∥∥∥∥ ≤
∥∥∥R2k

0

∥∥∥
∞∑
i=0

∥∥∥Ri
0

∥∥∥‖X0‖

≤ q2
k+1(

1 − q
)−1‖X0‖.

(2.10)

The following corollary given the result is the same as theorem in [6, Theorem 2.3]. It
also presents an explicit representation of the the generalized inverse A

(2)
T,S and the sequence

(2.4) converges to a {2}-inverse of a given matrix A by its full-rank decomposition.

Corollary 2.2. LetA ∈ Cm×n
r , A = FG be full rank decomposition, and the sequence {X̂k} converges

to the {2}-inverse X = F(GAF)−1G if and only if ρ(R0) < 1. In this case

∥∥∥X − X̂k

∥∥∥ ≤ q2
k+1(

1 − q
)−1‖X0‖, (2.11)

where q = ‖R0‖ and

F ∈ Cm×s
s , G ∈ Cs×n

s , PR(AX),N(AX) = AX. (2.12)

Proof. From Theorem 2.5 and by [6, Theorem 2.3], we have the result.

In the following, we consider the improvement of the iterative form (2.1) (see [11]
for computing the Moore-Penrose inverse and the Drazin inverse of the matrix case and [10,
Theorem 2.2] for computing the generalized inverse A(2)

T,S in the infinite space case):

Rk = PA(T),S − PA(T),SAXk,

Xk+1 = Xk

(
I + Rk + · · · + R

p−1
k

)
, p ≥ 2, k = 0, 1, 2, . . . .

(2.13)

Let M be a m ×m block matrix and

M =

⎡
⎢⎢⎢⎢⎢⎣

Pm−1 0 · · · 0
Pm−2 0 · · · 0
∗ 0
P 0 · · · 0
Q Q · · · I

⎤
⎥⎥⎥⎥⎥⎦
, (2.14)
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then

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P 2m−1 0 · · · 0
P 2m−2 0 · · · 0
∗ 0
Pm 0 · · · 0

Q
m−1∑
i=0

Pi Q · · · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.15)

By induction if Mk−1 has the following form:

Mk−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (k−1)m−1 0 · · · 0
P (k−1)m−2 0 · · · 0

∗ 0
P (k−2)m 0 · · · 0

Q
(k−2)m−1∑

i=0

Pi Q · · · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.16)

then

Mk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pkm−1 0 · · · 0
Pkm−2 0 · · · 0
∗ 0

P (k−1)m 0 · · · 0

Q
(k−1)m−1∑

i=0

Pi Q · · · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.17)

Similarly to the iterative form (2.4), we also define the new iterative scheme {Mk}

M0 = M, Mk+1 = M
p

k
, k = 0, 1, 2, . . . . (2.18)

Note that from (2.18)

Mk = Mpk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ppkm−1 0 · · · 0
Ppkm−2 0 · · · 0

∗ 0
P (pk−1)m 0 · · · 0

Q
(pk−1)m−1∑

i=0

Pi Q · · · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Ppkm−1 0 · · · 0
Ppkm−2 0 · · · 0

∗ 0
P (pk−1)m 0 · · · 0
X(pk−1)m−1 Q · · · I

⎤
⎥⎥⎥⎥⎥⎦
. (2.19)

Let X(pk−1)m−1 = X̂k, and by (2.18), and (2.19), we arrive at

Mk =
[ ∗ 0
X(pk−1)m−1 ∗

]
=

[
∗ 0
X̂k ∗

]
. (2.20)
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Input: Input the matrices A,X0, PA(T),S and the accurate value ε;
Output: The algorithm export the matrix: X ≈ A

(2)
T,S;

Begin: Assignment the matrix Q by the initial value matrix X0, that is Q ⇐ X0;
Assigned the matrix P1 by PA(T),S − PA(T),SAQ, that is P1 ⇐ PA(T),S − PA(T),SAQ;
Computed the product of P1 and P1, and assigned its value to P2. that is P2 ⇐ P1 · P1;
Similarly, we repeatedly do the computation for the product Pi and P1 as well as above
the computation, where i = 2, . . . , m − 2.
Computed the product of the matrix Pm−1 and P1, and assigned its value to Pm as well
as above computations, that is Pm ⇐ Pm−1 · P1;
Assigned the matrix X1 by the sum of the matrices Pi, where i = 0, 1, 2, . . . , m and
P0 = I. that is X1 ⇐ I + P1 + · · · + Pm−1 + Pm;
Take the norm of ‖X1 −X0‖ and assigned its value to e. that is e ⇐ ‖X1 −X0‖;
while e < ε do;
We need the iteration not to exceed 500 times. that is n = 500; (In fact (pk − 1)m − 1 = 500)
Do 500 step repeatedly computations in the following.
that is For i = 1 :n
Computed the product of the given matrix Pm = Pm and the iteration matrix Pi, and
assigned its value to the new matrix Pi. that is Pi ⇐ Pm · Pi;
From the iteration Pi ⇐ Pm · Pi, we obtain the new matrix Pi and add its value to Xi,
and assigned the sum of Pi and Xi to the matrix Xi+1..that is Xi+1 ⇐ Xi + Pi; After these,
return the the step Pi = Pm · Pi.
Finished the For loop function that is end
Computed the error between Xk and Xk+1, that is e ⇐ ‖Xk+1 −Xk‖;
Finished the While loop function. that is end
The k + 1 matrix Xk+1 multiplied by Q and assigned to X, that is X ⇐ QXk+1;
End the algorithm.

Algorithm 2: SMS algorithm for computing the generalized inverse A(2)
T,S.

From (2.14) to (2.20), we find that if one wants to compute the generalized inverse
A

(2)
T,S then we only compute the element (m, 1) of the matrix M2k . Similarly to Algorithm 1,

we also obtain Algorithm 2.
Analogous to Theorem 2.5 by Algorithm 2 and sequence (2.18), we also have the

following theorem.

Theorem 2.3. LetA ∈ Cm×n, and the sequence {X̂k} converges to the generalized inverseA(2)
T,S if and

only if R(X0) ⊂ T, ρ(R0) < 1. In this case
∥∥∥A(2)

T,S − X̂k

∥∥∥ ≤ q(p
k−1)m+1(1 − q

)−1‖X0‖, (2.21)

where q = ‖X0‖ and

T ⊂ Cn, PA(T),S = AA
(2)
T,S. (2.22)

Proof. Similarly the proof in [10, Theorem 2.1], we can prove the former of this theorem.
Analogous to the proof of Theorem 2.5, we finish the proof of the theorem.

In the following, we extend the sequence (2.4) to

M0 = M, Mk+1 = Mt
k, k = 0, 1, 2, . . . , for any t ≥ 2. (2.23)
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By (2.26) and by induction, we have

Mk = Mtk =

⎡
⎢⎣

Ptk 0

Q
tk−1∑
i=0

Pi I

⎤
⎥⎦. (2.24)

Assume that Xtk−1 = X̂k, we easily have

Mk =

[
Ptk 0
X̂k I

]
=

[
Ptk 0
Xtk−1 I

]
=

⎡
⎢⎣

Ptk 0

Q
tk−1∑
i=0

Pi I

⎤
⎥⎦. (2.25)

Similarly, from (2.23) and (2.25), we obtain the following result.

Theorem 2.4. LetA ∈ Cm×n, and the sequence {X̂k} converges to the generalized inverseA(2)
T,S if and

only if R(X0) ⊂ T, ρ(R0) < 1. In this case
∥∥∥A(2)

T,S − X̂k

∥∥∥ ≤ qt
k+1(

1 − q
)−1‖X0‖, (2.26)

where q = ‖R0‖ and

T ⊂ Cn, PA(T),S = AA
(2)
T,S. (2.27)

Proof. From (2.25) and only using t instead of 2 in Theorem 2.1, we easily have that {X̂k}
converges to the generalized inverse A(2)

T,S if and only if R(X0) ⊂ T, ρ(R0) < 1. Similarly to the
formula (2.29), we obtain that

∥∥∥A(2)
T,S − X̂k

∥∥∥ ≤ qt
k+1(

1 − q
)−1‖X0‖, (2.28)

where q, T , and PA(T),S are the same as Theorem 2.5.

In the following, we consider the dually iterative form.
Let A ∈ Cm×n and the sequence {Xn} in Cn×m, and we can define the iterative form as

follows (see [11] and [10, Theorem 2.3]):

Rk = PT,T1 −AXkPT,T1 ,

Xk+1 = RkX0 +Xk, k = 0, 1, 2, . . . .
(2.29)

Let P = R0 = PT,T1 − X0APT,T1 and Q = X0. It is not difficult to see that the above fact
can be written as follows:

M =
[
R0 0
X0 I

]
=
[
P 0
Q I

]
. (2.30)

From iterative forms (2.26) and (2.29), we have the following theorem.
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Theorem 2.5. LetA ∈ Cm×n, and the sequence {X̂k} converges to the generalized inverseA(2)
T,S if and

only if R(X0) ⊂ T, ρ(R0) < 1. In this case

∥∥∥A(2)
T,S − X̂k

∥∥∥ ≤ q2
k+1(

1 − q
)−1‖X0‖, (2.31)

where q = ‖R0‖ and

T ⊂ Cn, PA(T),S = AA
(2)
T,S. (2.32)

Similarly to Corollary 2.2, we have the result as follows.

Corollary 2.6. Let A ∈ Cm×n
r , A = FG full rank decomposition, and the sequence {X̂k} converges to

the {2}-inverse X = F(GAF)−1G if and only if ρ(R0) < 1. In this case

∥∥∥X − X̂k

∥∥∥ ≤ q2
k+1(

1 − q
)−1‖X0‖, (2.33)

where q = ‖R0‖ and

F ∈ Cm×s
s , G ∈ Cs×n

s , PR(XA),N(XA) = XA. (2.34)

In the following, we consider the improvement of the iterative form (2.29) (see [11]
for computing the Moore-Penrose inverse and the Drazin inverse of the matrix case and [10,
Theorem 2.3] for computing the generalized inverse A(2)

T,S in the infinite space case):

Rk = PT,T1 −AXkPT,T1 ,

Xk+1 =
(
I + Rk + · · · + R

p−1
k

)
Xk, p ≥ 2, k = 0, 1, 2, . . . .

(2.35)

It is similar to (2.14), and we have

M =

⎡
⎢⎢⎢⎢⎢⎣

Pm Pm−1 · · · P Q
0 0 · · · 0 Q
∗ 0
0 0 · · · 0 Q
0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎦
. (2.36)

Analogous to Theorem 2.5 by Algorithm 2 and from (2.36), we obtain the theorem in
the following.

Theorem 2.7. LetA ∈ Cm×n, and the sequence {X̂k} converges to the generalized inverseA(2)
T,S if and

only if R(X0) ⊂ T, ρ(R0) < 1. In this case

∥∥∥A(2)
T,S − X̂k

∥∥∥ ≤ q(p
k−1)m+1(1 − q

)−1‖X0‖, (2.37)
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where q = ‖X0‖ and

T ⊂ Cn, PT,T1 = A
(2)
T,SA. (2.38)

Dually, we give the SMS algorithm for computing the generalized inverse A(2)
T,S which

are analogous to the iterative form (2.23) as follows and omit their proofs:

Mk =

[
Ptk X̂k

0 I

]
=

[
Ptk Xtk−1
0 I

]
=

⎡
⎢⎣Ptk Q

tk−1∑
i=0

Pi

0 I

⎤
⎥⎦. (2.39)

Similarly Theorem 2.4, from (2.35) and (2.39), we obtain the following result.

Theorem 2.8. LetA ∈ Cm×n, and the sequence {X̂k} converges to the generalized inverseA(2)
T,S if and

only if R(X0) ⊂ T, ρ(R0) < 1. In this case

∥∥∥A(2)
T,S − X̂k

∥∥∥ ≤ qt
k+1(

1 − q
)−1‖X0‖, (2.40)

where q = ‖R0‖ and

T ⊂ Cn, PT,T1 = A
(2)
T,SA. (2.41)

3. Example

Here is an example to verify the effectiveness of the SMS method.

Example 3.1. Let

A =

⎡
⎣2 1
0 2
0 0

⎤
⎦. (3.1)

Let T ∈ C2; e = (0;0;1)T ∈ C3, S = span{e}.
Take

X0 =
[
0.4 0 0
0 0.4 0

]
. (3.2)

By (2.2), we have

R0 =

⎡
⎣0.2 −0.4 0

0 0.2 0
0 0 0

⎤
⎦. (3.3)
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Table 1

Method Iteration (2.1) Algorithm 1
Steps 5 2

From [10, 12], we easily have the generalized inverse A(2)
T,S in

A
(2)
T,S =

[
0.5 −0.25 0
0 0.5 0

]
. (3.4)

Then, from Algorithm 1, we obtain

X1 =
[
0.4800 −0.1600 0

0 0.4800 0

]
, X2 =

[
0.5600 −0.3200 0

0 0.5600 0

]
. (3.5)

But by the iteration (2.1), we get

X1 =
[
0.4800 −0.1600 0

0 0.4800 0

]
, X2 =

[
0.4960 −0.2240 0

0 0.4960 0

]
,

X3 =
[
0.4992 −0.2432 0

0 0.4992 0

]
, X4 =

[
0.4998 −0.2483 0

0 0.4998 0

]
,

X5 =
[
0.5000 −0.2496 0

0 0.5000 0

]
, X6 =

[
0.5000 −0.2499 0

0 0.5000 0

]
.

(3.6)

From the data in (3.5) and (3.6), we obtain Table 1.
From the above in (3.5), (3.6), and Table 1, we know that we only need two steps by

Algorithm 1, but five steps by using iterative form (2.1).
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