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We introduce and consider a new class of equilibrium problems and variational inequalities
involving bifunction, which is called the nonconvex bifunction equilibrium variational inequality.
We suggest and analyze some iterative methods for solving the nonconvex bifunction equilibrium
variational inequalities using the auxiliary principle technique. We prove that the convergence of
implicit method requires only monotonicity. Some special cases are also considered. Our proof of
convergence is very simple. Results proved in this paper may stimulate further research in this
dynamic field.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [1], can be viewed as
an important and significant extension of the variational principles. This theory combines
the theory of extremal problems and monotone operators under a unified viewpoint. It
is well known that the variational inequalities represent the optimality condition of the
convex function. For the directional differentiable convex functions, we have another class
of variational inequalities, which is known as the bifunction variational inequalities. LetK be
a closed and convex set in the real Hilbert spaceH. For a given bifunction B(·, ·) : H×H → R,
we consider the problem of finding u ∈ K such that

B(u, v − u) ≥ 0, ∀v ∈ K, (1.1)
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which is called the bifunction variational inequality. Crespi et al. [2–4], Fang and Hu [5],
Lalitha andMehta [6], andNoor [7] have studied various aspects of the bifunction variational
inequalities. We would like to mention that that the bifunction variational inequality is quite
different than the variational inequality.

For a given bifunction F(·, ·) : H×H → R, Blum andOettli [8] considered the problem
of finding u ∈ K such that

F(u, v) ≥ 0, ∀v ∈ K, (1.2)

which is known as the equilibrium problem. It has been shown that the variational inequali-
ties and fixed point problems are special cases of the equilibrium problems. We would like to
emphasize that the bifunctions B(·, ·) and F(·, ·) are distinctly different from each other. Their
properties are different from each other.

It is natural to consider the unification of these problems. This fact has motivated Noor
et al. [9, 10] to consider a general and unified class, which is called the bifunction equilibrium
variational inequality. They considered the problem of finding u ∈ K such that

F(u, v) + B(u, v − u) ≥ 0, ∀v ∈ K. (1.3)

Obviously, problem (1.3) includes the problems (1.1) and (1.2) as special cases. They have
also discussed the numerical methods for solving such type of bifunction equilibrium varia-
tional inequalities using the auxiliary principle technique. For the applications and numerical
methods for the bifunction equilibrium variational inequalities, see [2–30] and the references
therein.

These problems have been studied in the convexity setting. This means that the
underlying set is a convex set. Naturally a question arises as to whether or not these problems
are well defined on the nonconvex sets. The answer to this question is positive. It is possible
to consider these problems on the prox-regular sets. The prox-regular sets are nonconvex
sets, see [11, 12, 24, 29]. Several authors have studied properties of these nonconvex sets
related to a good behaviour of their boundary. See Sebbah and Thibault [30] and Noor
[23] for the applications and projection characterization of the prox-regular sets. In recent
years, Noor [7, 20–24] and Bounkhel et al. [11] have considered variational inequality in the
context of uniformly prox-regular sets. In this paper, we introduce and consider the bifunction
equilibrium variational inequalities on the prox-regular sets, which is called the nonconvex
bifunction equilibrium variational inequality. This class is quite general and unifying one.
One can easily show that the several classes of equilibrium problems and variational
inequalities are special cases of this new class. There are a substantial number of numerical
methods including projection technique and its variant forms, Wiener-Hopf equations,
auxiliary principle and resolvent equations methods for solving variational inequalities.
However, it is known that projection, Wiener-Hopf equations, and proximal and resolvent
equations techniques cannot be extended and generalized to suggest and analyze similar
iterative methods for solving bifunction variational inequalities due to the nature of the
problem. This fact has motivated the use of the auxiliary principle technique, which is
mainly due to mainly due to Glowinski et al. [13]. This technique deals with finding the
auxiliary problem and proving that the solution of the auxiliary problem is a solution of
the original problem by using the fixed point problem. This technique is very useful and
can be used to find the equivalent differentiable optimization problem. Glowinski et al. [13]
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used this technique to study the existence of a solution of the mixed variational inequality.
Noor [18, 19] has used this technique to develop some iterative schemes for solving various
classes of variational inequalities. We point out that this technique does not involve the
projection of the operator and is flexible. It is well known that a substantial number of
numerical methods can be obtained as special cases from this technique. In this paper,
we show that the auxiliary principle technique can be used to suggest and analyze a
class of iterative methods for solving the nonconvex bifunction equilibrium variational
inequalities. We also prove that the convergence of the implicit method requires only the
monotonicity, which is a weaker condition thanmonotonicity. Since the nonconvex bifunction
equilibrium variational inequalities included (nonconvex) bifunction variational inequalities
and (nonconvex) equilibrium problems as special cases, results obtained in this paper
continue to hold for these and related problems. Our method of proof is very simple as
compared with other techniques.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖ · ‖, respectively. Let K be a nonempty and convex set in H. We, first of all, recall the
following well-known concepts from nonlinear convex analysis and nonsmooth analysis
[12, 29]. Poliquin et al. [29] and Clarke et al. [12] have introduced and studied a new class of
nonconvex sets, which are called uniformly prox-regular sets.

Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK[u + αξ]}, (2.1)

where α > 0 is a constant and

PK[u] = {u∗ ∈ K : dK(u) = ‖u − u∗‖}. (2.2)

Here dK(·) is the usual distance function to the subset K, that is,

dK(u) = inf
v∈K

‖v − u‖. (2.3)

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.2. Let K be a nonempty, closed, and convex subset in H. Then ζ ∈ NP
K(u), if and only if

there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K. (2.4)
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Definition 2.3. For a given r ∈ (0,∞], a subset Kr is said to be normalized uniformly r-prox-
regular if and only if every nonzero proximal normal cone to Kr can be realized by an r-ball,
that is, for all u ∈ Kr and 0/= ξ ∈ NP

Kr
(u), one has

〈
ξ

‖ξ‖ , v − u

〉
≤
(
1
2
r

)
‖v − u‖2, ∀v ∈ Kr. (2.5)

It is clear that the class of normalized uniformly prox-regular sets is sufficiently large to
include the class of convex sets, p-convex sets, C1,1 submanifolds (possibly with boundary)
of H, the images under a C1,1 diffeomorphism of convex sets, and many other nonconvex
sets; see [12, 29]. It is well known [11, 12, 29] that the union of two disjoint intervals [a, b]
and [c, d] is a prox-regular set with r = (c− b)/2. For other examples of prox-regular sets, see
M. A. Noor and K. I. Noor [24]. Obviously, for r = ∞, the uniformly prox-regularity of Kr

is equivalent to the convexity of K. This class of uniformly prox-regular sets has played an
important part in many nonconvex applications such as optimization, dynamic systems and
differential inclusions.

For the sake of simplicity, we take γ = 1/r. Then it is clear that, for r = ∞, we have
γ = 0.

For given bifunctions F(·, ·), B(·, ·) : H × H ⇒ R, we consider the problem of finding
u ∈ Kr such that

F(u, v) + B(u, v − u) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr, (2.6)

which is called the nonconvex bifunction equilibrium variational inequality.
We note that, ifKr ≡ K, the convex set inH, then problem (2.6) is equivalent to finding

u ∈ K such that

F(u, v) + B(u, v − u) ≥ 0, ∀v ∈ K. (2.7)

Inequality of type (2.6) is called the bifunction equilibrium variational inequality, considered and
studied by Noor et al. [9].

If B(u, v − u) = 〈Tu, v − y〉, where T is a nonlinear operator, then problem (2.6) is
equivalent to finding u ∈ Kr such that

F(u, v) + 〈Tu, v − u〉 + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr, (2.8)

which is called the nonconvex equilibrium variational inequality and appears to be a new
one.

For a suitable and appropriate choice of the bifunctions and the spaces, one can obtain
several new classes of equilibrium and variational inequalities, see [1–30] and the references
therein. This shows that the problem (2.6) is quite general and includes several new and
known classes of variational inequalities and equilibrium problems as special cases.



Journal of Applied Mathematics 5

3. Main Results

In this section, we use the auxiliary principle technique of Glowinski et al. [13] as developed
by Noor et al. [10, 26, 27] to suggest and analyze some iterative methods for solving the
nonconvex equilibrium bifunction variational inequality (2.6). We would like to mention that
this technique does not involve the concept of the projection and the resolvent, which is the
main advantage of this technique.

For a given u ∈ Kr satisfying (2.6), consider the problem of finding w ∈ Kr such that

ρF(w,v) + ρB(w,v −w) + 〈w − u − α(u − u), v −w〉 + ργ‖v −w‖2 ≥ 0, ∀v ∈ Kr, (3.1)

where ρ > 0, α > 0, and γ > 0 are constants. Inequality of type (3.1) is called the auxiliary
nonconvex bifunction variational inequality. Note that if w = u, then w is a solution of (2.6).
This simple observation enables us to suggest the following iterative method for solving the
nonconvex bifunction variational inequalities (2.6).

Algorithm 3.1. For a given u0 ∈ Kr , compute the approximate solution un+1 by the iterative
scheme

ρF(un+1, v) + ρB(un+1, v − un+1) + 〈un+1 − un − α(un − un−1), v − un+1〉

+ ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr.
(3.2)

Algorithm 3.1 is called the inertial proximal point method for solving the nonconvex bifunc-
tion equilibrium variatioanal inequalities (2.6).

If γ = 0, then the uniformly prox-regular set Kr reduces to the convex set K.
Consequently, Algorithm 3.1 collapses to the following.

Algorithm 3.2. For a given u0 ∈ Kr , compute the approximate solution un+1 by the iterative
scheme

ρF(un+1, v) + ρB(un+1, v − un+1) + 〈un+1 − un − α(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ Kr. (3.3)

Algorithm 3.2 is called the inertial proximal point method for solving the equilibrium
bifunction variational inequalities 92.2) and appears to be a new one.

We note that, if α = 0, then Algorithm 3.1 reduces to the following.

Algorithm 3.3. For a given u0 ∈ Kr , compute the approximate solution un+1 by the iterative
scheme

ρF(un+1, v) + ρB(un+1, v − un+1) + 〈un+1 − un, v − un+1〉 + ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr.
(3.4)
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Algorithm 3.3 is called the proximal point algorithm for solving nonconvex bifunction
equilibrium variational inequality (2.6). In particular, if γ = 0, then the uniformly prox-
regular set Kr becomes the convex set K and consequently Algorithm 3.3 reduces to the
following algorithm.

Algorithm 3.4. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative
scheme

ρF(un+1, v) + ρB(un+1, v − un+1) + 〈un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ K, (3.5)

which is known as the proximal point algorithm for solving bifunction equilibrium
variational inequalities (2.7) and has been studied extensively, see [10, 26, 27].

For suitable rearrangement and appropriate choice of the operators and spaces, one
can obtain a numer of proximal point algorithms for solving various classes of bifunction
variational inequalities, equilibrium problems, and optimization problems. This shows that
Algorithm 3.1 is quite general and unifying one.

For the convergence analysis of Algorithm 3.3, we recall the following concepts and
results.

Definition 3.5. A bifunction B(·, ·) : H ×H → H is said to be monotone, if and only if

B(u, v − u) + B(v, u − v) ≤ 0, ∀u, v ∈ H. (3.6)

Definition 3.6. A bifunction F(·, ·) : H ×H → H is said to be monotone, if and only if

F(u, v) + F(v, u) ≤ 0, ∀u, v ∈ H. (3.7)

Remark 3.7. We would like to point out that the bifunctions F(·, ·) and B(·, · − ·) are different,
that is F(·, ·)/=F(·, · − ·). Due to this reason, one cannot define G := F + B. This is the reason
that problem (2.6) is not equal to nonconvex bifunction equilibrium variational inequality
problem.

We now consider the convergence criteria of Algorithm 3.3. The analysis is in the spirit
of Noor [9, 18, 19]. In a similar way, one can consider the convergence analysis of other
algorithms.

Theorem 3.8. Let the bifunction F(·, ·), B(·, ·) : Kr × Kr → H be monotone. If un+1 is the
approximate solution obtained from Algorithm 3.3 and u ∈ Kr is a solution of (2.6), then

(
1 − 4γρ

)‖u − un+1‖2 ≤ ‖u − un‖2 − ‖un − un+1‖2. (3.8)

Proof. Let u ∈ Kr be a solution of (2.6). Then

−F(v, u) + −B(v, u − v) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr, (3.9)

since B(·, ·) and F(·, ·) are monotone operators.
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Taking v = un+1 in (3.9), we have

−F(un+1, u) + −B(un+1, u − un+1) + γ‖u − un+1‖2 ≥ 0. (3.10)

Setting v = u in (3.4), and using (3.10), we have

〈un+1 − un, u − un+1〉 ≥ −ρF(un+1, u) − ρB(un+1, un+1 − u)

− ργ‖un+1 − u‖2 ≥ 0.
(3.11)

From this, one can easily obtain

(
1 − 4ργ

)‖u − un+1‖2 ≤ ‖u − un‖2 − ‖un − un+1‖2, (3.12)

the required result (3.8).

Theorem 3.9. LetH be a finite dimension subspace, and let un+1 be the approximate solution obtained
from Algorithm 3.3. If u ∈ Kr is a solution of (2.6) and ρ < 1/4γ , then limn→∞un = u.

Proof. Let u ∈ Kr be a solution of (2.6). Then it follows from (3.5) that the sequence {un} is
bounded and

∞∑
n=0

‖un − un+1‖2 ≤ ‖u0 − u‖2, (3.13)

which implies that

lim
n→∞

‖un − un+1‖ = 0. (3.14)

Let û be a cluster point of the sequence {un}, and let the subsequence {uj} of the sequence
{un} converge to û ∈ Kr . Replacing un by unj in (3.4) and taking the limit nj → ∞ and using
(3.14), we have

B(û, v − û) + γ‖v − û‖2 ≥ 0, ∀v ∈ Kr, (3.15)

which implies that û solves the nonconvex bifunction equilibrium variational inequality (2.6)
and

‖un − un+1‖2 ≤ ‖û − un‖2. (3.16)

Thus it follows from the above inequality that the sequence {un} has exactly one cluster point
û and limn→∞un = û, the required result.

We note that, for r = ∞, the r-prox-regular set K becomes a convex set and the
nonconvex bifunction equilibrium variational inequality (2.6) collapses to the bifunction
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equilibrium variational inequality (2.7). Thus our results include the previous known results
as special cases.

It is well known that, to implement the proximal point methods, one has to calculate
the approximate solution implicitly, which is itself a difficult problem. To overcome this
drawback, we suggest another iterative method, the convergence of which requires only
partially relaxed strongly monotonicity, which is a weaker condition that of cocoercivity.

For a given u ∈ Kr satisfying (2.6), consider the problem of finding w ∈ Kr such that

ρF(u, v) + ρB(u, v −w) + 〈w − u, v −w〉 + γ‖v −w‖2 ≥ 0, ∀v ∈ Kr, (3.17)

which is also called the auxiliary nonconvex bifunction equilibrium variational inequality.
Note that problems (3.1) and (3.17) are quite different. If w = u, then clearly w is a solution
of the nonconvex bifunction equilibrium variational inequality (2.6). This fact enables us to
suggest and analyze the following iterative method for solving the nonconvex bifunction
equilibrium variational inequality (2.6).

Algorithm 3.10. For a given u0 ∈ Kr , compute the approximate solution un+1 by the iterative
scheme

ρF(un, v) + ρB(un, v − un+1) + 〈un+1 − un, v − un+1〉 + γ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr. (3.18)

Note that, for r = ∞, the uniformly prox-regular set Kr becomes a convex set K and
Algorithm 3.3 reduces to the following.

Algorithm 3.11. For a given u0 ∈ K, calculate the approximate solution un+1 by the iterative
scheme

ρF(un, v) + ρB(un, v − un+1) + 〈un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ K, (3.19)

which is known as the projection iterative method for solving bifunction equilibrium varia-
tional inequalities (2.7).

4. Conclusion

For appropriate and suitable choice of the operators and the spaces, one can suggest
and analyze several iterative methods for solving the nonconvex bifunction equilibrium
variational inequalities. This shows that the algorithms suggested in this paper are more
general and unifying ones. Using essentially the technique of Theorems 3.8 and 3.9, one can
study the convergence analysis of Algorithm 3.10. It is an interesting problem to compare
these iterative methods with other numerical methods for solving the nonconvex bifunction
equilibrium variational inequalities. The ideas and technique of this paper may stimulate
further research in these interesting fields.
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