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We study the following second-order super-half-linear impulsive differential equations with delay
[rOpy (X' ()] + p(py(x(t = 0)) + q(t) f(x(t = 0)) = e(t), t#7k, x(t) = axx(t), X'(t) = bpx'(t),
t = 7, where t >ty € R, ¢, (u) = |ul*'u, cis a nonnegative constant, {7x} denotes the impulsive
moments sequence with 71 < 7 < --- < 7 < -+, limg_ Tk = o, and T4 — T« > 0. By some
classical inequalities, Riccati transformation, and two classes of functions, we give several interval
oscillation criteria which generalize and improve some known results. Moreover, we also give two
examples to illustrate the effectiveness and nonemptiness of our results.

1. Introduction

We consider the following second-order super-half-linear impulsive differential equations
with delay

[r(H)p, (x'(t))]l +pM)py(x(t-0)) +qt) f(x(t-0)) =e(t), t#Tk,

x(t) = arx(t), x'(t") =bx'(t), t=7, k=1,2,...,

(1.1)

where t >ty € R, ¢.(u) = |u|*'u, o is a nonnegative constant, {7} denotes the impulsive
moments sequence with 71 < 7 < -+ < Tk <+, limg_, o, Tk = o0, and Ty+1 — Tk > O.
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Let J C R be an interval, we define

y is continuous everywhere except each 7, at which
PLC(J,R) =3y:] = R

y(7y) and y(7;) exist and y(7;) = y(7x), k €N
(1.2)

For given ty and ¢ € PLC([ty — 0, to], R), we say x € PLC([t; — 0, o0), R) is a solution of (1.1)
with initial value ¢ if x(t) satisfies (1.1) for t >ty and x(t) = ¢(t) for t € [ty — 0, to].

A solution of (1.1) is said to be nonoscillatory if it is eventually positive or eventually
negative. Otherwise, this solution is said to be oscillatory.

Impulsive differential equation is an adequate mathematical apparatus for the simula-
tion of processes and phenomena observed in control theory, physics, chemistry, population
dynamics, biotechnologies, industrial robotics, economics, and so forth. Because it has more
richer theory than its corresponding nonimpulsive differential equation, much research has
been done on the qualitative behavior of certain impulsive differential equations (see [1, 2]).

In the last decades, there has been an increasing interest in obtaining sufficient condi-
tions for oscillation and / or nonoscillation of different classes impulsive differential equations
with delay (constant or variable), see, for example, [1-9] and the references cited therein.

In recent years, interval oscillation of impulsive differential equations was also arous-
ing the interest of many researchers, see [10-15].

However, for the impulsive equations almost all of interval oscillation results in the
existing literature were established only for the case of “without delay,” in other words, for
the case of “with delay” the study on the interval oscillation is very scarce. To the best of
our knowledge, Huang and Feng [16] gave the first research in this direction recently. They
considered the second-order delay differential equations with impulses

X" +pt)f(x(t-7)) =e(t), t>ty, t#t, k=1,2,...,

(1.3)
x(tf) = arx(te), x'(£) =bex'(tx), k=1,2,...,

and established some interval oscillation criteria which developed some known results for
the equation without delay or impulses [13, 17, 18].

Motivated mainly by [16], in this paper, we study the interval oscillation of the delay
impulsive equation (1.1). By using classical inequalities, Riccati transformation, and two
classes of functions (introduced first by Philos [19]), we establish some interval oscillation
criteria which generalize and improve some known results of [13, 16-18]. Moreover, we also
give two examples to illustrate the effectiveness and nonemptiness of our results.

2. Main Results
Throughout the paper, we always assume that the following conditions hold:

(A7) r(t) € C([to, o), (0, 00)) and is nondecreasing, p(t), q(t), e(t) € PLC([to, o0), R);

(Ay) y is a quotient of odd positive integers ay, b are real constants satisfying by > ay >
0,k=1,2,..;

(A3) f € C(R,R), xf(x) > 0 and there exist some positive constants 7 and a such that
f(x)/pa(x) >nforall x#0 with a > y.
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We introduce the following notations at intervals [c1,d1] and [cy, d5]

k(s) :==max{i:ty < T <s}, M; :=max{r(t):t € [c;,dj]}, j=1,2
2.1)
Q;(cj, d;) = {w € Clc;, d;] |w(t)20,w(c;) = w(d;) = O}, j=12

For two constants ¢,d ¢ {7} with ¢ < d, k(c) < k(d) and a function ¢ € C([c,d],R),
we define an operator Q : C([c,d],R) — R by

i i k(d) b’ Y

b -a
k(c)+1 k(c)+1 ; !
Q? ¢l = ¢(Tkyn) 5— 5t D 9T, (2.2)
A(o)+1 (Tk(c)+1 - C) i=k(c)+2 a; (Ti = Ti-1)

where 3L = 0if s > t.
In the discussion of the impulse moments of x(t) and x(f — o), we need to consider the
following cases for k(c;) < k(d;),

(S1) Tk(c;)) + 0 <Cj and Tk(d;) + 0 > dj; (S2) Tk(c;)) + 0 < Cj and Tk(d;) + 0 < dj;

(S3) Tk(c;)) + 0 > Cj and Tk(d;) + O > dj; (54) Tk(c;) + 0 > ¢j and Ty(q;) + 0 < d;j, and the cases
for k(c;) = k(d;);

(S1) Tk(c;) +0 <¢j; (S2) Cj < Tk(e;) +0 <dj; (S3) Tk(c;) + 0 > d;.

Combining (5*) with (§*), we can get 12 cases. In order to save space, throughout the
paper, we study (1.1) under the case of combination of (S1) with (S1) only. The discussions
for other cases are similar and omitted.

The following preparatory lemmas will be useful to prove our theorems. The first is
derived from [20] and the second from [21].

Lemma 2.1. Let X and 6 be positive real numbers with A > 6. Then
AXYP 4 BX0 > 0670 (A - 6) VT ASABIE/Y, (2.3)

forall A,B>0and X > 0.
Lemma 2.2. Suppose X and Y are nonnegative, then
AXYMoX <A -1)YY, A>1, (2.4)

where equality holds if and if X =Y.

Lety>0,B>0,A>0and y >0. Put

Y
L=1+ % X=AV0y y = <#> BY AT/ (D), (2.5)
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It follows from Lemma 2.2 that

Y Br+1

By - Ay(Y+1)/Y < -
(r+1)" A

(2.6)

Lemma 2.3. Assume that for any T > to, there exists c;,d; & {7k}, j = 1,2, such that T < c; < d; <
Cy < dz and

p(t),qt) >0, telci—o0,di]VU[ca—o0,da]\ {7x},
e(t) <0, te[cr—-o,di]\ {7}, (2.7)

e(t) 20, te[cz—o,dx] \ {7}

If x(t) is a nonoscillatory solution of (1.1), then there exist the following estimations of x(t— o) /x(t):

x(t-0) t-1,-0
x(t) t—1;

(11) fOTt c (Ti + G,Ti+1],

4

x(t-o0) t—T1
x(t) bit+o-1)°

(b) fort € (T3, Ti + 0),

2.8)
x(t—0) t=Tk,)—O (
t € jr i 7
(c) for [c] Tk(c])+1] < T
x(t-o0) t = Tka))

(d) fO?’i’ S Tk(dv),dj , ,
< i ] x(t) bk(dj) (t +0— Tk(dj))

wherei=k(c;),...,k(dj))-1,j=1,2

Proof. Without loss of generality, we assume that x(t) > 0 and x(t — o) > 0 for ¢t > ty. In this

case the selected interval of ¢ is [c1, d1]. From (1.1) and (2.7), we obtain

[r®)gpy (x'(1)] = e(t) = p(gpy (x(t = 0)) = q(1) f (x(t = 0)) < 0. (2.9)

Hence 7 (t)¢py (x'(t)) is nonincreasing on the interval [c1,d1] \ {7« }.

Case (a) (if T, + 0 < t < Ty, then (t — 0,t) C (73, Tiz1]). Thus there is no impulsive moment in
(t-o,t). Forany s € (t — o,t), we have

x(s) - x(7) =xX'@)(s-m), & €(m9). (2.10)
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Since x(7;") > 0, the function ¢, (-) is an increasing function and 7 (s)¢, (x'(s)) is non-increas-

ing on (7, Ti+1), we have

r(§0)gy (x'(61))

—_~\r
ey e

0y (x(5)) > ¢y (x'(G1) (s = 7)) =

L r99y (X (s)

_\Y 3
=) (s—m)", & €(ms).

From (2.11) and the conditions r(s) > 0 and r(s) is nondecreasing, we have

py(x(s)) > ‘/’Y(x,(s))(s -n) = (py(x'(s)(s -1)), & €(1,s).

Thus

x'(s) 1
x(s) < 5o T

Integrating both sides of above inequality from t — o to f, we obtain

x(t-o0) . t-1—-0
x(t) t—T1;

, te(ri+o0, Tl

(2.11)

(2.12)

(2.13)

(2.14)

Case (b) (if ; <t <Ti+0,thenT,—0 <t—0 <7 <t <7+ 0). There is an impulsive moment

7;in (t — o, t). For any t € (13, 7; + 0), we have

x(t) - x(77) =x'(&)(t-1), & € (T, t).

(2.15)

Using the impulsive condition of (1.1) and the monotone properties of r(t), ¢,(-) and

r(H) ey (x'(t)), we get
(&) (x'(&2)) _
¢y (x(t) — aix(1;)) = T(t -7)
(e (X (7))
ST e W
_ 7 (7i) oy (bix' (13) (t = 7))
r(&2)

Since x(7;) > 0, we have

x(t) r(Ti) x'(73)
9”*(@ - “i> < r(§2>*”’<bi (%) “‘Ti))

(2.16)

(2.17)
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In addition,
x(1i) > x(1;) = x(1; - 0) = x'(&)0, & € (Ti-0,7T). (2.18)

Similar to the analysis of (2.11)—(2.14), we have

X(m) 1 (2.19)
x(t;)) o©

From (2.17) and (2.19) and note that the monotone properties of ¢, (-) and r(t), we get

x(t) b;

— i+ —(t—Ti). 2.2
(1) <a1+o_(t T) (2.20)
In view of (A3), we have

x(T3) o S o]
x(t)  ocai+bi(t-7) " bi(t+0-T1)

> 0. (2.21)

On the other hand, using similar analysis of (2.11)—(2.19), we get

x'(s) - 1

, € (ti—o0,71). 2.22
x(s) “s-ti+o’ ° (7i = 0,7) 222)

Integrating (2.22) from t — o to 7;, where t € (73, T; + 0), we have

x(t-o0) t-
xm o

> 0. (2.23)

From (2.21) and (2.23), we obtain

x(t-o0) t—1;
xt) bit+o-1)

te (7, T +0). (2.24)
Case (c) (t € [c1, Tk(e)+1])- Since Ti(e,)+0 < ¢1, thent—0 € [c1—0, Ti(c;)+1=0] C (Tk(c1)s Tk(er)+1—0 ]
So, there is no impulsive moment in (f — o, t). Similar to (2.14) of Case (a), we have

x(t-0) t—Tke)—O
x(t) t = Tk(e)

, te [er, Trie)]- (2.25)

Case (d) (t € (Tk(dl)/dl])- Since Tk(d) + O > di, thent-o € (Tk(dl) -o,d1-0] C (Tk(dl) -0, Tk(dl))-
Hence, there is an impulsive moment 7x(4,) in (t — 0, t). Making a similar analysis of Case (b),
we obtain

x(t-o0) £ = Tk(dy)
x(t) by (E+ 0 = Ti(ay))

>0, te (Tra) di]- (2.26)
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When x(t) < 0, we can choose interval [c;, d,] to study (1.1). The proof is similar and
will be omitted. Therefore we complete the proof. O

Theorem 2.4. Assume that for any T > to, there exists cj,d; & {7k}, j = 1,2, such that T < ¢; <
di < ¢y < dp and (2.7) holds. If there exists w;(t) € Qj(cj,d;) (j = 1,2) such that, for k(c;j) < k(d;),

Wi(t)

Y
Cj <i’ - Tk(Cj)>

k(d;j)-1 Ti+0 . Tir1 o
Y [J‘ Wj(t)MdH Wj(t)udt]

t

Y
J‘Tk(cl-)ﬂ <t = Tk(cj) — O‘> p

, Y —7) _ t—1,)"
i=k(cj)+1 L7 T b;(t+o-1) Ti+0 (t-m) (2.27)
¥
dj (t - Tk(dj)> dj y+1
+ Wi () Sdt —f <r(t)|w;(t)| )dt
Tk(d)) bZ(d]) <t +0 - Tk(d]-)) Cj
d:
>M ]-ch’ [w}’ﬂ]’
and for k(c;) = k(d;),
% (t=c)" N
f (W]‘(f)m - r(f)'w,-(t)| >dt >0, (2.28)
Cj 1

where W;(t) = (p(t) + ay Y/ *(a —y)"/ 'y /gr/=(t) |.e(t)|1-r/a)w]¥+1 (), then (1.1) is oscillatory.

Proof. Assume, to the contrary, that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we assume that x(t) > 0 and x(t — o) > 0 for t > t;. In this case the interval of ¢
selected for the following discussion is [c1, d1].

We define

oy (x'(t))

xY—(t)’ forte [C],dl]. (229)

u(t) =r(t)

Differentiating u(¢) and in view of (1.1) we obtain, for t # ¢,

fx(t-0)) le®) v
xV(t) xr(t)y  rr(t)

(t-0)
Y

1+y)/
@ ju(®) 0/

W) = -p(n™

—q(t)
(2.30)

xV(t-o0) Y
Xt ri/r(t)

< ~{p(®) +ng()x"7 (¢~ 0) +le()lx (¢~ 0)) Ju(t) V.
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Putting A = nq(t), B = |e(t)|, X = x(t - 0), A = a, and 6 = y, by Lemma 2.1, we see that

W (t) < =(p(t) + ay " (a=y) " (ng()" " le(v]07) xyg(‘t)") - rl/z(t) ()07

= —MR(t) -

(1+y)/
e u(®) 07,

)
(2.31)

where R(t) = p(t) + ay "/ *(a - y)""* " (nq(0))"* (1) e(t) 7/,
First, we consider the case k(c1) < k(dy).
In this case, we assume impulsive moments in [c1,d1] are Ti(c,)+1, Tk(c)+2/ - - - » Th(dh)-

Choosing a wi (t) € Q(c1,d1), multiplying both sides of (2.31) by wrl (t) and then integrat-
ing it from ¢; to d;, we obtain

Th(cy)+1 " Tk(cy)+2 " dq a
f W (Hw! (t)dt + j u(Hw!(dt+ -+ J W' (Hw!" (t)dt

1 Th(cy)+1 Tk(dq)
Th(cy)+1 Th(cy)+2
< - t (1+Y)/Y Y+1 Hdt — (1+y) /Y Y+1
a f 1/Y(t) |u( )| ( ) Th(cp)+1 1/Y(t) |u( )| (t)dt

dq Th(c)+1 ~Y ($ —
Y 14y) /v, r+1 J x'(t - o0)
— = t t)dt — ——— Wi (t)dt

J;WN A (8 [u(t)] w; () . 10 1(t)

Tk(cy)+2 xY (t
Wi (t)dt —f (Y(t) o)
Tk(cp)+110

J—Tk(cl)+1+0' xy(t _ O')

Th(cy)+1 xy (t)

o f A= 0) fdl =9y ya,

Tk(dl)—1+0' xY (t) Tk(dl) xY(t)

Wi (t)dt

(2.32)

where Wi (t) = R(t)w{+1 (t). Using the integration by parts on the left side of above inequality
and noting the condition w; (c1) = wi(d;) = 0, we obtain

k(d1)

Z wI (1) [u(mi) —u(7})]

i=k(c1)+1

<[ el et o - o ) ar

UV(t)

k(dl) -1

f |+ 1) ool 0 )0 -~ E a1 720l ) at

i=k(c1)+1 UY(t)

dq
+ f
Th(dy)

(1 + 1) o} 0 )0 -~ E )] 2] )t

20
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B J‘Tk(cl)ﬂ xY(t _ 0) Wl (t)dt

a xY(t)
K@) T (740 gy (4~ ) T Y (t - o)
- x'(t-o) p X (t-0) .
i:k%)ﬂ [J‘Ti X7 (t) WilBde + I‘rﬁo xY(t) Wi (t) t]
dy XY(t _ O')
- '[wl) xY—(t)Wl (t)dt.

(2.33)

Letting vy = |w{(t)| [u(t), B = (y + D|w(t)|, A = y/r'/Y(t) and using (2.6), for the integrand
function in above inequality we have that

(r+ D} @ 0 lud] - s w0} @ < rfwi 0] 230

Meanwhile, fort =7, k =1,2,..., we have

+ bk !
u(rl) = (— ) u(m). (2.35)
ak
Hence
k(d1) " kid) oV _pr "
>, w (m)um) —u(r)] = >, S=Fw) (m)u(m). (2.36)
i=k(c)+1 i=k(c1)+1 @
Therefore, we get
Ky g p
: ¥ lwrl(Ti)u(Ti)
i=k(c)+1 4

dy Th(e))*1 A Y (f
gf r(t)|w'1(t)|7*1dt—f XE=0) 1yt

Cl -0 (2.37)
KA T (749 X7 (¢ - ) Tl XY (t-0) '
XY (t-0)
B YT dt.
Lk(dn X {0 Wy (t)dt

On the other hand, for t € (7;_1,7;] C [c1,d1],i = k(c1) +2,...,k(d1), we have

x(f) = x(ti1) =X () (t = 7i1), &€ (i, b). (2.38)
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In view of x(7;-1) > 0, and note that the monotone properties of ¢, (-), 7(t)¢py (x'(t)), and r(t),

we obtain

oy (x(t) > oy (X' () oy (t = 7im1) 2 (X' () gy (t = Ti1).

<«s> o

This is

e ®) _ r@)
@) " (E=m)”

Lett — 7., it follows

r(7) ¢y (x'(7:)) M,

oy (x(73)) (1, — i)V’ i=k(e) +2,... k(d).

u(r;) =

Similar analysis on (c1, Tk(c,)+1], we can get

My

U( Tk <——.
( (Cl)"'l) (Tk(c1)+1 _ Cl)Y

Then from (2.41), (2.42), and (A;), we have

k) bY - a]'r +1 +1 k) +1
Z - T 110{ (Ti)u(m) < My w{ (Tk(er)+1)0(c1) + Z w{ (13)¢(Ti)
i=k(c)+1 G4 i=k(c1)+2
_ MlQ [ y+1]

where 0(c1) = (bk(c Y1~ (Clm)/(ﬂz(cl)ﬂ(Tk(c1)+1 —c1)') and §(7;) = (b] —al)/(al (z; -

From (2.37) and (2.43) and applying Lemma 2.3, we obtain

Wi (t

frk(c1>+1 )(t Tk(c,) — O') At
a (t = Tr(en)”

k(dy)-1 Ti+0 B Tis1
oy U Wi — = Wl(t)—(( T))dt]

i=k(e)+1 bl(t+o-1) 40
dq t—1 Y
Tk(dy) k(d )(t +0 = Tiay)'

dy
—f r(t)[wl (8) [ dt

C1

< M1Q [wrﬂ].

This contradicts (2.27).

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

Ti—1)Y)-

(2.44)
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Next we consider the case k(c1) = k(d;). By the condition (S1) we know there is no
impulsive moment in [c1, d1]. Multiplying both sides of (2.31) by wrl(t) and integrating it
from c¢; to dy, we obtain

dy dq
f ' (Hw!™ (t)dt < —J‘ Wi (t)dt. (2.45)

dq
X ey gy g [ X (E=0)
. . g Or o |

o XV(H)

Using the integration by parts on the left-hand side and noting the condition w;(c;) =
wi(dy1) = 0, we obtain

dq
¥+1(t)|u(t)|(“1)/y] dt — f Mwl(t)dt > 0.

dy
I [(y+1)w1(t)w1(t)u(t) =TT

C1

T
(2.46)

It follows that

dy
Y+1(t)|u(t)|(y+1)/y]dt f Mwl(t)dtzo.

f [(y +1) e (B2} (8| ju()] - (D

0
(2.47)

Letting A = (Y/Tl/y(t))w{ﬂ(t), B = (y + 1)|w! (h)yw! (#)|, and y = |u(t)| and applying the ine-
quality (2.6), we get

dq
f [r(t) |2 (1) |Y+1 - %Wl(t) dt > 0. (2.48)

Using same way as Case (a) we get

x(t-o0) t—c1
0 PEp—r t € [c1,d]. (2.49)
From (2.48) and (2.49) we obtain
4 (t=c)h ANt
Ll <W (t)—( o) r(t)|w; (£)| )dt <0. (2.50)

This contradicts our assumption (2.28).
When x(t) < 0, we can choose interval [c;, d5] to study (1.1). The proof is similar and
will be omitted. Therefore we complete the proof. O

Remark 2.5. When y = 1, p(t) = 0, f(x) = |x|*'x and the delay term ¢ = 0, (1.1) reduces to
that studied by Liu and Xu [13]. Therefore our Theorem 2.4 generalizes Theorem 2.1 of [13].

Remark 2.6. Wheny =a =1,r(t) =1and p(t) =0, (1.1) reduces to the (1.3) studied by Huang
and Feng [16]. Therefore our Theorem 2.4 extends Theorem 2.1 of [16].
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Remark 2.7. When ax = by =1, forall k = 1,2, ..., the impulses in (1.1) disappear, Theorem 2.4
reduces to the main results of [17, 18].

In the following we will establish a Kemenev type interval oscillation criteria for (1.1)
by the ideas of Philos [19] and Kong [22].

Let D = {(t,s) : to < s < t}, Hi,H, € CY(D,R), then a pair function Hj, H; is said
to belong to a function set #, defined by (Hi, Hy) € #, if there exists hi, hy € Lioc(D, R)
satisfying the following conditions:

(Ag) Hy(t,t) = Ho(t,t) =0, Hi(t,8) >0, Hy(t,s) >0 fort > s;
(As) (0/0t)Hi(t,s) = ha(t,s)Hi(t,s), (0/0s)Ha(t, s) = ha(t, s)Ha(t, s).
We assume there exist ¢j, d;,6; € {1,k =1,2,...} (j =1,2) which satisfy T < c; < 61 <

di < ¢ <6y < dy for any T > ty. Noticing whether or not there are impulsive moments of x(t)
in [¢j, 6;] and [6;,d;], we should consider the following four cases, namely,

(S1) k(cj) < k(6;) < k(d)); (S2) k(c;) = k(5;) < k(d;);
(S3) k(cj) < k(6;) = k(d,); (S4) k(c;) = k(5;) = k(d;).

Moreover, in the discussion of the impulse moments of x(t — o), it is necessary to
consider the following two cases:

(gl) Tk(s;) + O > 5]',‘ (§2) Tk(5;) + O < 5]'.

In the following theorem, we only consider the case of combination of (51) with (S1).
For the other cases, similar conclusions can be given and their proofs will be omitted here.
For convenience in the expressing blow, we define

1 k(e __ (i’ = Th(cj) — O'>Y
HL]' = —_— J H; (t, Cj)—},dt
Hi(6j,¢) | /o <t— Tk(c,-))

k(ﬁj)_l T;,+0 A\Y Ti+1 A Y
— t— — b= —
+ Z Hl(t,Cj)Y(—Tl)dt-i- Hl(t,Cj)%dt
i=k(c;)+1L7 7 b; (t+o-T;)" i+ (t-7:)
j

Y
6 (t - Tk((s].))
+J H1 (t, C]') Ydt
Ti(5/) bl(ﬁj) (t +0— Tk(éj)>

1 b i
—WI r(H;(t,¢;)|hi(tci) " dt ¢,
Gj
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HZ, j

Y
Th6)+O __ t = Ti(s;)
= (; 55 f EACDEE (t-n0) Sdt
214, 0j 5; bk(aj)<t+o'_7k(5f)>

Hy(dj, t)

k() +0 (t _ Tk(ﬁ]_)) dt

. J‘Tk(6]~)+1 ~ <t = Tk(5;) — )Y

K@)-1 [ pro Y .
+ Z [ Hz(dj,t)&dt+ Hz(dj,t)mdt]

i:k(éj)ﬂ bz?/(t"'o._Ti)Y Tito )

¥
dj <f - Tk(d,-))

+ H2 (d],t)

dt
Ti(d}) bk(d) t+o— Tk(d))

Y

—ﬁf r(t)H2(d,,t)|h2(d],t)|“1dt}

(2.51)

where Hi (t,¢j) = Hi(t,¢;)R(t), Ha(dj, t) = Ha(dj, )R(t) (j = 1,2) and R(t) = p(t) +ay "/ *(a -
DYt g e e

Theorem 2.8. Assume that for any T > to, there exists cj,d; & {7}, j = 1,2, such that T < ¢ <
di £ ¢ < dp and if there exists a pair of (H1, Hy) € H such that

Hl,]' + Hz,]'

—— QU [Hi(- )] + Q [Hx(dy, )], j=12 (252

H1(61/ 1) H, (d,,6)

then (1.1) is oscillatory.

Proof. Assume, to the contrary, that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we assume that x(t) > 0 and x(f — o) > 0 for t > fy. In this case the interval of ¢
selected for the following discussion is [c1,d1]. Using the same proof as in Theorem 2.4, we
can get (2.31). Multiplying both sides of (2.31) by H; (¢, c1) and integrating it from ¢; to 6,
we have

61 51
Hi(t,c))u'(Hdt < - Hi(t,c1) 1/y(t)|u(t)|(1+7)/ydt
1 1
(2.53)
&
- Hi(t, Cl) —0) dt,

o Y(t)
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where Hi (t,¢1) = Hi(t, c1) (p(t) + ay V% (a —y)"/*yp/agr/=(t)|e(t)|"-1/%). Noticing impulsive
moments Tk(c,)+1, Tk(cy)+2s - - - » Th(6,) are in [c1, 61] and using the integration by parts on the left-
hand side of above inequality, we obtain

Th(cy)+1 Th(cy)+2 61
Hl(t,cl)u'(t)dt: <’[ +J‘ +"'+I >H1(t,C1)du(t)

1 Th(cp)+1 Tk(57)

61

C1

kG gl )

= Z : 7 LHy (7, ¢1)u(ti) + Hy (61, ¢1)u(61) (2.54)
i=k(c)+1 G4

Th(cy)+1 Th(c1)+2 o1
3 J‘ +f +...+f H;i(t,c1)hi(t, cr)u(t)dt.
a Thcp)+1 Tk(51)

Substituting (2.54) into (2.53), we have

b __ Y(t— KO bl —a!
Ha(t, Cl)wdt < D, —=—Hi(m,c)u(n) - Hi(61,c1)u(61)
a X7 (t) izk(e)+l @

Tk(e1)+1 Th(e1)+2 o1 Y (y+1)/y
+ + oot Hi(t, c1) || (¢, co)|[u(t)] - ()] dt.

o Th(e))+1 Th(s)) ri/r(t)
(2.55)

Letting A = y/r'/7(t), B = |hi(t,c1)|, y = |u(t)| and using (2.6) to the right side of above
inequality, we have

&1 Y(t_ k@) pY _ g"

—~ xV(t—-o a

e Dar e ST 20 b (e uln) - Hi (61, 0)u(6)
a x7(t) i=k(e+1 G

(2.56)
1 o )
+ W J‘ r())Hi(t 1) i (t, c1) "™ dt.
Y + (o]

Because there are different integration intervals in (2.56), we need to divide the integration
interval [c1,61] into several subintervals for estimating the function x(t — 0)/x(t). Using
Lemma 2.2, (2.6), we get estimation for the left-hand side of above inequality as follows,

o _
Ha(t, 61)%

1
Thic)+ __ t— o)
>f Hl(t,cl)(('«#dt

dt

a t=Tiee)"
2.57)
k(61)-1 T+0 Y Ti+l Y (
— -1 — b —
+ Tt e)—" gy (7 e 2T
Y Y Y
i=k(cr)+1 L/ ™ bi (t +0— Ti) Ti+0 (t - Ti)
& e )

. Fite) (t-Ti)) "

Y Y
Tk(s) b)) (t+0 - Tkey)
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From (2.56) and (2.57), we have

Thic)H __ —T
f Hi(t,c1) —( ke) ~0)

61 (t = Treen)”
k(61)-1 T+0 ( T )Y Ti+l ( )
+ Hi(t,c))———2—dt+ mam————m
i:k(;l)ﬂl: i by(t +0-1) Ti+o (t Tl)
61 — t_ T Y 1 61
[ P ey g S f r(Hi(t cr) i (0] at
k(o) bis) (t+0 = Tk@w) (r+1)" Ja
k(&) bY _ 4

< Z Y i Hl(Ti, C1)M(Ti) - H1(61,c1)u(61).
i=k(c1)+1  H

(2.58)

Multiplying both sides of (2.31) by H,(d;,t) and using similar analysis to the above, we can
obtain

Tk(61)TO __ t—T Y Th(6)+1 __ t—1 —o)
J‘ l Hz(d1,i’) ( k(ﬁl)) + J H2(d1/t)Mdt
o1 (5 )(t +0 - Tk(él)) T(s))+O (t = Txsn))
k(d)-1 [ pr+o -
i — t i+
+ Z [ H,(dy,t )Y(—Tl)),dt+ Hz(dl,t)gdt]
i=k(51)+1 b (t+0-1) T+0 (t-m)"
= — Ti(ay))" 1 g
+ m@ﬁ (= ian) - Mjr@&@ﬁ%@ﬁ@ﬁ
Th(dy) (d )(t +0- Tk(d1)) (r+1) 61
k(dy) b)” aY

< D, —SHHa(dy, m)u(n) + Ha(di, 61)u(6:).
i=k(61)+1 %
(2.59)

Dividing (2.58) and (2.59) by H1(61,c1) and H»(d1, 61), respectively, and adding them, we
get

1 kg) bY Y
Ihjy+Ihy < ——— —H1 (7i, c1)u(T;)
H1(61/C1)1 k(c1)+1 ai
(2.60)
1 k(dy) by

Hz(d1,61) Z Hz(dlsz)u(Tl)

i=k(61)+1 ai
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On the other hand, similar to (2.43), we have

ko) pr —a!
>, —THi(menu(m) < MiQl [Hi(,e1)],
i=k(c1)+1  H

(2.61)
k) b _ g )
——Ha(d1, Ti)u(mi) < M1Qg! [Ha(d1, )]

Y
i=k(@G)+1 G

From (2.60) and (2.61), we can obtain a contradiction to the condition (2.52).
When x(t) < 0, we can choose interval [cy, d;] to study (1.1). The proof is similar and
will be omitted. Therefore we complete the proof. O

Remark 2.9. Let Hi(t,s) = Ha(t,s) = H(t,s), hi(t,s) = 2hj(t,s)//H(t,s) and hy(t,s) =
-2h3(t,s)/+/H(t, s), the conditions (A4), (As) can be changed into

(A¢) H(t,t) =0, H(t,s) >0, fort > s;
(A7) (0/0t)H(t,s) = 2hi(t,s)\/H(t,s), (0/0s)H (t,s) = —2h;(t,s)\/H(t,s).

We know that (Ag) and (A7) are the main assumptions used in [13, 16] to obtain Kemenev
type oscillation criteria. Therefore, Theorem 2.8 is a generalization of Theorem 2.3 in [13] and
Theorem 2.5 in [16].

3. Examples

In this section, we give two examples to illustrate the effectiveness and nonemptiness of our
results.

Example 3.1. Consider the following equation

[py (2 (1))]" + w1 sinty, (x(t - 1”—2)) + V5 cos tp, <x<t - %)) =—cos2t, t#Tk,,

x(t7) = agx(t), x'(t7) = bpx'(t), =17,

(3.1)

where 7 ; = 2kar + (i = 1) (or/2) + (-1) "V (x/8),i=1,2, k=1,2,.., t >0,y =3, a = 6, v; and
v, are positive constants.
For any T > 0, we can choose large 1y € N such that

a a a a
T<c1=2nyr+ﬁ, d1:2n7r+z, 02:2n7r+§, d2:2nyr+5, n=mng,ng+1,....
(3.2)

There are impulsive moments 7,1 = 2nor + /8 in [c1,d1] and T, = 2nar + 30r/8 in [c, d2].
From 7,5 — 7,1 = /4 > 7 /12 and 7111 — Tpp = 1300/8 > /12 for all n > ny, we know that
condition Tk — Tx > o is satisfied. Moreover, we also see the conditions (S1) and (2.7) are
satisfied.
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Let w(t) = sin12t. It is easy to get that Wi (t) = (v;sint + 2v;V/cost cos 2t)sin*12¢t. In

fz(lfzzl_)il =0as k(c1) +1 > k(dy) — 1, by a simple calculation, the left side of (2.27) is

the following

view of Y}

Wi(t)

J‘ o (t =~ Trer) _—i) Lt
a (t = Tr(er))

k(dy)-1 Ti+0 Y Tit1 — . — Y
Y Wl(t)Y(t—Tl)dt A wptEnm9) CY’) dt
i=k(c1)+1 LY Ti bi (t+o- Ti)y Tito (t - Ti)

d t— ' @
+ Wi(t) — (£~ Tiay) _dt - f r(B)|woy (B[ dt
Tk(dy) byan (t+0 = Tk(ay)

~ 2nar+or/8 t-2n-1)or -3 /8—-0a/12 ’
—f Wl(t)( t—2(n-1)r-3x/8 )dt

C1

2nor+ar/12
2nar+ar /4 3 2nar+ar /4
t—2na —
+f Wl(t)< nor —x/8 > dt —f 12%cos*12tdt
2nar+ir/8 bﬂ,l (t + .71'/12 - 2nir - ‘71-/8) 2na+ar /12

a/8 3 /4 3 /4

4 —

- Wi (t) <ﬂ> dt+ | wae <&> dt - 124f cos*12tdt
71‘/12 t + 13.71'/8 ﬂ./g le,l (t - 71'/24) ”/12

= 0.671v1 + 1.326v, + b,3 (0.008v; +0.002v,) — 6*71.

(3.3)
On the other hand, we have
24 3b3 _ a3
dq 4| _ (_) n,1 n,1 (3 4)
1w —_ .
1 [ ] Jr ai,l
Thus condition (2.27) is satisfied for t € [c1,d] if
24\°b;,, —a,,
0.671v; +1.326v; + b, (0.008v; +0.002v;) — 6 > <;> T (3.5)
’ an,l
Similarly, for t € [¢2, d2] we can get the following condition
4\’b;, - a,
0.012v1 + 0.003v; + b,%(0.012v; +0.001v,) — 6% > (%) % (3.6)
’ a

n2
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which ensures (2.27). Hence, by Theorem 2.4, if (3.5) and (3.6) hold, (3.1) is oscillatory. It is
easy to see that (3.5) and (3.6) may be satisfied when v; or v, is large enough. Particularly, let
ani=bpi fori=1,2andn=1,2,..., condition (3.5) and (3.6) become a simple form

0.671vy +1.326v, + b,5 (0.008v; +0.002v,) > 6%,

(3.7)
0.012v1 + 0.003v, + bfz (0.012v; + 0.001v,) > 6.
Example 3.2. Consider the following equation
x(t) + (t)x(t - 2) + (t)x2<t - 2> =e(t), t#T
Hip 3 H2q 3 ’ ks (38)

x(tY) = arx(t), x'(t7) =bex'(t), t=1x,

where T: 7,1 = 8n+1/2, 7,0 =8n+3/2, T3 =8n+9/2, 7ya = 8n+ (11/2) (n = 0,1,2,...),
y=1a=2,0=2/3,br>ar>0,pu;,p, (>0) is a constant. Clearly, Tx+1 — 7« > 0. In addition,
let

(t - 8n)*, t€[8n,8n+2],
8n+4-1)° te[8n+2,8n+4],
p(t) = q(t) = { ) tel ]
(t—-8n-4)°, te[8n+4,8n+6],
(8n+8-1)° te[8n+6,8n+8], (3.9)

o(t) = (t-8n-2)% te[8n8n+4],
8n+6-1)° te[8n+4,8n+8].

For any ty > 0, we choose n large enough such that t; < 8n and let [¢;,d1] = [8n,8n + 2],
[co,da] = [8n+4,8n+6], 61 =8n+1and 6, = 8n + 5. Then p(t), g(t), and e(t) on [c1,d;] and
[c2, d>] satisfy (2.7). Let Hi(t,s) = Hy(t,s) = (t - s)°, then hyi(t s) = —ha(t,s) = 3/(t - s). By
simple calculation, we get

1 Th(e) 1 __ (t - Tk(er) — O—)Y
M= —— f Hilt ) D ") g
Hi (61, ¢1) { a (t = Tien)”
k(61)-1 Ti+0 Y Tisl 7 —ag)Y
Y Hit, cl)y(t—Tl)dt + H cl)udt
i=k(c1)+1 L7 7 bj(t+o-m) Tito (t-7)
("
L [ rom e eora
(Y+1)Y c
61 — t—T Y
+ Hl(t, Cl) ( k(51)) Ydt

Y
Tk(éy) bis,) (F+0-Tk(s))
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8n+1/2
8n+11/6
_ _ B 1/2 3/2 1/2
_J‘Sn (t - 8n)°> [yl(t 8n)° + 2ul/2(t - 8n)>/*(8n + 2 — t) ]—t 55
sl t-8n-1/2) 9
+ t-8 b—8n)> 42012 (t—8m)* 2 (8nt2—p)/2] 8=/ g, 9
J‘8n+1/2( )’ [#1( )’ o *(E=8m) " (8n ) ]bn,l(t—8n+1/6)

1/2 6 1/2 9/ 1/2
=#1f Md‘”zf‘mf @-w'"*w+11/6)

u+5/2 0 u+5/2

g]l du + du— —

LM Jl wWu-1/2) . 2w w2 -w) w-1/2) . 9
1/2 u+1/6 bn,l 1/2 u+1/6 8

~ 0.0005 0.1268\ 1,5 9
~ <0.0008 - ) i+ (0.0081 * > w3
My =+ ’[Tk““a (e 1) (t=kw))" +IT“5“” L(d, t)wdt
’ H2(d1/ 61) 61 k(é )(t+0' Tk(51)) Th(5))+O (t_Tk(ﬁl))Y
k(d)-1T erito __ Y Tl
Ly A, 1 (™ By, T
i=k(51)+1 i bi (t+o- Ti)y Ti+0 (t- Tz)
_Y—Y o ¥
( 1)Y+1 r(t)Ha(dy, t)|ha(da, t)|" dt
Y+ 61
dy _ Y
+ Hz(dl,t) Emea)”
Tetay) i) (FHO=Ti(ay)”
8n+7/6
t-8n-1/2
— 2t t— 21/2t_ 3/2 2_t1/2
f8n+1 (Bn + ) [;41( 8n)” + 245 (¢ = 8 8 + ) ]bn,l(t—8n+1/6)
8n+3/2
8n—-7/6
2 _ t— 2 1/2 3/2 7 _ 1/2 ¢
+ an(, (Sn+2-1t) [‘ul( 8n)° + 2ub/?(t - 8n)*/*(8n +2 - t) ]—t e Vo
+ IBM (8n+2-t) [ (t—8n)>+2ul/% (t— 8n)3/2(8n+2—t)1/2] t-8n-3/2 4 9
8n+3/2 i 2 byo(t—8n—-5/6) 8
=ﬂj.7/6 u3(2_u)3(u_1/2)du+ #1/2 7/6 u3/2(2_u)7/2(u_1/2)du
bn,l 1 u+1/6 bn1 1 u+1/6
. M -u’w-7/6) o2 ’[3/2 wr@-w"w-7/6)
7/6 u-1/2 7/6 u-1/2

w2 B -wiw-3/2) . 27 (2 WB2Q-w)Pw-3/2), 9
+ du + du—2
bu2 )32 u-5/6 bny )3 u-5/6 8

- <0.0389 N 0.0754 N 0.0087>

. (0.0394+ 0.1281 00046> 2 9
bn,l bn,2

bor b, )2 T E
(3.10)
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Then the left side of the inequality (2.52) is

02541 0.0046> e 9
bn,l bn,Z 2 4
(3.11)

1_.[1,1 + H2,1 ~ <00497+ 0.0759 00087)//[

+ +( 0.0475 +
bn,l bn,2 ! <

Because My = My =1, Tk(c))+1 = Tk(61) = Tng = 8 +1/2 € (c1,61) and Ti(s,)+1 = Tk(dy) =
Tnp = 8n+3/2 € (61,d1), it is easy to get that the right side of the inequality (2.52) for j = 1is

— an1 29(bn,2 - an,Z)
+ .

H1(61,c )Q [Hi(,e1)] + 2 (d 6 )Q [Ha(dy, )] = 4 2 8ans

(3.12)
Thus (2.52) is satisfied for j = 1 if
(0'0497 N 0.0759 N 0.0087>‘M1 N <0'0475 N 0.2541 N O.OO46>”§/2
bn,l bn 2 bn,l bn,Z
3.13
2 i bn,l —an] 4 29(bn2 - anZ) ( )
4 4(131 1 San 2

When j = 2, with the similar argument above we get that the left side of inequality (2.52) is

/2 6(u+11/6)d 5 mfm u9/2(2-u)1/2(u+11/6)du
2

H12+H22‘”1,[ w+5/2 w+5/2

i Il u(u—1/2) 2 (! u9/2(2—u)1/2(u-1/2)du

— d
+bn,3 12 u+1/6 “r bus )12 u+1/6

du

L f” wWQ-w’w=1/2) 20" (70 w2 uw) P -1/2)
bn,4 1 u+1/6 bn,4 1 u+1/6

. IB/Z us(z—u)3(u—7/6)du+2 12 IB/Z us/z(z—u)7/2(u—7/6)d
# 7/6 u-1/2 t 7/6 u-1/2

2 3y N3, 1/2 3/2(9 _ NT/20,
+£J‘ w2-u)’(u 3/2)du+ Hy w’ (2-u)"(u 3/2)du_2
bus )30 u-5/6 bua )i u-5/6 4

0.0759 o.oos7>
+ I

. <0_0475+ 0.2541 00046) 2 9
bn,3 bn,4

=~ ( 0.0497
<009+ b b Uy 1

(3.14)

and the right side of the inequality (2.52) is

M, M, _bug—ans  29(bus — ana)
(62,00 )Q [Hi(,e2)] + T (da, 57) )Q52 [Ha(d2,*)] = 4 z + 8ans .

(3.15)
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Therefore (2.52) is satisfied for j = 2 if

0.0759  0.0087 0.2541  0.0046
<0.0497 + —>y1 + <0.0475 + + > w2
bn,3 bn,4 bn,4 bn,4
(3.16)
9 bn,3 —anj 29(bn,4 - an,4)
> -+ + .
4 4(1%/3 8(1-,1,4

Hence, by Theorem 2.8, (3.8) is oscillatory if (3.13) and (3.16) hold. Particularly, let a,,; = by,
fori=1,2,3,4, condition (3.13) and (3.16) become a simple form

7

< 0.0497 + 20759 0.0087>#1 N <0' oays 4 02541 0.0046> 2 491

(3.17)
2
4

—_— + —_—
2
b n,1 bn,2

.07 .0087 2541 .004
0.0759  0.008 >#1+<0.0475+0 5 0.00 6>#1/2>

n,1 b n2

+ + )

0.0497 +
< b n3 b nA4 bn,3 b nA4
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