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We introduce and investigate a new class of graphs arrived from exponential congruences. For
each pair of positive integers a and b, let G(n) denote the graph for which V = {0, 1, . . . , n − 1} is
the set of vertices and there is an edge between a and b if the congruence ax ≡ b (modn) is solvable.
Let n = pk11 pk22 · · · pkrr be the prime power factorization of an integer n, where p1 < p2 < · · · < pr are
distinct primes. The number of nontrivial self-loops of the graph G(n) has been determined and
shown to be equal to

∏r
i=1(φ(p

ki
i ) + 1). It is shown that the graph G(n) has 2r components. Further,

it is proved that the component Γp of the simple graph G(p2) is a tree with root at zero, and if n is
a Fermat’s prime, then the component Γφ(n) of the simple graph G(n) is complete.

1. Introduction

The notion of congruence is intrinsic in number theory. Modular arithmetic has clutched a
vital contrivance for most of the number theoretic mathematics. In recent years, studying
graphs through congruences is of charismatic and an independent interest of number
theorists. It has cemented a novel approach to introduce a premium connection between
Number Theory and Graph Theory. On behalf of modular arithmetic, we can manipulate
many fascinating features of graphs. We first encounter the ideas used in [1–5], where
digraphs from congruences were discussed. The conditions for regularity and semiregularity
of such digraphs are presented in [1, 2]. The necessary and sufficient conditions for the
existence of isolated fixed points have been established in [3]. The structures of symmetric
digraphs have been studied in [4, 5]. In this paper we discuss the graph G(n) arriving from
exponential congruences. We assign to each pair of positive integers a and b an edge (a, b)
of the graph G(n) if the congruence ax ≡ b (modn) is solvable, where V = {0, 1, . . . , n − 1}
is the set of vertices of G(n) and E ⊆ V × V is the set of edges of G(n). Then the graph G(n)
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has a loop at a vertex a if and only if ax ≡ a (mod n) admits a solution. Since the congruence
relation is an equivalence relation, so ax ≡ a (modn), a ∈ {0, 1, . . . , n − 1} always admits
a solution x = 1. Thus we call x = 1 a trivial solution and, so far, the loops due to trivial
solution are called trivial loops. Thus it becomes interesting to find the number of vertices in
{0, 1, . . . , n − 1} such that the congruence ax ≡ a (modn) admits a nontrivial solution. The
loops at vertices corresponding to nontrivial solutions are called nontrivial loops. Since for
each α ≥ 2, the congruence aα ≡ a (modn), for a = 0, 1, so the loops at vertices 0 and 1
will be considered as nontrivial loops. We denote the number L(n) for nontrivial loops of
the graph G(n). Let n = pk11 pk22 · · · pkrr be the prime power factorization of an integer n, where
p1 < p2 < · · · < pr are distinct primes. The number L(n) of the graphG(n) has been determined
and shown to be equal to

∏r
i=1(φ(p

ki
i ) + 1), where φ is the Euler’s phi function. It has been

shown that the graph G(n) has 2r components. We label these components as Γd, where d | n
or d = φ(n). The order of each component of the graph G(n) has been determined. Further, it
is proved that the component Γp of the simple graph G(p2) is always a tree with root at zero.
Also if n is a Fermat’s prime, then the component Γφ(n) of the simple graphG(n) is a complete
graph.

2. Preliminaries

A graphG is simple if it is free from loops andmultiedges. The vertices a1, a2, . . . , ak−1, ak will
constitute a cycle of length k if each of the following congruences is solvable:

ax
1 ≡ a2 (mod n),

ax
2 ≡ a3 (mod n),

...

ax
k ≡ a1 (mod n).

(2.1)

A graph G is said to be connected if there is a path from x to y, for each pair of vertices x and
y. A maximal connected subgraph is called a component [6].

In Figure 1, the simple graph G(30) has eight components. A graph G is complete
if every two distinct vertices of G are adjacent. Thus G(n) is complete if ax ≡ b (modn) is
solvable for each distinct pair of vertices in V . The degree of a vertex v in G is the number
of edges incident with v. It is denoted by deg(v). If deg(v) = r for each vertex v of G(n),
then G(n) is called r-regular or regular graph of degree r. The simple graph G(30) has two
3-regular and two 1-regular components.

We recall the definition of Euler’s phi function [7], and some of its properties.

Definition 2.1. For n ≥ 1, let φ(n) denote the number of positive integers not exceeding n
which are relatively prime to n. Note that φ(1) = 1, because gcd(1, 1) = 1. Thus we can write

φ(n) =

{
1, if n = 1,
Number of integers less than n and co-prime to n, if n/= 1.

(2.2)
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Figure 1: The simple graph of G(30).

By the definition of Euler’s phi function, it is clear that if a | b, then φ(a) | φ(b). Also φ(p) =
p − 1 if and only if p is a prime number. We will need the following results of [7], regarding
Euler’s phi function, for use in the sequel.

Theorem 2.2. If p is a prime and k > 0, then

φ
(
pk

)
= pk−1

(
p − 1

)
. (2.3)

Let f be an arithmetic function. One recalls that f is said to be multiplicative if f(mn) = f(m)f(n),
gcd (m,n) = 1.

The following theorem is the generalization of the well-known Fermat’s Little theorem
which states that if (a, p) = 1, then ap ≡ 1 (mod p).

Theorem 2.3 (Euler). If n ≥ 1 and (a, n) = 1, then aφ(n) ≡ 1 (mod n).

Definition 2.4 (see [7]). A set of k integers is a complete residue system (CRS) modulo k if
every integer is congruent to exactly one of the modulo k. If we delete integers from CRS,
which are not prime to k, then the remaining integers will constitute the reduced residue
system (RRS) modulo k.
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Theorem 2.5 (counting principle [8]). If a work is distributed over r1, r2, . . . , rt, objects with r1
object occuring s1 ways, r2 object occuring s2 ways, and rt object occuring st ways, then the work can
be done in s1s2 · · · st ways.

Theorem 2.6 (the inclusion-exclusion principle [9]). Let A1, A2, . . . , An be n finite sets. Then

∣
∣
∣
∣
∣

n⋃

i=1

Ai

∣
∣
∣
∣
∣
=

∑

1≤i≤n
|Ai| −

∑

1≤i<j≤n

∣
∣Ai ∩Aj

∣
∣ +

∑

1≤i<j<k≤n

∣
∣Ai ∩Aj ∩Ak

∣
∣ − · · · + (−1)n+1

∣
∣
∣
∣
∣

n⋂

i=1

Ai

∣
∣
∣
∣
∣
. (2.4)

3. Applications of Euler’s Phi Function

In Graph Theory, a loop or a self-loop is an edge that connects a vertex to itself. A vertex of
an undirected graph is called an isolated vertex if it is not the endpoint of any edge. This
means that it is not connected with any other vertex of the graph. Thus in our case, the vertex
v is an isolated vertex if and only if vx ≡ u (modn), v /=u is not solvable. Now if we omit
the condition of simplicity in our graph, then this isolated vertex will contribute twice in the
degree as there will be a self-loop at v as the congruence vx ≡ v (modn) is solvable. This
leads to the following results.

Theorem 3.1. Let n = 2p1p2 · · · pk be the prime factorization of n, where p1 < p2 < · · · < pk are
distinct, odd primes. Then 0 and p1p2 · · · pk are isolated vertices of G(n). That is, the vertices 0 and
p1p2 · · · pk are not the endpoints of any edge in graph G(n) except loop at these vertices.

Proof. The element a, where 0 ≤ a ≤ n − 1, is an isolated point of the graph G(n) if and
only if the solvability of ax ≡ b (modn) implies that a = b. It is trivial that 0 is an isolated
point of G(n) as ax ≡ 0 (mod 2p1p2 · · · pk) is solvable if and only if a ≡ 0 (mod 2p1p2 · · · pk).
Moreover, p1 < p2 < · · · < pk are distinct, odd primes, so for some integer β > 1,
(p1p2 · · · pk)β−1 − 1 is an even integer. Thus 2p1p2 · · · pk | p1p2 · · · pk((p1p2 · · · pk)β−1 − 1) and
hence (p1p2 · · · pk)x ≡ p1p2 · · · pk (mod2p1p2 · · · pk) is solvable with root β. Next, we claim
that the congruence (p1p2 · · · pk)x ≡ a (mod2p1p2 · · · pk), a/≡ p1p2 · · · pk (mod2p1p2 · · · pk) is
not solvable. To prove our assertion, let a/≡ p1p2 · · · pk (mod2p1p2 · · · pk) and suppose there
exists an integer α ≥ 1, such that the congruence, (p1p2 · · · pk)α ≡ a (mod2p1p2 · · · pk) is
balanced. Then there exists some integer t such that

(
p1p2 · · · pk

)α = a + 2p1p2 · · · pkt. (3.1)

This implies that p1p2 · · · pk((p1p2 · · · pk)α−1 − 2t) = a. But then p1p2 · · · pk | a. Let a =
t1p1p2 · · · pk for some integer t1. If t1 is even, then 2p1p2 · · · pk | a and hence by (3.1),
2p1p2 · · · pk | (p1p2 · · · pk)α, a contradiction as (p1p2 · · · pk)α is an odd integer. So let t1 = 2r + 1,
for some integer r. Then a = t1p1p2 · · · pk = (2r + 1)p1p2 · · · pk and this shows that 2p1p2 · · · pk |
a − p1p2 · · · pk which is a contradiction against the fact that a/≡ p1p2 · · · pk (mod 2p1p2 · · · pk).
Finally, the congruence (p1p2 · · · pk)x ≡ 0 (mod2p1p2 · · · pk) is not solvable since an odd
integer is not divisible by an even integer. Hence 0 and p1p2 · · · pk are not adjacent as well.

Corollary 3.2. If n is an odd square free integer, then 0 is the only isolated vertex of the graph G(n).
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Theorem 3.3. Let n = pk11 pk22 · · · pkrr be the prime power factorization of a non-square-free integer
n, where p1 < p2 < · · · < pk are distinct primes, ki ≥ 1 and r ≥ 1. Then 0 and kp, where k =
0, 1, . . . , �n/p	, and p = p1p2 · · · pk, are always adjacent vertices in G(n).

Proof. We show that the congruence (kp)x ≡ 0 (mod n) is solvable for all k = 0, 1, . . . , �n/p	.
Let p, q be two distinct primes such that n = pq2. Then (kpq)2 = k2p2q2 = k2p(pq2) ≡ 0 (mod
n). Thus x = 2 is the solution of the congruence (kpq)x ≡ 0 (mod pq2). We follow the fashion
explained above. For this, take n = pk11 pk22 · · · pkrr . Let t = lcm(p1, p2, . . . , pk), then there exist
integers t1, t2, . . . , tk such that t = tiki, for each i = 1, 2, . . . , k. Let m =

∏r
i=1p

ki(ti−1)
i . Then it is

easy to see that

(
kp

)t = ktpt1k11 pt2k22 · · · ptrkrr = ktmn ≡ 0 (mod n). (3.2)

This shows that x = t = lcm(p1, p2, . . . , pk) is the solution of the congruence, (kp)x ≡ 0 (mod
n). Hence, kp and 0 are the adjacent vertices in G(n).

The following results give a formula for finding the number of nontrivial self-loops of
the graph G(n).

Lemma 3.4. Let p be a prime number. Let n = pk, k ≥ 2 and let φ be the Euler’s phi function. Then
L(n) = φ(pk) + 1.

Proof. Let n = pk, k ≥ 2. A vertex v of the graph G(n) has a self-loop if and only if vx ≡
v (mod n) is solvable. Thus to find the number of self-loops in G(n), we need to count the
number of vertices v in CRS (modn) such that the congruence vx ≡ v (modn) is solvable.
By Euler’s Theorem, if (a, n) = 1, then ax ≡ 1 (mod n) is solvable with x = φ(n) as its root,
whence ax ≡ a (modn) is solvable with x = φ(n) + 1. Since p, 2p, . . . , pk−1 · p are the pk−1

integers which are not prime to pk, so there are pk − pk−1 = φ(pk) integers in CRS (mod n) for
which the congruence ax ≡ a (mod n) is solvable. Also, for each k ≥ 1, the vertex 0 has self-
loop inG(pk). Thus there are φ(pk)+1 self-loops. For the case, if a ∈ {p, 2p, . . . , pk−1 ·p}, with α
as the solution of ax ≡ a (mod pk). Then aα−1 ≡ 1 (mod pk−1) implies that aα−1 ≡ 1 (mod p).
This yields a contradiction against the fact that if a ∈ {p, 2p, . . . , pk−1 · p}, then aα−1 ≡ 0 (mod
p). Hence, there exist no vertex a ∈ {p, 2p, . . . , pk−1 · p}, for which ax ≡ a (mod n) is solvable.
Thus φ(pk) + 1 are the only vertices for which the graph G(n) has self-loops.

The following theorem provides us the cardinality of the set of those vertices of G(n)
which have nontrivial self-loops, where n = pk11 pk22 · · · pkrr and r ≥ 2.

Theorem 3.5. Let n = pk11 pk22 · · · pkrr be the prime power factorization of an integer n, where p1 < p2 <
· · · < pr are distinct primes, ki ≥ 1 and r ≥ 2. Then

L(n) =
r∏

i=1

(
φ
(
pkii

)
+ 1

)
. (3.3)

Proof. We apply induction on r. By Lemma 3.4, result is true for r = 1. Suppose result is true
for r − 1 distinct prime factors. That is, if m = pk11 pk22 · · · pkr−1r−1 , then L(m) =

∏r−1
i=1 (φ(p

ki
i ) + 1).

Let n = pk11 pk22 · · · pkrr = mpkrr . Now, the congruence ax ≡ a (modmpkrr ) is solvable if and only
if the congruences ax ≡ a (modm) and ax ≡ a (mod pkrr ) are solvable. But by induction, the
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graphG(m) has
∏r−1

i=1 (φ(p
ki
i )+1) self-loops and, by Lemma 3.4, the graphG(pkrr ) has φ(pkrr )+1

self-loops. Hence, by Theorem 2.5, the graphG(n) has
∏r

i=1(φ(p
ki
i )+1) self-loops. This through

our result. In Figure 2, we depict Theorem 3.5 for n = 24.

Corollary 3.6. Let n = p1p2 · · · pr be the prime factorization of a square-free integer n, where p1 <
p2 < · · · < pk are distinct primes and r ≥ 2. Then

L(n) = p1p2 · · · pr. (3.4)

Proof. It is easy to see that φ(p) + 1 = p, for any prime p. Thus by Theorem 3.5, corollary
follows. That is,

L(n) = p1p2 · · · pr. (3.5)

Corollary 3.7. Letm and n be two non-square-free integers such that gcd (m,n) = 1. Then,

L(mn) = L(m)L(n). (3.6)

4. Components and Their Characteristics

Recall that a maximal connected subgraph of a graph G is called a component. For instance,
the vertices v1, v2, . . . , vr from CRS (mod n)will constitute a component of the graphG(n) if
for each i, 1 ≤ i ≤ r, there exist some j, 1 ≤ j ≤ r such that vx

i ≡ vj (mod n) is solvable, for all
i /= j. The following theorem explores some interesting characteristics of components for the
simple graph G(n).

Theorem 4.1 (main theorem). Let n = pk11 pk22 · · · pkrr be the prime power factorization of an integer
n, where p1 < p2 < · · · < pr are distinct primes, ki ≥ 1 and r ≥ 1. Then,

(a) G(n) has 2r components,

(b) if n = p2, p is a prime number, then Γp is a tree with root at 0,

(c) if n is a Fermat’s prime, then Γφ(n) is complete.

Let n = pk11 pk22 · · · pkrr . Then p1, p2, . . . , pr , p1p2, . . . , p1pr, . . . , p1p2 · · · pr are the possible square-free
positive divisors of n. We see that the sets of vertices generated by these divisors will constitute
components of G(n). We label these components by Γp1 ,Γp2 , . . . ,Γpr ,Γp1p2 , . . . ,Γp1p2···pr . Moreover, the
set of all those residues of n which are prime to n will provide us another component. Since this set
contains φ(n) vertices from V = {0, 1, 2, . . . , n − 1}, so, for the sake of convenience, we label this
component by Γφ(n). Before giving the proof of Theorem 4.1, we prove the following results.

Lemma 4.2. (a) Let n = pk, k > 0, where p is a prime number. ThenG(n) has 2 components, namely,
Γφ(n) and Γp.

(b) Let n = pk11 pk22 · · · pkrr and k = Πs
i=1pi, 1 ≤ s ≤ r. Then the order of the component Γk is

|V (Γk)| =
⌊
n

k

⌋

−
∑

s<j≤r

⌊
n

kpj

⌋

+
∑

s<j<k≤r

⌊
n

kpjpk

⌋

+ · · · + (−1)r−s
⌊

n

kps+1ps+2 · · · pr

⌋

. (4.1)
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Figure 2: The graph G(24) has 15 nontrivial self-loops.

Proof. (a) Recall that an integer a such that (a, pk) = 1 is called a primitive root modulo pk

only if a is of order pk−1(p − 1). Let r be a primitive root of pk. Then the smallest integer
k is called the index of a with respect to r if rk ≡ a (modpk). Moreover, it is well known
that the exponential congruence ax ≡ b (mod pk) is solvable if and only if d | indrb, where
d = (indra, p

k−1(p−1)). We divide the numbers 0, 1, 2, . . . , (p−1)pk into two sets, one of which
is {0, p, 2p, . . . , (p − 1)pk−1} and the other is RRS modulo pk. We claim that these two sets
constitute independent components of G(pk). Let V = {r1, r2, . . . , rφ(pk)} where each ri, 1 ≤ i ≤
φ(pk) is prime to pk, the set of vertices of the component Γφ(pk). Then every vertex of Γφ(pk)
must have some index with respect to primitive root r. Thus the exponential congruence
ax ≡ 1 (mod pk) is solvable since indr1 = 0 and is divisible by d, where, d = (indra, p

k−1(p −
1)). This means that each vertex of the set Γφ(pk) is adjacent with 1. So it must contribute
as one component of the graph G(pk). Moreover, for any integer m ≥ 0, pk | (mp)k and
hence (mp)x ≡ 0 (modpk) is solvable with x = k as its root. Thus each vertices of the set
{0, p, 2p, . . . , (p − 1)pk−1} is adjacent with 0. Then V (Γp) = {0, p, 2p, . . . , (p − 1)pk−1} will form
another component of the graphG(pk). Next we claim that none of the vertex Γφ(pk) is adjacent
with any of the vertex Γp. To prove our assertion, let u and v be two vertices of G(pk) such
that u ∈ Γφ(pk) and v ∈ Γp. Then there exist integers r and s such that

ur ≡ 1
(
mod pk

)
, vs ≡ 0

(
mod pk

)
. (4.2)
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Let t = lcm(r, s), then there exist integers r1 and s1 such that t = rr1 = ss1. Hence by (4.2), we
get

ut ≡ 1
(
mod pk

)
, vt ≡ 0

(
mod pk

)
. (4.3)

Now, if u and v are adjacent, then there must be some integer α such that uα ≡ v (mod pk).
Then by (4.3), we obtain, 0 ≡ 1 (mod pk) which is absurd. This is through the claim. Hence
Γφ(n) and Γp are the only components of G(pk). The part (b) is the direct consequence of
Theorem 2.6.

Corollary 4.3. For k = 1, V (Γp) = {0}.

Two graphs or two components of a graph are said to be isomorphic to each other if
there is an isomorphism between their vertex sets. Thus, if G(n) and G(m) are isomorphic,
then |V (G(n))| = |V (G(m))|. Moreover if the vertices u and v are adjacent in G(n), then f(u)
and f(v)must be adjacent inG(m), where f is an isomorphism between their sets of vertices.
The following corollary can easily be proved by using Lemma 4.2 and Corollary 3.7.

Corollary 4.4. If n = 2p1p2 · · · pr and l,m are prime divisors of n, then Γl and Γm, are nonisomorphic
components of G(n).

Proof. Since both l and m are prime numbers, so by Lemma 4.2 (b), the order of components
Γl and Γm must be different. Hence both can never be isomorphic. For instance, take n = 30,
l = 3, and m = 5. Then by Lemma 4.2 (b),

|V (Γ3)| =
⌊
30
3

⌋

−
(⌊

30
3.2

⌋

+
⌊
30
3.5

⌋)

+
⌊

30
3.2.5

⌋

= 4,

|V (Γ5)| =
⌊
30
5

⌋

−
(⌊

30
5.2

⌋

+
⌊
30
5.3

⌋)

+
⌊

30
5.2.3

⌋

= 2.

(4.4)

Hence by (4.4), the components Γ3 and Γ5 are not isomorphic in G(30). However, |V (Γ3)| =
|V (Γ6)| = 4. Thus the isomorphism can be established between the components Γ3 and Γ6 in
G(30) if they possess the same structure as well. This leads to the following corollary.

Corollary 4.5. Let n = 2p1p2 · · · pr and d | n. If Γd and Γ2d are the components of G(n), then
Γd ∼= Γ2d.

Proof of Main Theorem. (a) It is well known that ax ≡ b (mod pk11 pk22 · · · pkrr ) is solvable if and
only if the congruence ax ≡ b (mod pkii ) is solvable for each i = 1, 2, . . . , r. Then the proof is
analogous to Theorem 2.5 together with Lemma 4.2.

(b) It is easy to see that each element of V (Γp) = {0, p, . . . , (p−1)p} inG(p2) is connected
with 0 since for each α ≥ 2, (tp)α ≡ 0 (mod p2), 1 ≤ t ≤ p − 1 is satisfied. This shows that the
congruence ax ≡ 0 (mod p2) is solvable for each a ∈ V (Γp) in G(p2). To show that Γp in G(p2)
is a tree, we claim that the nonzero vertices in V (Γp) are not connected to each other. To prove
our assertion, let (t1p)

α ≡ t2p (mod p2) for α ≥ 2 and 1 ≤ t1 < t2 ≤ p − 1. Then by Cancelation
Law of congruences, we obtain, tα1p

α−1 ≡ t2 (mod p). As p | tα1pα−1 − t2 and p | tα1pα−1, so by
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the simple divisibility rules, p | t2. But t2 ≤ p − 1 < p, thus we arrive at a contradiction. This
through our claim and finally the component Γp in G(p2) is a tree with root at zero.

(c) It is wellknown that Fn, n > 4 is always composite. Thus the only Fermat’s primes
are 3, 5, 17, 257, and 65537. Let us write n = 2k + 1, k = 1, 2, 4, 8, 16. Then φ(n) = 2k,
k = 1, 2, 4, 8, 16 since n is prime. To show that the component Γφ(n) is complete, we need
to show that the congruence ax ≡ b (modn) is solvable for each a, b ∈ {1, 2, . . . , n − 1}. By
[9], every odd prime p has a primitive root. Since Fermat’s numbers are always odd, so each
of the Fermat’s prime has a primitive root. Let it be r. Then the congruence ax ≡ b (mod n)
is solvable if and only if the congruence x indra ≡ indrb (mod2k) is solvable, where k =
1, 2, 4, 8, 16. As indra, indrb ∈ {1, 2, . . . , n − 1}, so the later congruence reduced to the linear
congruence αx ≡ β (mod2k), where α = indra and β = indrb. Then the simple graph G(n)
will be complete if the congruence αx ≡ β (mod2k), or the congruence βx ≡ α (mod2k),
is solvable. To prove our assertion, it is easy to see that either (α, 2k) = 1 = (β, 2k) or
(α, 2k) = 2t = (β, 2k), where 1 ≤ t ≤ 2k. For the first case, the congruence αx ≡ β (mod2k),
is solvable and has a unique solution. To discuss the rest of the case, we let (α, 2k) = 2t1
and (β, 2k) = 2t2 , 1 ≤ t1, t2 ≤ 2k. If t1 ≤ t2, then (α, 2k) | (β, 2k), so the linear congruence
αx ≡ β (mod 2k) is solvable and has 2t1 solutions. But if t2 < t1, we replace α and β and solve
the congruence βx ≡ α (mod 2k), which is solvable and has 2t2 solutions. Thus in either case,
we see that there is an edge (α, β), α, β ∈ {1, 2, . . . , n − 1} in component Γφ(n) of the simple
graph G(n) when n is a Fermat’s prime.

The following corollaries are the direct consequences of Theorem 4.1.

Corollary 4.6. Let n = t2, where t is square free integer. Then Γt is a tree with root at zero.

Corollary 4.7. If n is Fermat prime, then Γφ(n) is regular of degree φ(n) − 1.

5. Conclusions

This piece of work describes the relationship of exponential congruences with graphs. It has
been explored that an exponential congruence yields a set of graphs. Also certain components
of the graphs form trees if self-loops are suppressed. The types of graphs and trees were
hence yielded form a pattern based on the nature of variables within the congruence. The
major results formed show that the component Γφ(n) of the simple graph G(n) is complete
if n is Fermat’s prime and also that the component Γt2 , where t is a square free integer,
is always a tree. Intuitively, the results formed find their place in various applications of
number theory, encryption, and algorithms. In various problems of data decryption using
brute force method it is desirable to find the nature of a number and establish if it is divisible
by some other prime number or not. Such problems can be tackled by forming a graph of
its exponential congruence and determine the pattern formed by its components. Moreover
these exponential congruences can be established as a succinct representation of graphs of a
specific nature for their applications in various computer algorithms.
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