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A class of backward doubly stochastic differential equations (BDSDEs) are studied. We obtain
a comparison theorem of these multidimensional BDSDEs. As its applications, we derive the
existence of solutions for this multidimensional BDSDEs with continuous coefficients. We can also
prove that this solution is the minimal solution of the BDSDE.

1. Introduction

Backward stochastic differential equations (BSDEs in short) were first introduced in [1]
in order to give a probabilistic interpretation (Feynman-Kac formula) for the solutions
of semilinear parabolic PDEs, one can see [2, 3]. Moreover, BSDEs have been considered
with great interests because for their connections with mathematical finance [4] as well as
stochastic optimal control and stochastic games [5, 6]. As we know, the comparison theorem
is a very useful result in the theory of BSDEs, for example, it can be used to study viscosity
solutions of partial differential equations. In 1992, Peng [2] gave the comparison of the one-
dimensional BSDE. In 1994, Christel Geif$ and Ralf Manthey [7] proved the comparison
theorems for stochastic differential equations in finite and infinite dimensions.

After they introduced the theory of BSDEs, Pardoux and Peng [8] in 1994 brought
forward a new kind of BSDEs, that is a class of backward doubly stochastic differential equa-
tions (BDSDEs in short) with two different directions of stochastic integrals, that is, the
equations involve both a standard (forward) stochastic integral dW; and a backward
stochastic integral dB;. They have proved the existence and uniqueness of solutions to
BDSDEs under uniformly Lipschitz conditions on coefficients. That is, for a given terminal
time T > 0, under the uniformly Lipschitz assumptions on coefficients f, g, for any square



2 Journal of Applied Mathematics

integrable terminal value ¢, the following BDSDE has a unique solution pair (y;, z¢) in the
interval [0, T]:

T T T
ye=¢+ f f(s,ys,z5)ds + f g(s,ys,2z5)dBs — J‘ zsdWs. (1.1)
t t t

Pardoux and Peng [8] showed that BDSDEs can produce a probabilistic representation for
certain quasilinear stochastic partial differential equations (SPDEs). Recently, [9] Zhang and
Zhao, [10] Zhu and Han studied the infinite horizon BDSDEs. Many researchers do their
work in this area (cf. [11-18] and the references therein). As we know, the comparison
theorem is a very useful result in the theory of BDSDEs, for example, it can be used to study
viscosity solutions of SPDEs [19]. Shi et al. proved the comparison theorem of these BDSDEs,
but they studied the one-dimensional BDSDEs.

In this paper, we will prove the comparison theorem of the multidimensional BDSDEs.
Then we study the multidimensional BDSDEs with continuous coefficients as an application
of the comparison theorem.

The paper is organized as follows: in Section 2 we introduce some preliminaries and
notations; in Section 3 we prove the comparison theorem of multidimensional BDSDEs; at the
end, we give the multi-dimension BDSDEs with continuous coefficients in Section 4.

2. Preliminaries: The Existence and Uniqueness of BDSDEs and
an Extension of Itdo Formula

Notation 1. The Euclidean norm of a vector x € RF will be denoted by |x|, and for a d x k
matrix A, we define | Al| = vVTrAA*, where A* is the transpose of A. We also define (a, ) as
the inner product of & and p.

For a € R, let a; be the ith component of a; ¢ € Rk*d et ¢; be the ith row of ¢, let Cij
be an element for the ith row and the jth column of c. For al, a? € Rk, we define

al2a’ e a; 24, j=12,... k (2.1)

Let (Q, ¥, P) be a probability space and let T be an arbitrarily fixed positive constant
throughout this paper. Let {W;; 0 <t < T} and {B;; 0 <t < T} be two mutually independent
standard Brownian motions with values in R? and R, respectively, defined on (Q, ¥, P). Let
U denote the class of P-null sets of . For each t € [0,T], we define

FFVEL, (22)

where for any process {m},?zt =o{n—-ngs<r<tiv A, Sl:l = ng,t.

Note that the collection {¥; t € [0,T]} is neither increasing nor decreasing, and it does
not constitute a filtration.

For any n € N, let M?(0,T; R") denote the set of (classes of dP ® dt a.e. equal) n-
dimensional jointly measurable stochastic processes {¢;; t € [0,T]} which satisfy

; 2 . T 012 .
() llpll3pe = E [y lpel>dt < oo;
(ii) ¢ is Fi-measurable, for a.e. t € [0, T].
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Similarly, we denote by S?([0,T]; R") the set of n-dimensional continuous stochastic
processes {¢;; t € [0,T]} which satisfy

(iii) ”‘P”éz = E(supogthl‘Ptlz) < ooy

(iv) ¢ is Fr-measurable, for any t € [0, T7].

Obviously, M?(0,T; R") and S*([0, T]; R") are Hilbert spaces.
Let

f:Qx[0,T] x R x R*4 — Rk, g:Qx[0,T] x RF x R4 — Rk (2.3)

be jointly measurable and such that for any (y, z) € RF x Rk

(H1) f(-,y,z) € M?(0,T; R), g(-,y,z) € M?(0, T; R*1).

(H2) There exist constants C > 0 and 0 < a < 1 such that for any (w,t) € Q x [0,T],
(y1,21), (y2,22) € RF x R*4,

£t v1,2) = F by z2) [P < C([ya - vl + 11z - )

(2.4)
I8t y1,21) = 8(ty2, 22) | < Clys = ya|* + allza = 2™

Given ¢ € L*(Q, ¥r, P; R¥), we consider the following backward doubly stochastic differential
equation:

T T T
Y, =¢ +f £(s,Ys, Zs)ds + f g(s, Y., Z,)dB, - f Z.dW, 0<t<T. (2.5)
t t t

Note that the integral with respect to {B;} is a “backward It6 integral” and the integral with
respect to {W;} is a standard forward It6 integral. The forward integrals were defined in [20]
Da Prato and Zabczyk and [21] D. Nualart, and E. Pardoux. To see the backward one, for
any s > 0 let {h(s)},, be a stochastic process such that {h(s)} is Fs measurable, and locally

square integrable, that is, forany 0 < a < b < oo, fs |h(s)|[>ds < oo almost surely. Since ¥, is
a backward filtration with respect to B, so from the one-dimensional backward It6’s integral

and relation with forward integral, for 0 < T < T', we have ftT h(s)dBs = — TT:; h(T' - s)dBs
a.s, where B, = By_s — By

Definition 2.1. A pair of processes (v, z) : Q2x[0,T] — RFx R4 is called a solution of BDSDE
(2.5),if (y, z) € S?([0,T]; R¥) x M?(0, T; R**#) and satisfies BDSDE (2.5).

Proposition 2.2. Under conditions (H1) and (H2), BDSDE (2.5) has a unique solution (Y,Z) €
S2([0,T]; R¥) x M?(0, T; R**4).

Proposition 2.3. Let a € S*([0,T]; R¥), p € M?(0,T; R¥), y € M?(0,T; R®), 6 € M?(0, T; RF*4)
satisfy

t t t
ar = ag + I Psds + f YsdBs +f 6,dW,, 0<t<T. (2.6)
0 0 0
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Then

t t t
| = |ao)* + 2J (as, Bs)ds + 2f (a5, ysdBs) + 2[ (ag, 5,AW,)
0 0 0
t ) t
- f llys||"ds + f 16:11%ds, 2.7)
0 0

t t t
Elay|* = E|ao|* + ZEI (as, Bs)ds — EI ||ys||2ds + EI 16||°ds.
0 0 0
This two propositions were derived in [8].

3. Comparison Theorem of Multidimensional BDSDEs

In this section, we will prove the comparison theorem of the multidimensional BDSDEs.
Firstly, we give the definition of the indicator function for the positive and negative parts.

Definition 3.1. If f : Q + R, then the positive part of f is defined by the formula f* =
max{ f,0}. Similarly, the negative part of f is defined as f~ = max{-f,0} = —min{f, 0}

Note that both f* and f~ are nonnegative functions.
We consider the following k-dimensional BDSDEs: (0 <t <T)

T

T T
vzt [ f(sutat)ass [ a(stat)as.- [ ztaw,
t t ! (3.1)

T T

g(s, y?, z?) dBs — f z?dWs,

t

T
y?=§2+f

t

f2 <s, y?, zﬁ) ds + f

t

where ¢1,¢%2 € L2(Q,¥r, P;RY), fl(w,t,y,2), fA(w,t,y,z) : Qx[0,T] x RF x R4 — Rk,
g(w,t,y,2) : Qx[0,T] x Rk x R4 — RF We assume ¢!, ¢? and f, 2, ¢ satisfy the following
conditions:

(i) ¢! > & P-as,;

(ii) Forall j = 1,2,...,k, for all (w,t) € Qx [0,T], y', y* € Rk, 2!, z* € Rk*4, y} = ng,

SN
fi (w,t,yl,zl> > ff(w,t,yz,zz>; (3.2)
(iii) for all (w,t) € Q x [0,T], y', y> € R¥, 2!, 22 € RF*4

et - e A sl - + |2 -2[), -1z e
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(iv) for all (w,t,y,z) € Q x [0,T] x RF x R*4, 3h(ew, t,u,v) : Qx [0,T] x Rx R* —» R!
such that

gi(w,t,y,z) = hj(w, t,y;, z)),

|ni(t v} =) - (12, 22) |2 <Cly} - yﬂz +alz} - 22 ’ (34)

7

where C > 0,0 < a < 1 are two constants.

From Proposition 2.2, under conditions (iii) and (iv), there exist two pairs of meas-
urable processes (y',z!) € S*([0,T]; R¥) x M?(0,T; R*9) and (y%,z%) € S?([0,T]; R¥) x
M?2(0,T; R*9) satisfying BDSDEs (3.1), respectively.

Theorem 3.2. Assume the conditions (i)—(iv) hold, let (y*,z') and (y?, z) be solutions of BDSDEs
(3.1), respectively. Then y} > y?, a.s. forall t € [0,T].

Proof. for all € > 0, we define a function ¢.(y) : R — R

v y <0,
1
be(y) =Y gV Osy<2e (3.5)

4
2ey — 552, y > 2e.

Obviously, ¢.(y) € C*(R) and ¢! (y) is bounded, for all y € R,

2
7

P (y) — |y~ c(y) — -2y, ¢(y) — 2liy<0), when e — 0. (3.6)

We set
Vo=yi-vi, Z=z-7z, §{=¢-& (37)

Then (y,, z;) satisfy the following BDSDE:

o= [ 17 (o) - £ (o8 ) [ [t ) (o0t )]am - [
(3.8)

Applying It6’s formula to ¢.(y [ (1)), we get

9. (7,0) =9:(&) + f 9.(7,9) £} (s vt 2L) - £2(s, 92 22) |ds
o[ @) (o) (s 2)an - [ (50) 7w,
1

* Ef .(5,9)gi (594, 22) ~ i (5,92, 22) [ s - %f L7, B ds.

(3.9)
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Lete — 0, we get

o[ = 5] - f 2y,()"[f} (s,wh 2) - £7 (5,92, 22) | ds

- JT 25,(5) [ (s, 9% 2L) - (5,92 22) | dBs + f 27,(5) Zi(s)dW,  (3.10)

t

T ) T
+J Iy 0|8 (5,2 2L) - g1 (s, v2,22) [ ds - L Iy <0 |Zj ()| "ds.

t

From (i), we have ¢! — ¢2 >0, a.s., so

el -e)

Since (y!,z') and (y?, z2) are in S?([0, T]; R¥) x M?(0, T; R**4), it easily follows that

2
= 0. (3.11)

E J;T y].(s)_ [g]- <s, yi,zé) - g <s, yg, zﬁ)]st =0, (3.12)

T
E L 7,(5)7Z;(s)dW. = 0. (3.13)

Let

D,_.
Il

2f 76 [ (st ) - 7 (52.2)

T
_th y].(s)‘[f}(y},...,y},...,yi,zi,...,z},...,zi)
1(,1, — 2 1, — 1 2 1
_f]_<y1+y1,...,y].,...,yk+yk,zl,...,z].,...,zk>]ds (3.14)
_ZT——11—— 2 1, — .1 2 1
ty].(s) f]. VitV Vi Yt Y 2 2 2

2(. 2 2 2 .2 2 2
_f], <y1,...,]/j,...,yk,zl,...,zj,...,zk>]ds

1 1
A1 + Az’
where A] is the first integral, and A} is the second integral. Since

vi+y 2yl 1#) (3.15)
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and (ii) we have

f}(y% +]7;,...,y]2,...,y,1<+y;,z%,...,z]2.,...,z,1(> 2ff(y%,...,y]z.,...,yi,z%,...,z%...,zi).
(3.16)

So A\, <0.
From (iii) and Young's inequality, it follows that

doet 7] + [Z])ds

N e (R A R AR

+o 20 [| + 27515 ) ds

= fL(zy;lyil 4o+ 20 |7 |+ 25 || + 29 |75

4 27 7] 4 25 |5 ) ds

= fL(zy;lyzl T LR ) o R

2

< ItTL<|y;|2+ |yi|2 bt |?}|2 + |y;_1|2+2|y]?|2+ Iy;iz + |y]7+1

— 12 =2 L 12 1-a —_ 2
+"'+|y7~| + |7l +m|yj| +TI@,§0)|Z]'| )ds

L2 T 2 k T 5 T 2
= <Lk+ 1—“),[; |y].| ds+L§J‘t |]/l| ds+(1—0£)’[t I(g}.go)lzjl )ds,

(3.17)
where L > 0 only depends on the Lipschitz constant C in (iii). From (iv) we deduce

2
ds

T
= [l )
T
- f Ig,)<0) by (s, y}(s),z}(s)) - h,~<s, y]z(s),zjz-(s)> |2ds
t
: / 2 (3.18)
sJ‘ I,950) [C|y}(s) -y +alzj6) - 56| ]ds

t

T o T .
= CJ; |yl | ds + aJ‘t I(yj(s)§0)|z]‘| ds.
So there 3M > 0 only depends on C, a, k, d, such that

1 2 k T o T _
A+ < MZI |7 [ds + f I, |Z|*ds. (3.19)
=1 7t t
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Taking expectation on both sides of (3.10) and noting (3.11)-(3.19), we get
N S LN
E|y].(t) | < MEZJ 7| ds. (3.20)
=17t

We sum from 1 to k and get Z;‘:l Elyj(if)_l2 < MKEYK, ftT [y, |*ds. That is,

ko 9 T k. o

EZ|y].(t)_| SMkf EZ|y]7| ds. (3.21)
j=1 bt

By Gronwall’s inequality, it follows that

k 2
EX [y, =0, VteloT]. di-as. (3.22)
j=1
So7,() 20 dtedP-as. j=12,...k. 0

Example 3.3. If conditions (ii) and (iv) of the theorem are replaced by the following: (ii') for

allj=1,2,...,k Y(w,t) € 2x [0,T], y € R¥, 2!, 22 € Rk, zll. = z]z,

f].l (w, ty, zl> > f]2 <w, ty, zz), (3.23)
and (iv') for all (w,t,y,z) € Q x [0,T] x Rk x RF*4,
lg(ty1,21) = g(ty2, ) |” < Clyi - ol +allzi - =, (3.24)

where C > 0,0 < a < 1 are two constants. By the following example we can see, the
comparison theorem is untenable at the above conditions.

Iftm =2, fi(y,z) = fA(y,z) = f(y,z) = Ay, g(y,z) = 0, where A, is a con-
stant coefficient matrix, obviously f, g satisfy (ii’) and (iv’). We consider the following k-
dimensional BDSDEs: (0 <t<T)

T T T T
ytl = §1 + f Ay;ds - f zldWs, yf = §2 + j Aygds - f zgdWs, (3.25)
t t

t t

then

A(T-t) 1 A(T—t) 22
yng[e g:,,‘; ] yf:E[e %f ] (3.26)

Already know §1 > §2, P a.s., to be sure ytl > yf, dt ® dP a.s., this requires

ATl > oATN22 - dt e dP as., (3.27)
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then
AT (gl - §2> >0, dte®dP as. (3.28)
Let
0 -1
A= [1 0 ], (3.29)
then
A(T—t) _ cos(T —t) sin(T —t)
¢ [— sin(T —t) cos(T —¢t) | (3.30)

Here f, g satisfy (ii') and (iv’) does not satisfy (ii) and (iv). Let T = 2ur,t € [0, /2]

ATt _ cost —sint
¢ [sint cost |’ (3:31)

Obviously we cannot guarantee, for all ¢! > ¢2, there is y} > y?, dt ® dP a.s.

4, The Multidimensional BDSDEs with Continuous Coefficients

In this section, we do not assume a Lipschitz property. Our main interest in this section is
to study the multidimensional BDSDEs with continuous coefficients as an application of the
comparison theorem obtained in Section 3. First, we give the definition of quasimonotonously
increasing mapping [22].

Definition 4.1. A mapping f : R* — RFis said to be quasi-monotonously increasing mapping,
if foreachj =1,2,...,k, fj(x) < f;(y) provided x; = y;, and x; < y;, [ #].

We give our main result.

Theorem 4.2. Assume f : Qx [0,T] x RF x R¥¥ — RKand g : Qx [0, T] x RF x R4 — RK gre
jointly measurable functions and satisfy.

(1) There exists r(w,t,y,y) : Q x [0,T] x R* x R? — R¥, such that for all (w,t,y,z) €
Q x [0,T] x Rk x Rk*4,

filw,t,y,z) =ri(w,ty, zj). 4.1)
(2) Linear growth: for all (w,t,y,z) € Qx [0,T] x Rk x R4, 3K > 0, such that
|f(w,t,y,2)| <K+ |y|+Ilz]l)- (4.2)

(3) Continuous: for fixed w and t, f(w,t,-,-) is continuity.
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(4) Quasimonotonously increasing: for fixed w,t and z, f(w,t,-,z) is quasi-monotonously
increase, that is forall j = 1,2, ..., k, such that

fi(wtyhz) 2 fi(wtyhz), Wy eR,  yi=yl vz, 1#j (43)

(5) Function g satisfies the (iv) of Theorem 3.2, that is for all (w,t,y,z) € Q x [0,T] x RF x
R4, 3h(w, t,pu,v) : Qx [0,T] x Rx R — Rsuch that gj(w,t,y,z) = hj(w,t,yj,z;) and

iy} =) ~ i (67 23) |2 <Cly —y?|2 +alzl -2 ’, (4.4)

where C > 0,0 < a < 1 are two constants. Then, if § € L*(Q, ¥, P; R*), BDSDE (2.5) has a solution
(y,z) € S*([0,T]; R¥) x M?(0, T; R**4).

We give a lemma, this method was first introduced by [23] Barlow and Perkins. For
fixed (w, t) € Q x [0,T], we define the sequence f"(w,t,y,z) : Q x [0,T] x Rk x R**4 — Rk ag
the following: j =1,2,..., k.

s +
Pty it dftxn) e 3 nln-x) +aly gl ealz-y] . @3

RK yeRkxd
xeRk ye =114

Lemma 4.3.
Let n > K and f" be define as in (4.5), then f" satisfies the following properties.
(1) For all (w,t,y,z) € Qx [0,T] x RF x R4,

fi(wty, z) < fi(wty,z). (4.6)

(2) Uniformly linear growth: for all (w,t,y,z) € Q x [0, T] x R* x Rk*4,

fi(wty,2)| <K+ |yl +|5]). (4.7)
(3) Quasimonotonous increase with respect to y: for all (w,t) € Q x [0,T],z!, 2% € Rkxd

fi' (w, t, yl,zl> 2 f} (w, t,y?, 22>, Vy} = y]z, z} = z]z-, v 2yl 1#]. (4.8)
(4) Monotonous increase with respect to n: for all (w,t,y,z) € Q x [0,T] x RF x Rk*4,
fi (w,t,y,2) < f}”l (w,t,y,2). (4.9)

(5) Lipschitz condition: for all (w,t) € Q x [0,T], (y',z!), (y?,2z2) € Rk x RF4,

ff(w,t,yl,zl> —ff(w,t,yz,zz>| < n<|y1 —yz' + “z1 - zzn>, (4.10)
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(6) Strong convergence: for all (w,t) € Qx [0,T], (y,z), (y",z") € RK x R4, n=1,2,...,
ify" — y, z" — z, whenn — oo. Then

fw ty", 2") — f(w, by, z). (4.11)

We consider the following k-dimensional BDSDEs

T T T
yl=¢+ f f*(s,y%, z8)ds + ’[ g(s,y2,z2)dBs - I z'dW;, (4.12)
¢ t ¢

T

T T
U, =¢+ j F(s,Us, V5)ds + J g(s,Us, Vs)dBs - J VsdWs, (4.13)
t t t

where F: Q x [0,T] x RF x Rk*4 — Rk, and
Fi(w,t,y,z) =K1+ |y|+|z]), j=12...,k (4.14)

From Lemma 4.3, for all (w,t) € Q x [0,T], (y',z'), (y? z%) € Rk x Rk4, y}l, = y}?, z]l. = z]z.,

y} > y?,1#j, we have

f]n <t, ]/2, zz> < f]?’” (t, yzl zz)
< f]n+1 (t,yl,zl>
<K (1|2

=F]~<t,y1,zl>, n=KK+1,....

(4.15)

From Pardoux and Peng [8], BDSDE (4.12) and (4.13) has a unique solution

(y",z") € Sz<[0, T];Rk> x M2 (o, T; Rk*d>, U, V) e s2<[0, T];Rk> x M2 (o, T; kad).
(4.16)

From the comparison Theorem 3.2, for alln > m > K,
y]’.”(t) < y]’.‘(t) <Uj(t), dtedP-as. (4.17)
Lemma 4.4. There exists constant A > 0 depending only on K, C, a, T and &, such that

Vi>K, [y'lle <A l2'he<A Ule <A, V<A (418)
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n=1

Lemma 4.5. {(y",z")}w, converges in S*([0,T]; R¥) x M?(0, T; RF4).

The proof of the Lemmas 4.4 and 4.5 is similar to Lemma 4.2 and Lemma 4.3 in [19],
so we omit it.
We give the proof of Theorem 4.2.

Proof. For all n > ny > K, we have y™ < y" < U, and y" converges in S2([0,T]; R¥),dt © dP —
a.s. toy € S*([0,T]; R¥).

On the other hand, since z" converges in M?(0,T; R*4) to z, we can assume, choosing
a subsequence if needed, that z” — z dt ® dP —a.s. and G; = sup, ||z}'|| is dt ® dP integrable.
Therefore, from (3.11) and (2.5) of the Lemma 4.3, we get for almost all w,

" tylzt) — f(tby,z), (n— oo)dt—ae.

Lf(tyr 2| < I<<1 +suplyf| + sgPIIZ?II) (4.19)

= K<1 +sup|y}| +Ct> € L([0,T]; dt).
Thus, for almost w and uniformly in ¢, it holds that
T T
f (s, yt, z)ds —>f f(s,ys,25)ds, (n — o). (4.20)
t t

From the continuity properties of the stochastic integral, it follows that

T T
f z?dWS—J zsdW,

sup — 0 in probability,
0<t<T|J t t
(4.21)
T
sup f g(s,yt,z8)dBs — g(s,ys,zs)dBs| — 0 in probability.
0<t<T|J t

Choosing, again, a subsequence, we can assume that the above convergence is P-a.s. Finally,

T
ly - "] < L |f" (s, v, 28) = f" (s, yi', 22") |ds
(4.22)

+

T
R [ -zmaw.
t

T
ft (3(s,y% 2 - g(s,y™", ="))dB.
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and taking limits in m and supremum over ¢, we get

T
sup |y} —yi| < f |f"(s,y%,25) = f(5,Ys,25)|ds
0<t<T 0

T
«sup [ (g(5,2,22) = g5, 2:) B, 423)
0<t<T |/t
T
+ sup J (z¥ = z5)dWq| P - a.s.
0<t<T |/ t

From which it follows that " converges uniformly in ¢ to y (in particular, y is a continuous
process). Note that y” is monotone, therefore, we actually have the uniform convergence for
the entire sequence and not just for a subsequence. Taking limits in (4.12), we deduce that
(v, z) is the solution of (2.5). O

From the comparison theorem, we can get a result.
Lemma 4.6. y is the minimal solution of BDSDE (2.5).

Proof. If let (,2) € S*([0,T]; R*) x M?(0,T; R**?) be any solution of (2.5), from the compar-
ison Theorem 3.2, we get that y" < y, for all n € N, and therefore y < y. That is, y is the
minimal solution of BDSDE (2.5). O
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