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We consider the nonlinear dynamical behavior of a three-dimensional recurrent neural network
with time delay. By choosing the time delay as a bifurcation parameter, we prove that Hopf
bifurcation occurs when the delay passes through a sequence of critical values. Applying the nor-
mal form method and center manifold theory, we obtain some local bifurcation results and derive
formulas for determining the bifurcation direction and the stability of the bifurcated periodic
solution. Some numerical examples are also presented to verify the theoretical analysis.

1. Introduction

Starting with the work of Hopfield [1] on neural networks, recurrent neural networks
including Hopfield neural networks, Cohen-Grossberg neural networks, and cellular
neural networks have been used extensively in different areas such as signal processing,
pattern recognition, optimization, and associative memories. Many researchers studied the
dynamical behavior of Recurrent neural network systems, and most of papers are devoted
to the stability of equilibrium, existence and stability of periodic solutions, bifurcation, and
chaos [2–5]. In [5], Ruiz et al. considered a particular configuration of a recurrent neural
network, illustrated in Figure 1. In Figure 1, u(t) is the input and y(t) is the output of the
network. This recurrent neural network can be described by the following system:

ẋ1(t) = −x1(t) + f(x2(t)),
...

ẋn−1(t) = −xn−1(t) + u(t),
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ẋn(t) = −xn(t) +w1f(x1(t)) + · · · +wn−1f(xn−1(t)),

y(t) = f(xn(t)).
(1.1)

Here, x(t) ∈ Rn is the state, wi ∈ R, i = 1, . . . , n − 1 are the network parameters or weights,
u(t) is a smooth input, and y(t) is the output. The transfer function of the neurons is taken
as f(·) = tanh(·). A three-node network of the form (1.1) in feedback configuration, with
u(t) = y(t), has been studied in [5]; that is,

ẋ1(t) = −x1(t) + tanh(x2(t)),

ẋ2(t) = −x2(t) + tanh(x3(t)),

ẋ3(t) = −x3(t) +w1 tanh(x1(t)) +w2 tanh(x2(t)).

(1.2)

Ruiz et al. found and analyzed the Hopf bifurcation behavior in system (1.2). In [4], Maleki
et al. considered system (1.1) with a transfer function f(x) =

∑∞
i=1α2i−1x

2i−1, where α2i−1 > 0
for i odd and α2i−1 < 0 for i even. The authors analyzed the Bogdanov-Takens bifurcation in
the system.

It is well known that there exist time delays in the information processing of neurons.
The delayed axonal signal transmissions in the neural network models make the dynamical
behaviors become more complicated and may destabilize the stable equilibria and admit
periodic oscillation, bifurcation, and chaos. Therefore, the delay is an important control
parameter in living nervous system: different ranges of delays correspond to different
patterns of neural activities (see, e.g., [6–11]).

In the present paper, we consider the following three-dimensional recurrent neural
network model with time delay

ẋ1(t) = −x1(t) + f(x2(t − τ)),
ẋ2(t) = −x2(t) + f(x3(t − τ)),
ẋ3(t) = −x3(t) +w1f(x1(t − τ)) +w2f(x2(t − τ)).

(1.3)

By choosing the time delay as a bifurcation parameter, we prove that Hopf bifurcation occurs
in the neuron and study the properties of periodic solutions of this model.

The organization of this paper is as follows. In Section 2, by analyzing the characteristic
equation of the linearized system of system (1.3) at the equilibrium, we discuss the stability
of the equilibrium and the existence of the Hopf bifurcation occurring at the equilibrium. In
Section 3, the formulae determining the direction of the Hopf bifurcations and the stability of
bifurcating periodic solutions on the center manifold are obtained by using the normal form
theory and the center manifold theorem due to Hassard et al. [12]. We do some computer
observations to validate our theoretical results in Section 4.

2. Stability and Existence of Hopf Bifurcation

For most of the models in the literature, including the ones in [5, 7, 8], the activation function
f is f(u) = tanh(cu). However, we only make the following assumption on function f :

(H) f ∈ C3(R), f(0) = 0, and f ′(0)/= 0.
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Figure 1: Class of recurrent neural networks.

Clearly, (x1, x2, x3)
T = (0, 0, 0)T is equilibrium of system (1.3). Linearization of (1.3) at

the zero equilibrium yields

ẋ1(t) = −x1(t) + f ′(0)x2(t − τ),
ẋ2(t) = −x2(t) + f ′(0)x3(t − τ),
ẋ3(t) = −x3(t) +w1f

′(0)x1(t − τ) +w2f
′(0)x2(t − τ),

(2.1)

whose characteristic equation is

det

⎛

⎜
⎜
⎝

λ + 1 −f ′(0)e−λτ 0

0 λ + 1 −f ′(0)e−λτ

−w1f
′(0)e−λτ −w2f

′(0)e−λτ λ + 1

⎞

⎟
⎟
⎠ = 0, (2.2)

that is,

(λ + 1)3 −w2f
′2(0)(λ + 1)e−2λτ −w1f

′3(0)e−3λτ = 0. (2.3)

The zero equilibrium is stable if all roots of (2.3) have negative real parts and unstable if at
least one root has positive real part. Therefore, in order to study the local stability of the zero
equilibrium of system (2.3), we need to investigate the distribution of the roots of (2.3).

When τ = 0, characteristic equation (2.3) yields

(λ + 1)3 −w2f
′2(0)(λ + 1) −w1f

′3(0) = 0. (2.4)

Let y = λ + 1, (2.4) reduces to

y3 −w2f
′2(0)y −w1f

′3(0) = 0. (2.5)
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Denote

Δ =
w2

1f
′6(0)
4

− w3
2f

′6(0)
27

, ε = −1
2
+
√
3
2
i,

α =
3

√

w1f
′3(0)
2

+
√
Δ, β =

3

√

w1f
′3(0)
2

−
√
Δ.

(2.6)

From Cardano formula for the third-degree algebra equation, we have the following lemma.

Lemma 2.1. (1) If Δ > 0, then (2.5) has a real root α + β and a pair of conjugate complex roots
−(α + β)/2 ± i(√3/2)(α − β). Furthermore, the roots of (2.4) are given by λ1 = −1 + α + β and
λ2,3 = −1 − (α + β)/2 ± i(√3/2)(α − β).

(2) If Δ = 0, then (2.5) has a simple root 2α and a multiple root −α with the multiplicity
of 2. Furthermore, the roots of (2.4) are given by λ1 = −1 + 2α and λ2,3 = −1 − α. Meanwhile, if
w1 = w2 = 0, that is, α = 0, then (2.4) has a multiple root −1 with the multiplicity of 3.

(3) If Δ < 0, then (2.5) has three real roots 2 Re{α}, 2 Re{αε}, and 2 Re{αε}. Furthermore,
the roots of (2.4) are given by λ1 = −1 + 2 Re{α}, λ2 = −1 + 2 Re{αε}, and λ3 = −1 + 2 Re{αε}.

Applying Lemma 2.1, we have the following lemma.

Lemma 2.2. All roots of (2.4) have negative real parts if one of the following holds.
(1) Δ > 0 and −2 < α + β < 1.
(2) Δ = 0 and −1 < α < 1/2.
(3) Δ < 0 and max{Re{α},Re{αε},Re{αε}} < 1/2.

Let z = (λ + 1)eλτ , then (2.3) becomes

z3 −w2f
′2(0)z −w1f

′3(0) = 0. (2.7)

We notice that (2.7) and (2.5) have the same coefficients.
Denote the three roots of (2.7) by zn = Rn + iIn (n = 1, 2, 3). Hence, (2.3) is equivalent

to

(λ + 1)eλτ = zn (n = 1, 2, 3). (2.8)

Clearly, iω (ω > 0) is a root of (2.3) if and only if ω satisfies

cosωτ −ω sinωτ = Rn,

sinωτ +ω cosωτ = In,
(2.9)

which implies that

cosωτ =
Rn +ωIn
1 +ω2

, sinωτ =
In −ωRn

1 +ω2 (n = 1, 2, 3). (2.10)
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This yields

ω2 = R2
n + I

2
n − 1 (n = 1, 2, 3). (2.11)

Obviously, we have the following lemma.

Lemma 2.3. Equation (2.11) is meaningless when |zn| =
√

R2
n + I2n ≤ 1 (n = 1, 2, 3). If (2.7) has a

root, denoted by zj , satisfying |zn| > 1, then (2.11) has a positive root given by

ωj =
√

R2
n + I2n − 1. (2.12)

Summarizing the discussion above, we have the following.

Lemma 2.4. If Δ ≥ 0, then (2.11) has at most two positive roots. If Δ < 0, then (2.11) has at most
three positive roots.

Without loss of generality, one assumes that (2.11) has three positive roots ωn (n =
1, 2, 3).

Define

τ
(n)
j =

1
ωn

[

arc cos
(
Rn +ωnIn

1 +ω2
n

)

+ 2jπ
]

, n = 1, 2, 3, j = 0, 1, 2, . . . . (2.13)

Then, ±iωn is a pair of purely imaginary roots of (2.3) with τ = τ (n)j .
Let λ(τ) = σ(τ) + iω(τ) be the root of (2.3) near τ = τnj satisfying

σ
(
τnj

)
= 0, ω

(
τnj

)
= ωn

(
n = 1, 2, 3, j = 0, 1, 2, . . .

)
. (2.14)

We have the following.

Lemma 2.5. One has

dσ(τ)
dτ

∣
∣
∣
∣
τ=τ (n)j

> 0, n = 1, 2, 3, j = 0, 1, 2, 3, . . . . (2.15)

Proof. Differentiating both sides of (2.8) with respect to τ , we have

(
dλ

dτ

)−1
= − 1

λ(λ + 1)
− τ

λ
. (2.16)



6 Journal of Applied Mathematics

Note that λ(τ (n)j ) = iωn, therefore

sign
{
d(Reλ)
dτ

}

τ=τ (n)j

= sign

{

Re
(
dλ

dτ

)−1}

λ=iω0

= sign
{

Re
[ −1
iωn(iωn + 1)

]}

= sign
{

1
ω2 + 1

}

.

(2.17)

We have

dσ(τ)
dτ

∣
∣
∣
∣
τ=τ (n)j

=
{
d(Reλ)
dτ

}

τ=τ (n)j

> 0. (2.18)

This completes the proof.

For convenience, we let ∪3
n=1{τ

(n)
j }+∞

j=0
= {τi}+∞i=0 , such that

τ0 < τ1 < τ2 < · · · < τi < · · · , (2.19)

where

τ0 = min
{
τ
(0)
1 , τ

(0)
2 , τ

(0)
3

}
(2.20)

and τ (n)j is defined in (2.13).

Applying Lemmas 2.1–2.5 and Corollary 2.4 of Ruan and Wei [13], we have the
following results.

Lemma 2.6. All roots of (2.3) have negative real parts if one of the following holds:

(H1) Δ > 0, −1 < α + β < 1 and (1/4)(α + β)2 + (3/4)(α − β)2 < 1,

(H2) Δ = 0 and −1 < α < 1/2,

(H3) Δ < 0 and max{Re{α},Re{αε},Re{αε}} < 1/2.

Lemma 2.7. Suppose that one of the following hypothesis is satisfied:

(H4) Δ > 0,−2 < α + β < −1,
(H5) Δ > 0,−1 < α + β < 1 and (1/4)(α + β)2 + (3/4)(α − β)2 > 1.

Then, there exists a sequence values of τ defined by (2.19) such that all roots of (2.3) have negative
real parts for all τ ∈ [0, τ0), and (2.3) has at least one root with positive real part when τ > τ0, and
(2.3) exactly has a pair of purely imaginary roots ±iωn (n = 1, 2, 3) when τ = τ

(n)
j (n = 1, 2, 3; j =

0, 1, 2, 3, . . .), where ωn and τ = τ (n)j are defined by (2.12) and (2.13), respectively.

From Lemmas 2.5–2.7 and the Hopf bifurcation theorem for functional differential
equations in [14], we have the theorem.
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Theorem 2.8. (1) If one of the hypothesis (H1), (H2), (H3) is satisfied, then the zero solution of
system (1.3) is asymptotically stable for all τ ≥ 0.

(2) If (H4) or (H5) is satisfied, then the zero solution of system (1.3) is asymptotically stable
for τ ∈ [0, τ0) and unstable for τ > τ0, and system (1.3) undergoes a Hopf bifurcation at the origin
when τ = τj (j = 0, 1, 2, 3, . . .).

3. Direction of Hopf Bifurcations and Stability of the Bifurcating
Periodic Orbits

In this section, we will study the direction of the Hopf bifurcation and stability of bifurcating
periodic solutions by using the normal theory and the center manifold theorem due to
Hassard et al. [12].

Let u1(t) = x1(τt), u2(t) = x2(τt), u3(t) = x3(τt), then system (1.3) becomes functional
differential equation in C = C([−1, 0],R3) as

⎛

⎜
⎜
⎝

u̇1(t)

u̇2(t)

u̇3(t)

⎞

⎟
⎟
⎠

= τB1

⎛

⎜
⎜
⎝

u1(t)

u2(t)

u3(t)

⎞

⎟
⎟
⎠ + τB2

⎛

⎜
⎜
⎝

u1(t − 1)

u2(t − 1)

u3(t − 1)

⎞

⎟
⎟
⎠

+ τ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ′′(0)
2!

u22(t − 1) +
f ′′′(0)
3!

u32(t − 1) + · · ·

f ′′(0)
2!

u23(t − 1) +
f ′′′(0)
3!

u33(t − 1) + · · ·

w1f
′′(0)
2!

u21(t − 1)+
w1f

′′′(0)
3!

u31(t − 1)+
w2f

′′(0)
2!

u22(t − 1)+
w2f

′′′(0)
3!

u32(t − 1) + · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.1)

where

B1 =

⎛

⎜
⎜
⎝

−1 0 0

0 −1 0

0 0 −1

⎞

⎟
⎟
⎠, B2 =

⎛

⎜
⎜
⎝

0 f ′(0) 0

0 0 f ′(0)

w1f
′(0) w2f

′(0) 0

⎞

⎟
⎟
⎠. (3.2)

Setting τ = ν + τj , we know that ν = 0 is Hopf bifurcation value of system (3.1).
For φ = (φ1, φ2, φ3)

T ∈ C([−1, 0],R3), let

Lν
(
φ
)
=
(
τj + ν

)(
B1φ(0) + B2φ(−1)

)
. (3.3)
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By the Riesz representation theorem, there exists a function η(θ, ν) of bounded variation for
θ ∈ [−1, 0], such that

Lν
(
φ
)
=
∫0

−1
dη(θ, ν)φ(θ) for φ ∈ C

(
[−1, 0],R3

)
. (3.4)

In fact, we can choose

η(θ, ν) =
(
τj + ν

)
B1δ(θ) −

(
τj + ν

)
B2δ(θ + 1), (3.5)

where δ denotes the Dirac delta function. For φ ∈ C([−1, 0],R3), define

A(ν)φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫0

−1
dη(s, ν)φ(s), θ = 0,

R(ν)φ =

{
0, θ ∈ [−1, 0),
f
(
ν, φ

)
, θ = 0,

(3.6)

where

f
(
ν, φ

)

=
(
τj + ν

)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ′′(0)
2!

u22(t − 1) +
f ′′′(0)
3!

u32(t − 1) + · · ·
f ′′(0)
2!

u23(t − 1) +
f ′′′(0)
3!

u33(t − 1) + · · ·
w1f

′′(0)
2!

u21(t − 1)+
w1f

′′′(0)
3!

u31(t − 1)+
w2f

′′(0)
2!

u22(t − 1)+
w2f

′′′(0)
3!

u32(t − 1)+ · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.7)

Then system (3.1) is equivalent to

u̇t = A(ν)ut + R(ν)ut, (3.8)

where u(t) = (u1(t), u2(t), u3(t))
T , ut = u(t + θ) for θ ∈ [−1, 0].

For ψ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ [−1, 0),

∫0

−1
dηT(t, 0)ψ(−t), s = 0,

(3.9)
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and a bilinear inner product

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ

ξ=0
ψ(ξ − θ)dη(θ)ψ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0). Then, A(0) and A∗ are adjoint operators. By the discussion in Section 2,
we know that ±iω0τj are eigenvalues of A(0) and A∗ corresponding to iω0τj and −iω0τj ,
respectively.

Suppose q(θ) = (1, q1, q2)
Teiω0τjθ is the eigenvectors of A(0) corresponding to iω0τj ,

then A(0)q(θ) = iω0τjq(θ). Then from the definition of A(0) and (3.3)–(3.5), we have

τjB1q(0) + τjB2q(−1) = iω0τjq(0). (3.11)

For q(−1) = q(0)e−iω0τj , then we obtain

q1 =
(iω0 + 1)eiω0τj

f ′(0)
,

q2 =
(iω0 + 1)2e2iω0τj

f ′2(0)
.

(3.12)

Similarly, we can obtain the eigenvector q∗(s) = D(1, q∗1, q
∗
2)e

ω0τjs of A∗ corresponding to
−iω0τj , where

q∗1 =
(iω0 − 1)2e−2iω0τj

f ′2(0)w1
,

q∗2 =
(1 − iω0)e−iω0τj

f ′(0)w1
.

(3.13)

In order to assure 〈q∗(s), q(θ)〉 = 1, we need to determine the value ofD. By (3.10), we
have

〈
q∗(s), q(θ)

〉

= D
(
1, q∗1, q

∗
2

)(
1, q1, q2

)T −
∫0

−1

∫θ

ξ=0
D
(
1, q∗1, q

∗
2

)
e−iω0τj (ξ−θ)dη(θ)

(
1, q1, q2

)T
eiω0τj ξdξ

= D

[

1 + q1q
∗
1 + q2q

∗
2 −

∫0

−1

(
1, q∗1, q

∗
2

)
θeiω0τj ξdη(θ)

(
1, q1, q2

)T
]

= D
[
1 + q1q

∗
1 + q2q

∗
2 + τjf

′(0)e−iω0τj
(
w1q

∗
2 + q1 +w2q1q

∗
2 + q2q

∗
1

)]

= 1.
(3.14)
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Figure 2: When τ = 1.7 < τ0 = 1.8434, the zero equilibrium is asymptotically stable. Here initial value is (1,
1, 1).

Therefore, we can choose D as

D =
1

1 + q1q
∗
1 + q2q

∗
2 + τjf

′(0)eiω0τj
(
w1q

∗
2 + q1 +w2q1q

∗
2 + q2q

∗
1

) . (3.15)

Following the algorithms given in [12] and using similar computation process in [7],
we can get that the coefficients which will be used to determine the important quantities:

g20 = τjf ′′(0)De−2iω0τj
[
w1q

∗
2 + q

2
1 +w2q

∗
2q

2
1 + q

∗
1q

2
2

]
,

g11 = τjf ′′(0)D
[
w1q

∗
2 +

(
1 +w2q

∗
2

)
q1q1 + q

∗
1q2q2

]
,

g02 = τjf ′′(0)De2iω0τj
[
w1q

∗
2 +

(
1 +w2q

∗
2

)
q21 + q

∗
1q

2
2

]
,

g21 = τjf ′′(0)D
[
w1q

∗
2

(
W

(1)
20 (−1)eiω0τj + 2W (1)

11 (−1)e−iω0τj
)

+
(
1 +w2q

∗
2

)(
W

(2)
20 (−1)q1eiω0τj + 2W (2)

11 (−1)q1e−iω0τj
)

+q∗1
(
W

(3)
20 (−1)q2eiω0τj + 2W (3)

11 (−1)q2e−iω0τj
)]
,

(3.16)
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Figure 3: When τ = 1.9 > τ0 = 1.8434, a periodic orbit bifurcates from the zero equilibrium. Here, initial
value is (1, 1, 1).

where

W20(θ) =
ig20
ω0τj

q(0)eiω0τjθ +
ig02

3ω0τj
q(0)e−iω0τjθ + E1e

2iω0τjθ,

W11(θ) = − ig11
ω0τj

q(0)eiω0τjθ +
ig11

ω0τj
q(0)e−iω0τjθ + E2,

(3.17)

moreover E1, E2 satisfy the following equations, respectively,

⎛

⎜
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⎜
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⎠E2 = f ′′(0)

⎛

⎜
⎜
⎝

q1q1

q2q2

w1 +w2q1q1

⎞

⎟
⎟
⎠.

(3.18)
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Therefore, all gij in (3.16) can be expressed in terms of parameters. And we can compute the
following values:

c1(0) =
i

2ω0τj

(
g20g11 − 2

∣
∣g11

∣
∣2
)
− g21

2
,

μ2 = − Re{c1(0)}
Re

{
λ′
(
τj
)} ,

β2 = 2Re{c1(0)},

T2 = − im{c1(0)} + μ2 im
{
λ′
(
τj
)}

ω0τj
, j = 0, 1, 2, . . . ,

(3.19)

which determine the qualities of bifurcating periodic solution in the center manifold at the
critical values τj , that is, μ2 determines the directions of the Hopf bifurcation: if μ2 > 0(μ2 < 0),
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions
exist for τ > τj(τ < τj); β2 determines the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable (unstable) if β2 < 0(β2 > 0); T2 determines the period
of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0(T2 < 0).

4. Computer Simulation

In this section, we will confirm our theoretical analysis by numerical simulation. We give
an example of system (3.1) with w1 = 1, w2 = −1, and f(·) = tanh(·). Then, f(0) = 0 and
f ′(0) = 1.

Equation (1.3) becomes

ẋ1(t) = −x1(t) + tanh(x2(t − τ)),
ẋ2(t) = −x2(t) + tanh(x3(t − τ)),
ẋ3(t) = −x3(t) + tanh(x1(t − τ)) − tanh(x2(t − τ)).

(4.1)

From (2.6), we have Δ = 0.2870, α = 1.0118, β = −0.3295. By Lemma 2.1, we know (2.7) has
roots z1 = α + β = 0.6823 and z2,3 = −(α + β)/2 ± i(√3/2)(α − β) = −0.3412 ± 1.1615i. Clearly,

|z1| = 0.6823 < 1, |z2,3| = 1.4655 > 1. From (2.12), it follows that ω =
√
|z2,3|2 − 1 = 0.6823,

and, from (2.13), we get τ0 = 1.8434. Thus, the zero equilibrium is asymptotically stable when
τ ∈ [0, τ0) as is illustrated by the computer simulations (see Figures 2(a)–2(d)). When τ
passes through the critical value τ0, zero equilibrium loses its stability and a Hopf bifurcation
occurs, that is, a family of periodic solutions bifurcates from the origins (0, 0, 0), which are
depicted in Figures 3(a)–3(d).
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