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We use the bifurcation method of dynamical systems to study the periodic wave solutions and
their limits for the generalized KP-BBM equation. A number of explicit periodic wave solutions are
obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions.

Their limits contain periodic wave solutions, kink wave solutions, unbounded wave solutions,
blow-up wave solutions, and solitary wave solutions.

1. Introduction

The Benjamin-Bona-Mahony (BBM) equation [1],
U + Uy + Ul — Uyt =0, (1.1)

has been proposed as a model for propagation of long waves where nonlinear dispersion is
incorporated.
The Kadomtsov-Petviashvili (KP) equation [2] is given by

Up + AUy + Upxx) + Uyy =0, (1.2)

which is a weekly two-dimensional generalization of the KdV equation in the sense that it
accounts for slowly varying transverse perturbations of unidirectional KdV solitons moving
along the x-direction.
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Wazwaz [3] presented the Kadomtsov-Petviashvili-Benjamin-Bona-Mahony (KP-
BBM) equation

(U + uy + a(uZ)x = buyyt), + 11y, =0, (1.3)
and the generalized KP-BBM equation
(U + uy + a(u3)x = byyt), + 11Uy, = 0. (1.4)

Wazwaz [3, 4] obtained some solitons solution and periodic solutions of (1.3) by
using the sine-cosine method and the extended tanh method. Abdou [5] used the extended
mapping method with symbolic computation to obtain some periodic solutions of (1.3),
solitary wave solution, and triangular wave solution. Song et al. [6] obtained exact solitary
wave solutions of (1.3) by using bifurcation method of dynamical systems.

The aim of this paper is to study the traveling wave solutions and their phase portraits
for (1.4) by using the bifurcation method and qualitative theory of dynamical systems [6—15].
Through some special phase orbits, we obtain a number of smooth periodic wave solutions
and periodic blow-up solutions. Their limits contain periodic wave solutions, kink wave
solutions, unbounded solutions, blow-up wave solutions, and solitary wave solutions.

The remainder of this paper is organized as follows. In Section 2, by using the
bifurcation theory of planar dynamical systems, two phase portraits for the corresponding
traveling wave system of (1.4) are given under different parameter conditions. In Section 3,
we present our main results and their proofs. A short conclusion will be given in Section 4.

2. Phase Portraits

To derive our results, we give some preliminaries in this section. For given positive constant
wave speed ¢, substituting u = ¢(¢) with ¢ = x + y — ct into the generalized KP-BBM equation
(1.4), it follows that

n

(—cg' +¢' —a(@®) +bey") +r¢" =0. 2.1)

Integrating (2.1) twice and letting the first integral constant be zero, we have
(r—c+1)p—-ap’+bcy’ =g, (2.2)

where g; is the second constant of integration.
Letting ¢ = ¢', we get the following planar system:

dy

d_g = ¢r
i (2.3)
Fi agp’ - Py +g,

where a = a/bc, p=(r+1-c)/bcand g = g1/bc.
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Obviously, the system (2.3) is a Hamiltonian system with Hamiltonian function
a
H(p,§) = ¢ = 59" + P9’ —23p = h, (24)

where h is Hamiltonian.
Now we consider the phase portraits of system (2.3). Set

fo(p) = ap’ - By,

X (2.5)
f(9) =ay’ =Py +g.
Obviously, fo(¢p) has three zero points, ¢_, ¢ and ¢., which are given as follows:
__4/P _ _4/P (2.6)
Y- = EI Yo = 0/ Yy = E

It is easy to obtain two extreme points of fo(¢p) as follows:

— «_4| B 2.7
(10—_ \/;/ (10+—\/;. ( )

Letting

2
0 =1fo(9)| =1foly2)] = @ s @8)

then it is easily seen that gy is the extreme values of fo(¢p).
Let (i, 0) be one of the singular points of system (2.3), then the characteristic values
of the linearized system of system (2.3) at the singular points (¢p;, 0) are

Ay = :I:\/f'((pi). (2.9)

From the qualitative theory of dynamical systems, we therefore know that

(i) if f'(¢i) >0, (¢;,0) is a saddle point.
(ii) if f'(¢i) <0, (¢;,0) is a center point.
(iii) if f'(¢;) =0, (¢;,0) is a degenerate saddle point.

Therefore, we obtain the phase portraits of system (2.3) in Figures 1 and 2.
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Figure 1: The phase portraits of system (2.3) when a > 0, > 0.
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Figure 2: The phase portraits of system (2.3) when a < 0, < 0.

3. Main Results and Their Proofs
In this section, we state our main results.

Proposition 3.1. For given positive constants ¢ and gy, (1.4) has the following periodic wave
solutions when a > 0 and > 0.
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(1) If g = 0, we get eight periodic blow-up wave solutions

. (x,y,t) = :I:\/%csc \/Eé,
U, (x,y,t) = :I:\/%sec \/Eﬁ,

3

sn (pe\/a/28, 95/ p6)

us(x,y,t) ==+

72~ g2 (sn (pe/ar2e g5/ 9s) )

us(x,y,t) =+

1- <Sn <¢6M§/ (P5/<Pe>>2

two periodic wave solutions

_ a, 95
us. (x,y,t) = pssn <<P6\/; ¢, o >

two kink wave solutions

ue. (x,y,t) = :t\/é tanh \/gg,

and two unbounded wave solutions

uz.(x,y,t) = :I:\/é coth \/gg.

(2) If 0 < g < go, we get four periodic blow-up wave solutions

2)’1
01 £ /11 cos \/(xy1/2§'

us. (x,y,t) = 5 -

Ug(X,Y,
( p11 — p13 + (913 — o) (sn (w1, k1))?

b - @10(11 — 13) + @11 (913 — 910) (s (W1, k1))?

upp\x,y,
( 12 — 10 — (13 — 10) (sn(wrg, ki))?

) - 913(12 — P10) — P12 (913 — 910) (31 (W1, k1))?

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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where

24

./ 2
1 4p i —4p + 3¢y <a¢p7 +1/4ap - 3a2(p7>
pr=5\ —wr+\ =% ), n= :

61 = —2([)7 +

m= ’

a

2\ap -3 sg7 (g +f1ap =302} @.10)
a 4

\/ a(p13 = ¢11) (P12 — p10) (12 = 911) (913 — 10)
w1 = s kl = ’
2V2 (913 — 011) (912 — P10)

a periodic wave solution

= 2 (910 — p12) + Pro(pr2 — 1) (sn (wié, k1))

) 3.11
®10 = 912 + (@12 — 1) (sn (W1, k1))? G0

ui1(x,y,

a blow-up wave solution

2(p - 3ay7)
up (x,y,t) = 7 + — — (3.12)
2aq;7 - \/20: (B — ay3) cosh \/30:(,07 -pé
a solitary wave solution
2(p - 3ay7)
ui(x,y,t) = o7+ - g — (3.13)
27 + \/20: (B — ay3) cosh \/30:({)7 -pé
and an unbounded wave solution
2(B - 3ag2) cschy [3ag2 — pé
ui(x,y,t) = g7 - (3.14)

\/—2ap + 6a%@3 + 2ap; tanh< 3ag2 — [5§/2)

(3) If g = go, we get three blow-up wave solutions

18v2 - p1/3p¢°

uis(x,y,t) = Va(182 = 3pE)"
RN
the(x,y,1) = Ja(-18¢ +3p8)’ (3.15)
2
u17(x,y,t) = M

Va(-9+6p8)’
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and a periodic blow-up wave solution

—A1917 + Big1s + (A1917 + Bigig) cn (\/ aAi1B/2¢, kz)
—A1 + B1 + (A1 + Bl)cn<\/ lIAlBl /2§, k2>

uig(x,y,t) = , (3.16)

where

— 2 —\2 — 2 —\2
c1+e c1—¢ c1+¢ c1-¢
A1=\/<(,018_121)_(141)/ Bl=\/<¢17—121>—(141),

4 (At B1)* - (15 — ¢17)°
a 4A.B, ’

(3.17)

ky

c¢1 and ¢y are conjugate complex numbers.

Proof. (1) If g = 0, we will consider three kinds of orbits.

(i) From the phase portrait, we note that there are two special orbits I'1 and I';, which
have the same Hamiltonian with that of the center point (0,0). In (¢, ¢) plane, the expressions
of these two orbits are given as

¢ = i\/ng(wwl)(w—wz)r (3.18)

where 1 = —/2f/a and ¢, = \/23/a.

Substituting (3.18) into d¢/d¢ = ¢ and integrating them along the two orbits I'; and

I'», it follows that
® 4
if ! ds = \/gf ds,
¢ s¢/(s— 0

¢1)(s = ¢2)
,; (3.19)
¢ 1 a
+ ds=1/=| ds.
L’?S (s=p1)(s—¢2) \/gfo

From (3.19) and noting that u = ¢(¢) and ¢ = x + y — ct, we get four periodic blow-up
solutions u1.(x, y,t) and us,(x, y,t) as (3.1) and (3.2).

(ii) From the phase portrait, we note that there are three special orbits I's, I'y, and T’s
passing the points (¢3,0), (¢4,0), (¢5,0), and (e, 0). In (¢, ¢) plane, the expressions of the
orbit are given as

¢ = i\/g (@ = 93) (9 = 94) (9= 95) (9 = 96), (3.20)

where @3 = s, s = —\/2B/a - @2, @5 =1/2p/a— ¢ and \/B/a < gs <~/2p/a.
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Substituting (3.20) into d¢/d¢ = ¢ and integrating them along I';, I'y, and I's, we have

o 1 . Ja g .
iL WS—<p3><s—so4><s—so5><s—w6>ds_\mod'

if; \/(S—(ps)(S—qu ds=\/§f§ds, (3:21)

1) (8= 5) (5 — @)

' ! %[ as
g v e o3

4) (5= ¢p5) (s — 6)

From (3.21) and noting that u = (&) and ¢ = x + y — ct, we get four periodic blow-up
wave solutions us, (x, v, t), us.(x,y,t) as (3.3), (3.4) and two periodic solutions us.(x, y, ) as
(3.5).

(iii) From the phase portrait, we see that there are two heteroclinic orbits I'y and
I'; connected at saddle points (¢_,0) and (¢.,0). In (¢, ¢) plane, the expressions of the
heteroclinic orbits are given as

¢ = i\/%(tp -9 ) (p-g.) (3.22)

Substituting (3.22) into dg/d¢ = ¢ and integrating them along the heteroclinic orbits
I's and I'7, it follows that

[, eVl
[ eV

From (3.23) and noting that u = ¢(¢) and ¢ = x+y —ct, we get two kink wave solutions
ue.(x,y,t) as (3.6) and two unbounded solutions u7.(x, y, t) as (3.7).

(2) If 0 < g < go, we set the largest solution of f(¢p) = 0 be ¢;(\/f/3a < @7 < +/p/a),
then we can get another two solutions of f(¢) = 0 as follows:

(3.23)

(3.24)
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(i) From the phase portrait, we see that there are two special orbits I's and I,
which have the same Hamiltonian with that of the center point (¢3,0). In (¢, ¢)-plane, the
expressions of the orbits are given as

a *
¢ = i\/ > =939 - 95) (9 = p0), (3.25)
where
1 4p 4p
Ps =5\ ¥7- ;‘3‘1’3‘2\‘1’3“/’7 7—3‘1’3 ,
(3.26)

1 [4p 4p
po =5\ 7~ 7—3‘P§+2\‘P§+‘P7 7—3‘/’5

Substituting (3.25) into dp/d¢ = ¢ and integrating them along the orbits, it follows
that

—s) (s = o)

if: Ws—so;)z(sl e \/gﬁ *

—3) (s — ¢0)

ij:s \/(s—tp’é)z(s1 dsz\/gﬁds'

(3.27)

From (3.27) and noting that u = ¢(¢) and ¢ = x + y — ct, we get two periodic blow-up
wave solutions ug, (x,y,t) as (3.8).

(ii) From the phase portrait, we note that there are three special orbits I';g, I'11, and I'r»
passing the points (¢10,0), (¢11,0), (¢12,0), and (¢13,0). In (¢, ) plane, the expressions of the
orbit are given as

¢= i\/g (¢ = 10) (9 = p11) (9 = 912) (9 = 913), (3.28)

where 3 < 19 < P14 < (P§ <15 < P11 < P12 < P7 < P13 < P9.
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Substituting (3.28) into dg/d¢ = ¢ and integrating them along I'1o, I'11, and I'1p, we

have
P10 4
J‘ ! ds = \/?J‘ ds,
v \(pr3—5) (o - 0

s) (11 -5) (p10—5)

¢ 1 fa ¢ §
J‘lm \/(S = ¢13) (s = ¢12) (s = 1) (5 — ¢10) - \/;jo 4 (3.29)

' ! 5 (s
L’“ V(913 5) (912 = ) (s - 911) (5 - 910) - \/QJ‘O !

From (3.29) and noting that u = ¢(¢) and ¢ = x + y — ct, we get two periodic blow-
up wave solutions ug(x,y,t), uio(x,y,t) as (3.9) and a periodic wave solution ui;(x,y,t) as
(3.11).

(iii) From the phase portrait, we see that there are a spacial orbit I';3, which passes the
point (¢14,0), and a homoclinic orbit I'l4 passing the saddle point (¢7,0). In (¢, ¢) plane, the
expressions of the orbits are given as

¢ = i\/%(so —97)* (90— p1a) (9 = p15), (3.30)

where

—ap; —\[2ap - 2a%¢3

P14 = ’
i (3.31)

—ayp7 +1/2ap - 2a2¢3

$15 = p :

Substituting (3.30) into d¢/d¢ = ¢ and integrating them along the orbits, it follows
that

& 1 a (¢
ds=1/=| ds,
iL“ V(5= 9% (s =~ 1) (5 - 915) S \/;[0 S

¢ 1 ¢
+ ds=1/% (" ds,
J‘%S \/(S —¢7)*(s - 14) (s — ¢p15) ’ \/;.[0 ° (3.32)

i'[: \/(S —97)*(s 1 \/gﬁ *

ds =
~¢15) (s = ¢15)
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From (3.32) and noting that u = ¢(¢) and ¢ = x + y — ct, we get a blow-up solution
up(x,y,t) as (3.12), a solitary wave solution ui3(x, y,t) as (3.13), and an unbounded wave
solution u14(x,y,t) as (3.14).

(3) If g = go, we will consider two kinds of orbits.

(i) From the phase portrait, we see that there are two orbits I';5 and I';4, which have the
same Hamiltonian with the degenerate saddle point (¢3,0). In (¢, ¢) plane, the expressions
of these two orbits are given as

¢= i\/ g(q) K SNCEIUDE (333)
where
P16 = — %. (3.34)

Substituting (3.33) into d¢/d¢ = ¢ and integrating them along these two orbits I'i5 and

I'1¢, it follows that
+00 ¢
:l:f ! ds = \/gf ds,
v /(s =) (s~ g6) 0

+ f:é \/(S = (p:;(s By ds = \/gj‘j ds.

From (3.35) and noting that u = ¢(¢) and ¢ = x + v — ct, we get three blow-up solutions
uis(x, y,t), uis(x, y,t), and ui7(x, y,t) as (3.15).

(ii) From the phase portrait, we see that there are two special orbits I';; and I'ig passing
the points (¢17,0) and (¢13,0). In (¢, $) plane, the expressions of the orbits are given as

(3.35)

‘i’ = i\/%(‘P_(Plfi)((P_(PU) ((p—c1)((p—51), (3.36)

where @17 < 916 < ¢ < 13, 1 and ¢; are conjugate complex numbers.
Substituting (3.36) into dg/d¢ = ¢ and integrating them along I';; and I'ig, we have

L. NI 1 =[5 [ s 6:37)

<P17)(S —c)(s—c1)

From (3.37) and noting that u = ¢(¢) and ¢ = x + y — ct, we get a periodic blow-up
wave solutions uig(x, y, t) as (3.16).
Thus, we obtain the results given in Proposition 3.1. O
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Proposition 3.2. For given positive constants c and gy, (1.4) has the following periodic wave solution

when a <0and p < 0.
(1) If g = 0, we get four periodic wave solutions

o (x,y,t) = <P1CH<‘\/ —agig, 91/ 2ﬂ+2a<p>
1

Uz (x,y,t) = <P2Cf1<‘\/ - aié, (‘DZV Y 20“/))
2

—K1P6 + M1 Pe ST (w2, k3)
1+ Asr?(waé, k3)

uxn(x,y,t) = J@é - <2¢§ - %) sn? <‘ﬁ6\/§§/ k4>,

un (x,y,t) =

where

~ 26 ~ 26
KF%W/;“P@ )ﬂ:%—\/;—‘l’é

\/—(x[p})+\/—2ﬁ+a(])’§ L 1 L \/2()06 Zﬁ/(x

7 3= 4 =

242 K1 P

wy =
and two solitary wave solutions

Uy (x,y,t) = :l:\/%sech \/—7345

(2) If —g0 < g < 0, we get six periodic wave solutions

Arpro + P11Ba + (Arpro — P11B2) CD(V -aAyB,/2¢, k5>

U (x,y,t) =
Az + Bz + (A2 — Bz)Cn < \V —aAsz/Zg, k5>
- 20
ux(x,y,t) = Qg + ,
s yit) = 6 —U+ /Gcos/(ab/2)¢
g (x, ) = N (?17 - (?15) + ?17(‘?15» - @14;) sn?(ws3é, ke) ,
P17 = P15 + (P15 — P1a) sr?(wsé, ke)
2y (2, ) = P17 (P16 + P1a) — Pra(P17 — Q1) s (w3, k) ’

~P16 + P14 = (§17 = §16) s (w3, ko)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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A3is + $19Bs + (AsPis — ProBs) cn <\/ -aA3B3/2¢, k7>

s (x,y,t) =
A3 + B3 + (A3 - B3)Cl’1 (\/ —aA3B3/2§, k)
( ) Asprg + Pr19Bs — (A3p1s — P19Bs) en (\/ -aA3B3/2¢, k7>
Uy (x,y,t) =

A3 + B3 — (A3 — Bg)Cl’l < \V4 —LIA3B3/2§, k7>

where

— 2 —\2 - \2 = \2
. c+tc c-¢ - c+c c3-¢C
Az=\/<(p11— 32 3)_(343), Bz=\/<q)10— 32 3)_(343)

— 2 —\2 - \2 —=\2
. ca+cC ci—7C . a+c ci—C
A3=\/<‘P19‘ 42 4)_(444), Bs=\/<</)1s— 42 4)_(444)

e = \/(¢11 ~§10)° — (A2 - By)® e = (§17 = §16) ($15 — §1a)
5 = ’ 6~ 5 5:=) (& o1a)
4A,B, (@17 — §15) (P16 — Pra)

w3 =

VoG =) @e =) \/(@9—@8)2— (A~ By’
2v2 T 4A;B; /

o —\[4ap - 3a?{ T N T
Py = ;o O=—— #3555+ 350\ - - 3%,

2a
_ [ a4
#=235 =2 ;ﬁ—&/ﬁéf q =455 + 4 ;ﬂ—?"l’é/

3, C3, ¢4 and ¢4 are complex numbers.
And two solitary wave solutions

B 2B — 6ap?
uzo (x, y,t) = o + P 6ags ,
2a{py + \/ 2af — 2a2{p? cosh \/ —p +3apii
25— 6a

uz1 (x,y,t) = o +

2a{y - \/20(,6 - 2023 cosh \/—,6 +3apdé
(3) If g = —go, we get two periodic wave solutions as follows:

AP + P3Bs + (Asr — Po3Bs) en <\/ —aAsBy/2¢, ks)

usn(x,y,t) =

A4 + B4 + (A4 - B4)cn < \V4 —IXA4B4/2§, kg)

13

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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As5@os + $25Bs + (AsPos — Po5Bs) cn <\/ -aAsBs5/2¢, k9>
A5 + B5 + (A5 — B5)C1’1 < \V/ —aA5B5/2§, kg)

uss(x,y,t) = , (3.54)

where

— 2 —\2 — \2 = \2
. cs+cC cs—¢ . cs+cC cs—¢
A4:\/<"’23_525)_(545)’ B4:\/<(‘022_525>_(545)’
— 2 —\2 — 2 = \2
. cetcC c6—¢C . ce+cC c6—¢C
A5=\/<¢P25— 62 6) _(646), Ba=\/<q)24— 62 6) _(646), (3.55)

e = \/(@3 ~ §n)* — (Ag— By)? ko — \/((;525 ~ )* — (As — Bs)?
4A,B, ’ ’ 41A5B; ’

C5, C5, Co and e are complex numbers.
And a solitary wave solution

2
uzs(x,y,t) = \/% _99:—26[22. (3.56)

> \/%, \/é < Ps < \/%. (3.57)

(i) From the phase portrait, we see that there are a closed orbit I'; passing the points
(¢1,0) and (¢2,0). In (¢, ) plane, the expressions of the closed orbits are given as

Proof. (1) If g = 0, we set

b=+\-5 @ 0) -3 (0 - ) (p-2), (358)

where ¢ = -, ¢ = i\/¢3 — 2p/a and ¢ = —i\ /@3 — 2/ a.

Substituting (3.58) into d¢/d¢ = ¢ and integrating them along the orbit I';, we have

Ll \/<‘P2—S)(S—(Pl)(s—cz)(s—cz)ds ) \/iJ‘ o
’[‘/’2 \/(?2—5)(5—901)(5—02)(5—C2)ds_\/:j =

From (3.59) and noting that u = ¢(¢) and ¢ = x + y — ct, we obtain the periodic wave
solutions u19(x, y,t) as (3.38) and uy(x, y, t) as (3.39).

(3.59)
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(i) From the phase portrait, we see that there are two closed orbits I'; and T'; passing
the points (3,0), (¢4,0), (¢5,0), and (¢, 0). In (¢, $) plane, the expressions of the closed
orbits are given as

b= i\/_g (@ =§3) (9= §4) (9 - §5) (G ~ 9), (3.60)

where @3 = —@¢, ¢s = —\/2p/a — ¢% and @5 = \/2p/a — §2.

Substituting (3.60) into d¢p/d¢ = ¢ and integrating them along T'; and T3, we have

¢ 1 [ S .,
I, Wﬁ—s><¢s—s><¢4—s><s—¢s>ds_\mod

' ! A5 (s
iJ‘% \/(¢6—S)(S—%)(S—@)(S—%)ds_\/tfod

(3.61)

From (3.61) and noting that u = ¢(¢) and ¢ = x + y — ct, we obtain the periodic wave
solutions uy1(x, y,t) as (3.40) and ux (x,y,t) as (3.41).

(iii) From the phase portrait, we see that there are two symmetric homoclinic orbits Ty
and T's connected at the saddle point (0,0). In (¢, ¢) plane, the expressions of the homoclinic
orbits are given as

¢ =20\/-5 (0~ 7) (s~ o), (3.62)

where ¢7 = —\/2p/a and @g = \/23/a.
Substituting (3.62) into dp/d¢ = ¢ and integrating them along the orbits I'y and I's, we
have

:tJ‘; sx/(s—@i)((ﬁs—s)dsz \/gj‘jds,

(3.63)

' ! o as
e VL

From (3.63) and noting that u = ¢(¢) and ¢ = x + y — ct, we obtain the solitary wave
solutions w3, (x,y,t) as (3.43).
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(2) If —g0 < g <0, we set the middle solution of f(¢) = 0 be ¢9(0 < g < v/p/3a), then
we can get another two solutions of f(¢) = 0 as follows:

—aiy — \/4ap - 302§

Py = ,
2
i (3.64)
_ —ao +\/4ap - 3a2(;
P9 = 2a .

(i) From the phase portrait, we see that there are a closed orbit I's passing the points
(¢10,0) and (11,0). In (¢, ¢) plane, the expressions of the closed orbits are given as

(i) = i\/_g(¢11 _(P) (‘P_(,Elo)((p—c3)((p—63), (365)

where @1 < P10 < Py < P11 < P13, c3 and C3 are conjugate complex numbers.
Substituting (3.37) into d¢/d¢ = ¢ and integrating them along I's, we have

¢ 1 a (¢
+ ds = \/-5 ds. 3.66
Lm \/(¢11 -5)(s—@10)(s—c3)(s—¢3) 2 fo (360)

From (3.66) and noting that u = ¢(¢) and ¢ = x+y —ct, we get a periodic wave solution
ux(x,y,t) as (3.44).

(ii) From the phase portrait, we note that there is a special orbit fy, which has the same
Hamiltonian with that of (¢, 0). In (¢, ¢) plane, the expressions of the orbits are given as

b= 1/-5 050~ F) G - 0), 6.67)

where

P12 =

afo +\/4ap — 3025 + 2\/11(?9 (zx(ﬁg —\/4ap - 3a2(ﬁ§>
2a ’

(3.68)

ago +\/4ap — 3a2{; - 2\/&(@9 (cx(]ig —-\/4ap - 30(2(7)3)
2a )

Q13 =

Substituting (3.67) into d¢p/d¢ = ¢ and integrating them along T, it follows that

if: \/((;513 —8)(s : \/gﬁ ds. (3.69)

ds =
- §3)%(s - G2)
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From (3.69) and noting that u = ¢(¢) and ¢ = x+y —ct, we get a periodic wave solution
uxs(x,y,t) as (3.45).

(iii) From the phase portrait, we note that there are two closed orbits I's and I'y passing
the points ($14,0), (¢15,0), ($16,0), and (¢17,0). In (¢, $) plane, the expressions of the orbits
are given as

¢= i\/_g (@ = §1) (9~ §15) (9 = §16) (G17 ~ 9), (3.70)

where @20 < P14 < P12 < P10 < P < P11 < P13 < P15 < Pg < P16 < Py < ‘ﬁlz < @21'~
Substituting (3.70) into d¢/d¢ = ¢ and integrating them along I's and I'y, we have

¢ 1 = S s
if@m \/(9517—s)(lﬁm—s)(%s—s)(s—(ﬁm)ds_\/jjod '

“” ! 2 [ as
g e Vil

(3.71)

From (3.71) and noting that u = ¢(¢) and { = x + v — ct, we get two periodic wave
solutions uss(x, y, t) as (3.46) and uy7(x, y,t) as (3.47).

(iv) From the phase portrait, we note that there is a special orbit Ty passing the points
(¢18,0) and (§19,0). In (¢, ¢) plane, the expressions of the orbit are given as

(i) = i\/‘g(¢19 _(P) ((P_¢18)((P—C4)(lp—f4), (372)

where (13 < §20 < P21 < (P19, c4 and ¢4 are conjugate complex numbers.
Substituting (3.72) into dg/d¢ = ¢ and integrating it along I';g, we have

¢ 1 x (¢
+ ds = \/—5 ds. 3.73
ng \/(9519 —5)(s—{18)(s—ca)(s—C4) 2 ’[0 G

From (3.73) and noting that u = ¢(¢) and ¢ = x+y —ct, we get a periodic wave solution
ux(x,y,t) as (3.48).

If ¢(¢) is a traveling wave solution, then ¢(¢ + g) is a traveling wave solution too.
Taking g = 2K and noting that cn (1#+2K) = —cnu, we get a periodic wave solution uy(x, y, t)
as (3.49).

(v) From the phase portrait, we note that there are two homoclinic orbits fn and flz
connected at the saddle point ({9, 0). In (¢, ¢) plane, the expressions of the orbits are given as

b=+~ 5 (9~ 520) (Fs - 0), 674)
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where

—aio +1/2ap — 2a2p}

$20 = ,

i (3.75)
_ —ay —\/2ap - 20233
$21 = a .

Substituting (3.74) into d¢/dé = ¢ and integrating them along I';; and Ty, it follows

LZO V(s =G0 (s - <P20)(<P21 -s) " \/:I ds
L“ V(=G0 (s - ‘PZO)(<P21 -s) " \/:j ©

From (3.76) and noting that u = ¢(¢) and ¢ = x + y — ct, we get two solitary wave
solutions uzy(x, y,t) as (3.51) and uz; (x, y, t) as (3.52).

(3) If g = —go, we will consider two kinds of orbits.

(i) From the phase portrait, we note that there is a closed orbit I';3 passing the points
(¢22,0) and (¢23,0). In (¢, ¢) plane, the expressions of the orbit are given as

that

(3.76)

¢ = ﬂ:\/—g(‘ﬁzs _‘P) (‘P—(ﬁzz)((p—c5)(¢p—65), (3.77)

where —/3f/a < (2 < =21/B/3a < a3 < \/B/3a, c5 and C5 are conjugate complex numbers.
Substituting (3.77) into d¢/d¢ = ¢ and integrating it along T'13, we have

ds =
$22)(s — c5)(s = C5)

From (3.78) and noting that u = ¢(¢) and ¢ = x+y—ct, we get a periodic wave solutions
us (x,y,t) as (3.53).

(ii) From the phase portrait, we note that there is a closed orbit Ty passing the points
((24,0) and ({p5,0). In (¢, ) plane, the expressions of the orbit are given as

¢ = i\/—g(@s ~ ) (¢ = $24) (9 — c6) (9 = C6), (3.79)

where ¢y < —\/3f/a < Pn < =24/P/3a < 3 < \/P/3a < P25, s and ¢ are conjugate

complex numbers.
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Substituting (3.79) into dg/d¢ = ¢ and integrating them along I'14, we have

¢ 1 x (¢
+ ds = \/-5 ds. 3.80
LM \/(9525 —5) (5= $24) (s — c6)(s — Co) 2 '[0 (350

From (3.80) and noting that u = ¢(¢) and ¢ = x+y—ct, we get a periodic wave solutions
uss3(x,y,t) as (3.54).

(iii) From the phase portrait, we see that there is a homoclinic orbit 1~"15, which passes
the degenerate saddle point (¢%,0). In (¢, $) plane, the expressions of the homoclinic orbit
are given as

¢ = i\/—g(tpi — )’ (¢ — P26), (3.81)
where
(P26 = — %. (3.82)

Substituting (3.81) into d¢/d¢ = ¢ and integrating them along I'ys, it follows that

¢ 1 x
ds=1/-=| ds.
I, -e G- - [, (3.8

From (3.83) and noting that u = (&) and ¢ = x + y — ct, we get a solitary wave solution
uzs(x, y,t) as (3.56).
Thus, the derivation of Proposition 3.2 has been finished. O

Proposition 3.3. For these solutions, the following are their relations.
(1) When g tends to \/23/ a, the periodic blow-up wave solutions us, and uy, tend to periodic
blow-up wave solutions uy, and uy,, that is,

Iim  uz (x,y,t) =ui.(x,y,t), Im  ug (x,y,t) =ur,(x,y,t).
o557 s:(%,yt) = s (x,y,t) oy 1:(x,y,t) = w2y (%, y, t) (3.84)

(2) When e tends to \/p/ a, the periodic wave solutions us, tend to kink wave solutions ue,
that is,

Im  wus. (x,y,t) =ue.(x,y,t).
oy 5:(%, Y1) = ues(x, ¥, 1) (3.85)
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(3) When g tends to A/ B/ a, the periodic blow-up wave solutions us, tend to unbounded wave
solutions uy,, that is,

im  wus (x,y,t) =uy(x,y,t).
oy o (X yt) = ur(x,y,t) (3.86)

(4) When 13 tends to o, the periodic blow-up wave solution ug tends to periodic blow-up
wave solution ug_, that is,

Jm s (1) = us (x,y,1). (3.87)

(5) When @13 tends to o, the periodic blow-up wave solution uyy tends to periodic blow-up
wave solution ug,, that is,

Jm wio(x,y, 1) = us, (x,y,1). (388)

(6) When 13 tends to gy, the periodic wave solution uyy tends to solitary wave solution w3,
that is,

li t) = t).
(p131gl(p7u11 (x,y,t) =uz(x,y,t) (3.89)

(7) When (13 tends to 7, the periodic blow-up wave solution uy tends to unbounded wave
solution w4, that is,

w11312n¢7u10(x, y,t) = us(x, y, t). (3.90)

(8) When 1 tends to /B /3a, the periodic blow-up wave solution uy7 tends to blow-up wave
solution uye, that is,

lim u17(x,y, t) = u16(xr]/f t)'
ko (3.91)

(9) When (p, tends to \/23/ a, the periodic wave solutions uig and uy tend to solitary wave
solutions ups,, that is,

Iim  wo(x,y,t) = uxp_(x,y,t), Hm  wuxo(x,y,t) = ux, (x,y,1).
@2 —+/2p/a @2 —+/2p/a (392)

(10) When (g tend to A/2p/ a, the periodic wave solutions uy and uy tends to solitary wave
solutions ups,, that is,

Im  uy(x,y,t) =uxn_(x,y,t), Im  up(x,y,t)=u x,Yy,t).
pim 2 (X, Y1) = un-(x,y,1) o 2(X,y,t) = ux. (%, y,1) (3.93)
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(11) When (11 tends to {13, the periodic wave solution uy4 tends to periodic wave solution uss,
that is,

lim uos(x,y,t) = uss(x, y,t). (3.94)

P11 — P13

(12) When (17 tends to @3, the periodic wave solution uae tends to periodic wave solution uss,
that is,

lim up6(x,y,t) = ups(x, Y, t). (3.95)

P17 = ¢q

(13) When {17 tends to {1, the periodic wave solutions un and uyy tend to solitary wave
solutions uzg and uzy, that is,

; hn}i) o6 (x,y,t) = uzo(x, y,t), ; lim(ﬁ w7 (x,y,t) = uz (x, y,t). (3.96)

(14) When {19 tends to {1, the periodic wave solutions ug and uyg tend to solitary wave
solutions uzg and uzy, that is,

(,zhf}; uzs (x,y,t) = uso(x, y,t), ¢ILm¢ 9 (x, y,t) = uz1 (x,y,t). (3.97)

(15) When (py and (4 tend to /33 / a, the periodic wave solutions us and uss tend to solitary
wave solution uzy, that is,

lim u32(x,y, t) = lim u33(x,y, t) = u34(x,y, t)
P —+/3p/a Goa— /a (3.98)

Proof. (1) Letting s — +/2B/a, it follows that ¢5 — 0 and sn (ps\Va/2¢,¢s5/ps) —
sn (v/Bé¢,0) = sin+/p¢, and we have

Ve \/2[5/0(

lim  wus.(x,y,t)= lim =+ =+ =u.(x,y,t),
s (V7P BT
2

. . 9, - ‘Pf23<5“ <"’6 Va/2, g5/ ‘/’6>> (3.99)

Iim  wus(x,y,t)= lim + 5 :
Po—/2p/a o=/ 2p/a 1- <sn <(p6\/a/2§,(/’5/</)6>>

\2B/a
=4+ P =uy.(x,y,t).

cos\/pé

Therefore, the periodic blow-up solutions u;,(x, y,t) are the limit of the elliptic func-
tion periodic blow-up solutions us, (x, y, t) and the periodic blow-up solutions u,.(x, y,t) are
the limit of the elliptic function periodic blow-up solutions u4.(x, y,t).
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(2) Letting s — +/P/a, it follows that 95 — +/B/a and sn(ps\v/a/2¢,¢s5/ps) —
sn(y/pf/2¢,1) = tanh/f/2¢, and we have

. s
lim  ws.(x,y,t)= lLm +@ssn <(P6\/7‘§ >
ps—/p/a - po— /Pl

= i\/étanh \/gé = e, (%, Y, 1).

Therefore, the kink wave solutions ue,(x,y,t) are the limit of the elliptic function
periodic solutions us..(x, y, t).

(4) Letting @13 — o, it follows that 912 — @7, 911 — @3, 910 — @sand sn(wié, k1) —
sn(wi¢,0) = sinwi¢, and we have

(3.100)

10(p11 — 913) + P11 (13 — p10) (sn(wié, k1))

lim wuo(x,y,t) = lim

#13 = P13 =9 11 — @13 + (13 — o) (sn(wrg, k1))* (3.101)
. 2y
g s (1),

01 — /11 cos\/ay1/2¢

Therefore, the trigonometric function periodic blow-up wave solution ug_(x,y,t) is
the limit of the elliptic function periodic blow-up solution ug(x, y, t).

(9) Letting o — +/2f/a, it follows that ¢ — —/2f/a, \/p-ap? — +/-p and

-¢1\/a/ (-2 + 2ap?) — 1, and we have

hm uo(x,y,t) = hrn can( \/f-a 2¢,
§2—~/2B/a oy t) = \/2B/a <P1 < Pie \/ 2ﬁ+2a(p1>

= —\/%sechﬁé =up3_(x,y,t).

(3.102)

Therefore, the solitary wave solution uy;_(x, y,t) is the limit of the elliptic function
periodic wave solution u9(x, y,t).
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(15) Letting ¢pop — —+/3f/a, it follows that g3 — +/f/3a, cs — +/p/3a, ¢5 —
\pP/3a, Ay — 0, By — 4+/B/3a and cn(\/-aAsBs/2,kg) — cn(0, kg) =1, and we have

Ay + Po3Bys + (Aspn — P23Bs) cen (\/ —aAyBy/2¢, k8>
im  wus(x,y,t) = lim
(P ——+/3p/a (P2 ——+/3p/a Ay + By + (A4 - B4)C1’1<\/ —tXA4B4/2§, ks)

i Ayf + P3Bs + (AsPor — Po3Bs) cn ( V- AyBy/2¢, k8>
im
As=0 Aq +Ba+ (Ag— By)cn <\/—aA4B4 /2¢, kg)

. 2\/-2aA4Bs(P2 + P X1) + Ba(AsPor — Baoz) agx2 3
lim
As—0 2\/ —2&A4B4(1 + Xl) + B4(A4 - B4)a§X2X3

36 9+ 242
= \/2—91—6[22 = u34(x,y,t),

(3.103)

where X1 = Cl’l( AV —dA4B4/2, kg), X2 = dn ( \V —dA4B4/2, kg), X3 = sn( \V4 —zxA4B4/2, kg)
Therefore, the fractional function solitary wave solution us4(x, y, t) is the limit of the
elliptic function periodic wave solution uz (x,y, t).
Similarly, we can derive the others case. This has proved Proposition 3.3. O

Finally, we will show that the periodic wave solution us,(x,y,t) evolutes into the
kink wave solution u,(x,y,t) when ¢s — +/p/a. We take some suitable choices of the
parameters, such as

a=1, b=1, r=>5 c=2, (3.104)

as an illustrative sample and draw their plots (see Figure 3).

Remark 3.4. One may find that we only consider the case when g > 0 in Proposition 3.1 (when
g < 0in Proposition 3.2). In fact, we may get exactly the same solutions in the opposite case.

4, Conclusion

In this paper, we have obtained many traveling wave solutions for the generalized KP-BBM
equation (1.4) by employing the bifurcation method and qualitative theory of dynamical
systems. The traveling wave solutions have been given in Propositions 3.1 and 3.2. On
the other hand, in Proposition 3.3, we prove that the periodic wave solutions, kink wave
solutions, blow-up wave solutions, unbounded solutions, and solitary wave solutions can be
obtained from the limits of the smooth periodic wave solutions or periodic blow-up solutions.
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Figure 3: The periodic wave solution us, (x, y, t) evolute into the kink wave solution ue, (x,y,t) with the
conditions (3.104). (a) ¢s = 2.2; (b) ¢ =2.01; (c) 6 = 2.

The method can be applied to many other nonlinear evolution equations and we believe that
many new results wait for further discovery by this method.
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